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Repeating spatiotemporal spike patterns exist and carry information. Here we

investigated how a single spiking neuron can optimally respond to one given pattern

(localist coding), or to either one of several patterns (distributed coding, i.e., the neuron’s

response is ambiguous but the identity of the pattern could be inferred from the

response of multiple neurons), but not to random inputs. To do so, we extended a

theory developed in a previous paper (Masquelier, 2017), which was limited to localist

coding. More specifically, we computed analytically the signal-to-noise ratio (SNR) of a

multi-pattern-detector neuron, using a threshold-free leaky integrate-and-fire (LIF) neuron

model with non-plastic unitary synapses and homogeneous Poisson inputs. Surprisingly,

when increasing the number of patterns, the SNR decreases slowly, and remains

acceptable for several tens of independent patterns. In addition, we investigated whether

spike-timing-dependent plasticity (STDP) could enable a neuron to reach the theoretical

optimal SNR. To this aim, we simulated a LIF equipped with STDP, and repeatedly

exposed it to multiple input spike patterns, embedded in equally dense Poisson spike

trains. The LIF progressively became selective to every repeating pattern with no

supervision, and stopped discharging during the Poisson spike trains. Furthermore,

tuning certain STDP parameters, the resulting pattern detectors were optimal. Tens of

independent patterns could be learned by a single neuron using a low adaptive threshold,

in contrast with previous studies, in which higher thresholds led to localist coding only.

Taken together these results suggest that coincidence detection and STDP are powerful

mechanisms, fully compatible with distributed coding. Yet we acknowledge that our

theory is limited to single neurons, and thus also applies to feed-forward networks, but

not to recurrent ones.

Keywords: neural coding, localist coding, distributed coding, coincidence detection, leaky integrate-and-fire
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1. INTRODUCTION

In a neural network, either biological or artificial, two forms of
coding can be used: localist or distributed. With localist coding,

each neuron codes (i.e., maximally responds) for one and only
one category of stimulus (or stimulus feature). As a result, the
category of the stimulus (or the presence of a certain feature)
can be inferred from the response of this sole neuron, ignoring

the other neurons’ responses. Conversely, with distributed
coding each neuron responds to multiple stimulus categories (or
features) in a similar way. Therefore, the response of each neuron

is ambiguous, and the category of the stimulus, or the presence
of a certain feature, can only be inferred from the responses of
multiple neurons. Thus the distinction between the two schemes
is the number of different stimuli to which a given neuron

responds—not the number of neurons which respond to a given
stimulus. Indeed, a localist network can have redundancy, and
use multiple “copies” of each category specific neuron (Thorpe,
1989; Bowers, 2009).

Does the brain use localist or distributed coding? This
question has been, and still is, intensively debated. In
practice, discriminating between the two schemes from
electrophysiological recordings is tricky (Quian Quiroga and
Kreiman, 2010), since the set of tested stimuli is always limited,
the responses are noisy, the thresholds are arbitrary and the
boundaries between categories are fuzzy. Here we do not attempt
to do a complete review of the experimental literature; but
rather to summarize it. It is commonly believed that distributed
coding is prevalent (Rolls et al., 1997; O’Reilly, 1998; Hung et al.,
2005; Quiroga et al., 2008), but there is also evidence for localist
coding, at least for familiar stimuli, reviewed in Bowers (2009,
2017), Thorpe (2009, 2011), and Roy (2017).

The question of localist vs. distributed coding is also relevant
for artificial neural networks, and in particular for the recently
popular deep neural networks. Most of the time, these networks
are trained in a supervised manner, using the backpropagation
algorithm (LeCun et al., 2015). The last layer contains exactly one
neuron per category, and backpropagation forces each neuron
to respond more strongly when the stimulus belongs to the
neuron’s category. In other words, localist coding is imposed
in the last layer. Conversely, the hidden layers are free to
choose their coding scheme, which is supposedly optimal for
the categorization task at hand. It is thus very interesting to
analyze the chosen coding scheme. It is not easy to do such
analysis on the brain (as explained above), but we can do it
rigorously for computational models by computing the responses
to huge amounts of images, and even synthesizing images that
maximize the responses. Results indicate that some hidden
neurons respond to one object category only (Zhou et al., 2015;
Nguyen et al., 2016; Olah et al., 2017), while others respond
to multiple different objects (Nguyen et al., 2016; Olah et al.,
2017). Thus it appears that both localist and distributed codes
can be optimal, depending on the task, the layer number, and the
network parameters (number of layers, neurons, etc.).

Let us come back to the brain, in which computation
is presumably implemented by spiking neurons performing
coincidence detection (Abeles, 1982; König et al., 1996; Brette,

2015). This observation raises an important question, which we
tried to address in this theoretical paper: can coincidence detector
neurons implement both localist and distributed codes? In this
context, different stimuli correspond to different spatiotemporal
input spike patterns. Here each pattern was generated randomly,
leading to chance-level overlap between patterns. In addition,
each pattern was jittered at each presentation, resulting in
categories of similar, yet different, stimuli. Can a neuron respond
to one, or several of these patterns, and not to random inputs?
What is the required connectivity to do so in an optimal
way? And finally, can this required connectivity emerge with
spike-timing-dependent plasticity (STDP), in an unsupervised
manner?

To address these questions, we extended a theory that we
developed in a previous paper, but which was limited to one
pattern only, i.e., localist coding (Masquelier, 2017), to the
multi-pattern case. Briefly, we derived analytically the signal-to-
noise ratio (SNR) of a multi-pattern detector, and investigated
the conditions for its optimality. In addition, using numerical
simulations, we showed that a single neuron equipped with
STDP can become selective to multiple repeating spike patterns,
even without supervision and that the resulting detectors can be
close to the theoretical optimum. Surprisingly, a single neuron
could robustly learn up to ∼ 40 independent patterns (using
parameters arguably in the biological range). This was not clear
from previous simulations studies, in which neurons equipped
with STDP only learned one pattern (localist coding) (Masquelier
et al., 2008, 2009; Gilson et al., 2011; Humble et al., 2012;
Hunzinger et al., 2012; Kasabov et al., 2013; Klampfl and Maass,
2013; Nessler et al., 2013; Krunglevicius, 2015; Sun et al., 2016;
Masquelier, 2017), or two patterns (Yger et al., 2015). This
shows that STDP and coincidence detection are compatible with
distributed coding.

2. FORMAL DESCRIPTION OF THE
PROBLEM

The problem we addressed is similar to the one of Masquelier
(2017), but extended to the multi-pattern case. For the reader’s
convenience, we fully describe it below.

We addressed the problem of detecting one or several
spatiotemporal spike patterns with a single LIF neuron.
Intuitively, one should connect the neurons that are active during
the patterns (or during subsections of them) to the LIF neuron.
That way, the LIF will tend to be more activated by the patterns
than by some other inputs. More formally, we note P the number
of spike patterns, and assume that they all have the same duration
L. We note N the number of neurons involved. For each pattern,
we chose a subsection with duration 1t ≤ L, and we connect the
LIF to the M neurons that emit at least one spike during at least
one of these subsections (Figure 1).

We hypothesize that all afferent neurons fire according to
a homogeneous Poisson process with rate f , both inside and
outside the patterns. That is the patterns correspond to some
realizations of the Poisson process, which can be repeated (this
is sometimes referred to a “frozen noise”). At each repetition

Frontiers in Computational Neuroscience | www.frontiersin.org 2 September 2018 | Volume 12 | Article 74

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Masquelier and Kheradpisheh Localist/Distributed Coding With STDP

FIGURE 1 | (Top) P = 2 repeating spike patterns (colored rectangles) with

duration L, embedded in Poisson noise. The LIF is connected to the neurons

that fire in some subsections of the patterns with duration 1t ≤ L (these emit

red spikes). (Bottom) The LIF potential peaks for patterns, and the double

arrow indicates the peak height.

a random time lag (jitter) is added to each spike, drawn from
a uniform distribution over [−T,T] (a normal distribution is
more often used, but it would not allow analytical treatment,
Masquelier, 2017).

We also assume that synapses are instantaneous, which
facilitates the analytic calculations.

For now we ignore the LIF threshold, and we want to optimize
its signal-to-noise ratio (SNR), defined as:

SNR =
Vmax − Vnoise

σnoise
, (1)

where Vmax is the maximal potential reached during the pattern
presentations, Vnoise is the mean value for the potential with
Poisson input (noise period), and σnoise is its standard deviation.
Obviously, a higher SNR means a larger difference between
the LIF membrane potential during the noise periods and its
maximum value, which occurs during the selected 1t window
of each pattern. Therefore, the higher the SNR the lower the
probability of missing patterns, and of false alarms.

We consider that P, L, N, f , and T are imposed variables, and
that we have the freedom to choose 1t ≤ L and the membrane
time constant τ in order to maximize the SNR.

We note that this problem is related to the synfire chain
theory (Abeles, 1991). A synfire chain consists of a series of pools
of neurons linked together in a feed-forward chain, so that volleys
of synchronous spikes can propagate from pool to pool in the
chain. Each neuron can participate in several of such chains.
The number of different chains that can coexist in a network
of a given size has been termed capacity. This capacity can be
optimized (Herrmann et al., 1995). To do so, a given neuron
should respond to certain spike volleys, but not to others, which
is similar to our optimization of a multi-pattern SNR. Yet it is

also different: we use homogeneous Poisson activity, not spike
volleys, and we ignore the threshold, while synfire chains require
thresholds.

3. A THEORETICAL OPTIMUM

3.1. Deriving the SNR Analytically
Here we are to find the optimum SNR of the LIF for P patterns.
To this end we should first calculate the SNR analytically. Again,
the derivations are similar to the ones in Masquelier (2017),
but extended to the multi-pattern case (which turned to mainly
impact Equation 7).

In this section, we assume non-plastic unitary synaptic
weights. That is an afferent can be either connected (w = 1)
or disconnected (w = 0) [in the Appendix (Supplementary
Material) we estimate the cost of this constraint on the SNR].
Thus the LIF obeys the following differential equation:

τ
dV

dt
= −V + τ

∑

i

δ(t − ti), (2)

where the ti are the presynaptic spike times of all the connected
afferents.

Since synapses are instantaneous and firing is Poissonian,
during the noise periods and outside the 1t windows we have:
Vnoise = τ fM and σnoise =

√

τ fM/2 (Burkitt, 2006), where M is
the number of connected input neurons (with unitary weights).

To compute Vmax, it is convenient to introduce the reduced
variable:

vmax =
Vmax − Vnoise

V
∞ − Vnoise

, (3)

where V
∞ = τ r is the mean potential of the steady regime that

would be reached if 1t was infinite, and r is the input spike rate
during the 1t window, resulting from the total received spikes
from all input neurons during this window.

vmax can be calculated by exact integration of the LIF
differential equation (Masquelier, 2017). Here we omit the
derivation and present the final equation:

vmax = min

(

1,
1t

2T

)

−
τ

2T
log

(

1− e−max(1t,2T)/τ + e−|1t−2T|/τ
)

.

(4)

Using the definition of vmax in Equation (3), we can rewrite the
SNR equation as:

SNR = vmax
V
∞ − Vnoise

σnoise
. (5)

Obviously, different Poisson pattern realizations will lead to
different values for M and r that consequently affect each of
the terms V

∞
, Vnoise, and σnoise. Here we want to compute
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the expected value of the SNR across different Poisson pattern
realizations:

〈SNR〉 = vmax

〈

V
∞ − Vnoise

σnoise

〉

= vmax

√

2τ/f

〈

r − fM
√
M

〉

≈ vmax

√

2τ/f
〈r〉 − f 〈M〉

√
〈M〉

.

(6)

In section 3.2 we justify this last approximation through
numerical simulations, and we also show that this average
SNR is not much different from the SNR of particular Poisson
realizations.

The last step to compute 〈SNR〉 in Equation 6 is to calculate
〈M〉 and 〈r〉. Since firing is Poissonian with rate λ = f1t, the
probability that a given afferent fires at least once in a given
pattern subsection of length 1t is p = 1 − e−f1t . Here, we
consider independent patterns, i.e., with chance-level overlap.
Hence the probability that a given afferent fires at least once in
at least one of the P pattern subsection is 1 − (1 − p)P. Thus the
number of selected afferentsM is on average:

〈M〉 = N
(

1− (1− p)P
)

= N
(

1− e−Pf1t
)

. (7)

Finally, the expected effective input spike rate during the 1t
window is the expected total number of spikes, fN1t, divided by
1t, thus:

〈r〉 = fN. (8)

We note that the SNR scales with
√
N. In the rest of this paper we

used N = 104 afferents, which is in the biological range.

3.2. Numerical Validations
We first checked if the variability of the SNR across Poisson
realizations is small, and also if the approximation we made to
compute the average SNR in Equation 6 is reasonable. To this
aim, we generated 105 Poisson patterns, and computedM, r and
the reduced SNR, snr = (〈r〉 − f 〈M〉)/

√
〈M〉, for each of them

(i.e., the right factor of the SNR in Equation 6, which is the only
one that depends on the Poisson realization). As can be seen on
Figure 2, left,M and r are strongly correlated, and the data points
lie near a line which corresponds to nearly constant snr values
(see the colored background). In other words, the snr does not
change much for different Poisson pattern realizations and the
average snr well represents the snr distribution even for the worst
and best cases.

In addition, as can be seen on Figure 2, right, the average
snr across different Poisson patterns is very close to the snr
corresponding to the average-case scenario, i.e., M = 〈M〉 and
r = 〈r〉 (as defined by Equations 7 and 8, respectively). Note
that this Figure was done with relatively small values for the
parameters P, 1t and f (respectively 1, 2 ms, and 1 Hz). Our
simulations indicate that when increasing these parameter values,
the approximation becomes even better (data not shown).

Next, we verified the complete SNR formula (Equation 6),
which also includes vmax, through numerical simulations. We

used a clock-based approach, and integrated the LIF equation
using the forward Euler method with a 0.1 ms time bin. We used
P = 1 and P = 5 patterns, and performed 100 simulations with
different random Poisson patterns of duration L = 20 ms with
rate f = 5 Hz. We chose 1t = L = 20 ms, i.e., the LIF was
connected to all the afferents that emitted at least once during
one of the patterns. In order to estimate Vmax, each pattern was
presented 1,000 times, every 400 ms. The maximal jitter was
T = 5 ms. Between pattern presentations, the afferents fired
according to a Poisson process, still with rate f = 5 Hz, which
allowed to estimate Vnoise and σnoise. We could thus compute the
SNR from Equation 1 (and its standard deviation across the 100
simulations), which, as can be seen on Figure 3, matches very
well the theoretical values, for P = 1 and 5. Note that the SNR
standard deviation is small, which confirms that the average SNR,
i.e., 〈SNR〉, represents well the individual ones.

3.3. Optimizing the SNR
We now want to optimize the SNR given by Equation 6, by
tuning τ and 1t. We also add the constraint τ fM ≥ 10 (large
number of synaptic inputs), so that the distribution of V is
approximately Gaussian (Burkitt, 2006). Otherwise, it would be
positively skewed1, thus a high SNR would not guarantee a low
false alarm rate. We assume that L is sufficiently large so that an
upper bound for 1t is not needed. We used the Matlab R2017a
Optimization Toolbox (MathWorks Inc., Natick, MA, USA) to
compute the optimum numerically.

Figure 4 illustrates the results with P = 2. One can make the
following observations (similar to our previous paper which was
limited to P = 1; Masquelier, 2017):

• Unless f and T are both high, the optimal τ and 1t have the
same order of magnitude (see Figure 4, left).

• Unless T is high (>10 ms), or f is low (<1 Hz), then these
timescales should be relatively small (at most a few tens
of ms; see Figure 4, middle). This means that even long
patterns (hundreds of ms or more) are optimally detected by a
coincidence detector working at a shorter timescale, and which
thus ignores most of the patterns. One could have thought that
using τ ∼ L, to integrate all the spikes from the pattern would
be the best strategy. But a long τ also decreases the detector’s
temporal resolution, thus patterns and random inputs elicit
more similar responses, decreasing the SNR. Hence there is a
trade-off, and it turns out that it is often more optimal to have
τ < L, that is to use subpatterns as signatures for the whole
patterns.

• Unsurprisingly, the optimal SNR decreases with T (see
Figure 4, right). What is less trivial, is that it also decreases
with f . In other words, sparse activity is preferable. We will
come back to this point in the discussion.

What is the biological range for T, which corresponds to the
spike time precision? Millisecond precision in cortex has been
reported (Kayser et al., 2010; Panzeri and Diamond, 2010;
Havenith et al., 2011). We are aware that other studies found

1With a low number of synaptic inputs, the mean V is close to zero. Since V is

non-negative, its distribution is not symmetric anymore, but positively skewed.
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FIGURE 2 | Numerical validation of the averaging operations. (Left) M× r plane. The white dots correspond to different realizations of a Poisson pattern (a jitter was

added to better visualize density, given that both M and r are discrete). The background color shows the corresponding snr. The red cross corresponds to the

average-case scenario M = 〈M〉 and r = 〈r〉. (Right) The distribution of snr values across Poisson realizations. The vertical blue solid line shows its average. The

vertical red dotted line shows our approximation, (〈r〉 − f 〈M〉)/
√
〈M〉, which matches very well the true average. Parameters: P = 1, 1t = 2 ms, f = 1 Hz.

FIGURE 3 | Numerical validation of the theoretical SNR values, for P = 1 and

5 patterns. Error bars show ±1 s.d.

poorer precision, but this could be due to uncontrolled variable
or the use of inappropriate reference times (Masquelier, 2013).

In the rest of the paper we focus, as an example, on the
point on the middle of the T × f plane –T = 3.2 ms and
f = 3.2 Hz. When increasing P, the optimal τ and 1t decrease
(Figure 5). Unsurprisingly, the resulting SNR also decreases,

but only slowly. It thus remains acceptable for several tens of
independent patterns (e.g., SNR ∼ 7 for P = 40).

4. SIMULATIONS SHOW THAT STDP CAN
BE CLOSE-TO-OPTIMAL

Next we investigated, through numerical simulations, if STDP
could turn a LIF neuron into an optimal multi-pattern detector.
More specifically, since STDP does not adjust themembrane time
constant τ , we set it to the optimal value and investigated whether
STDP could learn all the patterns with an optimal 1t2. Here,
unlike in the previous section, we had to introduce a threshold, in
order to have postsynaptic spikes, which are required for STDP.
As a result, the optimal Vmax, computed in the previous section,
was never reached. Yet a high Vmax guarantees a low miss rate,
and a low Vnoise guarantees a low false alarm rate. Optimizing
the previously defined SNR thus makes sense.

Again, we used a clock-based approach, and the forward Euler
method with a 0.1 ms time bin. TheMatlab R2017a code for these
simulations has been made available in ModelDB (Hines et al.,
2004) at https://senselab.med.yale.edu/modeldb/.

4.1. Input Spikes
The setup we used was similar to the one of our previous
studies (Masquelier et al., 2008, 2009; Gilson et al., 2011;
Masquelier, 2017). Between pattern presentations, the input
spikes were generated randomly with a homogeneous Poisson
process with rate f . The P spike patterns with duration L = 100
ms were generated only once using the same Poisson process
(frozen noise). The pattern presentations occurred every 400 ms
[in previous studies, we demonstrated that irregular intervals did

2When L is large (say tens of ms), STDPwill typically not select all the afferents that

fire in a full pattern, but only those that fire in a subsection of it, typically located at

the beginning (Masquelier et al., 2008; Gilson et al., 2011; Masquelier, 2017), unless

competition forces the neurons to learn subsequent subsections (Masquelier et al.,

2009). The subsection duration depends on the parameters, and here we investigate

the conditions under which this duration is optimal.
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FIGURE 4 | Optimal parameters for P = 2, as a function of f and T. (Left) Optimal 1t, divided by τ . (Middle) Optimal τ (note the logarithmic colormap). (Right)

Resulting SNR.

FIGURE 5 | Optimal τ and 1t (for f = 3.2 Hz, T = 3.2 ms) and resulting SNR

as a function of P.

not matter (Masquelier et al., 2008, 2009; Gilson et al., 2011), so
here regular intervals were used for simplicity]. The P patterns
were presented alternatively, over and over again. Figure 6 shows
an example with P = 2 patterns. At each pattern presentation,
all the spike times were shifted independently by some random
jitters uniformly distributed over [−T,T].

4.2. A LIF Neuron With Adaptive Threshold
We simulated a LIF neuron connected to all of the N afferents
with plastic synaptic weights wi ∈ [0, 1], thus obeying the
following differential equation:

τ
dV

dt
= −V + τ

∑

i,j

wi(tij)δ(t − tij), (9)

where tij is the time of the jth spike of afferent i.
We used an adaptive threshold [unlike in our previous

studies (Masquelier et al., 2008, 2009; Gilson et al., 2011;
Masquelier, 2017), in which a fixed threshold was used]. This
adaptive threshold was increased by a fixed amount (1.8θ0) at
each postsynaptic spike, and then exponentially decayed toward
its baseline value θ0 with a time constant τθ = 80 ms. This
is a simple, yet good model of cortical cells, in the sense
that it predicts very well the spikes elicited by a given input

current (Gerstner and Naud, 2009; Kobayashi et al., 2009). Here,
such an adaptive threshold is crucial to encourage the neuron
to learn multiple patterns, as opposed to fire multiple successive
spikes to the same pattern. Since the theory developed in the
previous sections ignored the LIF threshold, using an adaptive
one is not worse than a fixed one, in the sense that it does not
make the theory less valid.

We did not know which value for θ0 could lead to the
optimum. We thus performed and exhaustive search, using a
geometric progression with a ratio of 2.5%.

4.3. Synaptic Plasticity
Initial synaptic weights were all equal. Their value was computed
so thatVnoise = θ+σnoise (leading to an initial firing rate of about
4 Hz, see Figure 6, top). They then evolved in [0, 1] with all-to-all
spike STDP. Yet, we only modeled the Long Term Potentiation
part of STDP, ignoring its Long Term Depression (LTD) term.
As in Song et al. (2000), we used a trace of presynaptic spikes
at each synapse i, Ai

pre, which was incremented by δApre at each
presynaptic spike, and then exponentially decayed toward 0 with
a time constant τpre = 20ms. At each postsynaptic spike this trace
was used for LTP at each synapse: wi → wi + wi(1− wi)A

i
pre.

Here LTD was modeled by a simple homeostatic mechanism.
At each postsynaptic spike, all synapses were depressed: wi →
wi+wi(1−wi)w

out wherewout < 0 is a fixed parameter (Kempter
et al., 1999).

Note that for both LTP and LTD we used the multiplicative
term wi(1 − wi), in contrast with additive STDP, with which the
1w is independent of the current weight value (Kempter et al.,
1999; Song et al., 2000). This multiplicative term ensures that the
weights remain in the range [0,1], and the weight dependence
creates a soft bound effect: when a weight approaches a bound,
weight changes tend toward zero. Here it was found to increase
performance (convergence time and stability), in line with our
previous studies (Masquelier and Thorpe, 2007; Kheradpisheh
et al., 2016, 2018; Mozafari et al., 2018b).

The ratio between LTP and LTD, that is between δApre and
wout is crucial: the higher, the more synapses are maximally
potentiated (w = 1) after convergence. Here we chose to keep
δApre = 0.1 and to systematically vary wout, using again a
geometric progression with a ratio of 2.5%.
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FIGURE 6 | Unsupervised STDP-based pattern learning. The neuron becomes selective to P = 2 patterns. (Top) Initial state. On the left, we plotted the neuron’s

potential as a function of time. Colored rectangles indicate pattern presentations. Next, we plotted the two spike patterns, coloring the spikes as a function of the

corresponding synaptic weights: blue for low weight (0), purple for intermediate weight, and red for high weight (1). Initial weights were uniform (here at 0.7, so the

initial color is close to red). (Middle) During learning. Selectivity progressively emerges. (Bottom) After convergence. STDP has concentrated the weights on the

afferents which fire at least once in at least one of the pattern subsections, located at the beginning of each pattern, and whose duration roughly matches the optimal

1t (shown in green). This results in one postsynaptic spike each time either one of the two pattern is presented. Elsewhere both Vnoise and σnoise are low, so the SNR

is high. In addition Vnoise roughly matches the theoretical value V
opt
noise (shown in green), corresponding to the optimal SNR. We also show in green V

opt
max, the

theoretical optimal value for Vmax. However, the potential never reaches it, because the adaptive threshold is reached before.

4.4. Results
For each θ0 × wout point, 100 simulations were performed with
different random pattern realizations, and we computed the
proportion of “optimal” ones (see below), and reported it in
Table 1. After 12,000 s of simulated time, the synaptic weights
had all converged by saturation. That is synapses were either
completely depressed (w = 0), ormaximally potentiated (w = 1).
A simulation was considered optimal if

1. all the patterns were learned, and
2. in an optimal way, that is if all patterns exhibited a subsection

in which all spikes corresponded to maximally potentiated
synapses (w = 1), and whose duration roughly matched the
theoretical optimal 1t. In practice, we used the total number
of potentiated synapses as a proxy of the mean subsection
duration (since there is a non-ambiguous mapping between
the two variables, given by Equation 7), and checked if this
number matched the theoretical optimalM (Equation 7) with
a 5% margin.

Note that this second condition alone would be easy to satisfy:
the total amount of potentiated synapses is determined by
the LTP/LTD ratio which we adjusted by fine-tuning wout.
However, satisfying the two conditions is harder, especially when
P increases (Table 1).

It is worth mentioning that the learned subsections always
corresponded to the beginning of the patterns, because STDP
tracks back through them (Masquelier et al., 2008, 2009; Gilson
et al., 2011), but this is irrelevant here since all the subsections are
equivalent for the theory. Figure 6 shows an optimal simulation
with P = 2 patterns.

As can be seen in Table 1, the proportion of optimal
simulations decreases with P, as expected. But more surprisingly,
several tens of patterns can be optimally learned with reasonably
high probability. With P = 40 the probability of optimal
simulations is only 58%, but the average number of learned
patterns is high: 39.5! This means that nearly all patterns are
learned in all simulations, yet sometimes in a suboptimal manner.
Finally, Figure 7 shows that convergence time increases with P.

5. DISCUSSION

The fact that STDP can generate selectivity to any repeating spike
pattern in an unsupervised manner is a remarkable, yet well
documented fact (Masquelier et al., 2008, 2009; Gilson et al., 2011;
Humble et al., 2012; Hunzinger et al., 2012; Kasabov et al., 2013;
Klampfl and Maass, 2013; Nessler et al., 2013; Krunglevicius,
2015; Yger et al., 2015; Sun et al., 2016; Masquelier, 2017). Here
we have shown that, surprisingly, a single neuron can become
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TABLE 1 | Performance as a function of the number of patterns P.

P 5 10 20 40

1topt (ms) 11 8.1 5.7 3.7

τopt (ms) 8.9 6.8 5.6 5.1

Mopt 1,600 2,300 3,100 3,800

SNRopt 31 20 12 6.7

θ0 190 140 110 92

wout −6.2 10−3 −6.3 10−3 −6.5 10−3 −6.7 10−3

〈

Plearned
〉

5 10 20 39.5

Hit rate (%) 98.9 98.6 97.9 96.5

False alarms (Hz) 0 0 0 0

P(opt) (%) 100 100 100 58

The first four lines are computed from the theoretical optimum. The next two lines are

the optimal values found through exhaustive search (see text). The last four lines are

performance indicators, estimated during the last 100 presentations of each pattern.

〈Plearned〉 is the mean number of “learned patterns,” that is by convention patterns which
elicit at least one postsynaptic spike. The following line is the mean hit rate for those

patterns. The subsequent line gives the false alarm rate, but we never observed any here.

Finally P(opt) is the proportion of optimal cases.

FIGURE 7 | Convergence index as a function of time and number of patterns,

for an example of optimal simulation. The convergence index is defined as the

mean distance between the full precision weights, and their binary quantization

(0 if w < 0.5, and 1 otherwise).

optimally selective to several tens of independent patterns. Hence
STDP and coincidence detection are compatible with distributed
coding.

Yet one issue with having one neuron selective to multiple
patterns is stability. If one of the learned pattern does not occur
for a long period during which the other patterns occur many
times, causing postsynaptic spikes, the unseen pattern will tend
to be forgotten. This is not an issue with localist coding: if
the learned pattern does not occur, the threshold is hardly ever

reached so the weights are not modified, and the pattern is
retained indefinitely, even if STDP is “on” all the time.

Another issue with distributed coding is how the readout is
done, that is how the identity of the stimulus can be inferred
from multiple neuron responses, given that each response is
ambiguous? This is out of the scope of the current paper, but
we suspect that STDP could again help. As shown in this study,
each neuron equipped with STDP can learn to fire to multiple
independent stimuli. Let’s suppose that stimuli are shown one at
a time. When stimulus A is shown, all the neurons that learned
this stimulus (among others) will fire synchronously. Let us call S
this set of neurons. A downstream neuron equipped with STDP
could easily become selective to this synchronous volley of spikes
from neurons in S (Brette, 2012). With an appropriate threshold,
this neuron would fire if and only if all the neurons in S have fired.
Does that necessarily mean that A is there? Yes, if the intersection
of the sets of stimuli learned by neurons in S only contains A. In
the general case, the intersection is likely to be much smaller than
the typical sets of stimuli learned by the S neurons, so much of
the ambiguity should be resolved.

What could determine the set of patterns to which a neuron
responds? Here, we used independent, unrelated, patterns (i.e.,
with chance-level overlap), and yet several of these patterns
could be learned by a single neuron. Of course, patterns with
more overlap would be easier to group. So in the presence of
multiple postsynaptic neurons, each one would tend to learn
a cluster of similar patterns. Another factor is the time at
which the patterns are presented: those presented at the same
period are more likely to be learned by the same neuron—
a neuron which was still unselective at that period. Indeed,
neurons equipped with STDP have some sort of critical period,
before convergence, during which they can learn new pattern
easily. Conversely, after convergence, neurons tend to fire
if and only if the patterns they have learned are presented
(Figure 6), and thus can hardly learn any new pattern. This is
interesting, because patterns presented at the same period are
likely to be somewhat related. For example, a neuron could
fire to the different people you have met on your first day at
work. In the presence of neurogenesis, newborn neurons could
handle the learning of other patterns during the subsequent
periods of your life. Finally, here we did not use any reward
signal. But such a signal, if available, could modulate STDP
(leading to some form of supervised learning), and encourage
a given neuron to fire to a particular, meaningful, set of
patterns (Mozafari et al., 2018a,b), as opposed to a random set
like here. For example, a single neuron could learn to fire to
any animal, even if different animals cause very different sensory
inputs.

Here the STDP rule we used always led to binary weights
after learning. That is an afferent could be either selected or
discarded. We thus could use our SNR calculations derived with
binary weights, and checked that the selected set was optimal
given the binary weight constraint. Further calculations in the
Appendix (Supplementary Material) suggest that removing such
a constraint could lead to a modest increase in SNR, of about
10%. More research is needed to see if a multiplicative STDP rule,
which does not converge toward binary weights (van Rossum
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et al., 2000; Gütig et al., 2003), could lead to the optimal graded
weights.

Our theoretical study suggests, together with others (Gütig
and Sompolinsky, 2006; Brette, 2012), that coincidence detection
is computationally powerful. In fact, it could be the main
function of neurons (Abeles, 1982; König et al., 1996). In
line with this proposal, neurons in vivo appear to be mainly
fluctuation-driven, not mean-driven (Rossant et al., 2011;
Brette, 2012, 2015). This is the case in particular in the
balanced regime (Brette, 2015), which appears to be the
prevalent regime in the brain (Denève and Machens, 2016).
Several other points suggest that coincidence detection is
the main function of neurons. Firstly, strong feedforward
inhibitory circuits throughout the central nervous system often
shorten the neurons’ effective integration windows (Bruno,
2011). Secondly, the effective integration time constant in
dendrites might be one order of magnitude shorter than the
soma’s one (König et al., 1996). Finally, recent experiments
indicate that a neuron’s threshold quickly adapts to recent
potential values (Platkiewicz and Brette, 2011; Fontaine et al.,
2014; Mensi et al., 2016), so that only a sudden potential
increase can trigger a postsynaptic spike. This enhances
coincidence detection. It remains unclear if other spike time
aspects such as ranks (Thorpe and Gautrais, 1998) also
matter.

Our results show that lower firing rates lead to better
signal-to-ratio. It is worth mentioning that mean firing rates
are probably largely overestimated in the electrophysiological
literature, because extracellular recordings—by far the most
popular technique— are totally blind to cells that do not fire at
all (Thorpe, 2011). Even a cell that fire only a handful of spikes
will be ignored, because spike sorting algorithms need tens of
spikes from a given cell before they can create a new cluster
corresponding to that cell. Furthermore, experimentalists tend
to search for stimuli that elicit strong responses, and, when they
can move the electrode(s), tend to look for most responsive cells,

introducing strong selection biases. Mean firing rates, averaged

across time and cells, are largely unknown, but they could be
smaller than 1 Hz (Shoham et al., 2006). It seems like coding is
sparse: neurons only fire when they need to signal an important
event, and that every spike matters (Wolfe et al., 2010).

Finally, we see an analogy between our theory, and the one
of neural associative memory (NAM), in which an output (data)
vector is produced by multiplying an input (address) vector by a
weight matrix. Unlike NAM, our framework is dynamic, yet after
learning, to a first approximation, our STDP neurons count the
number of input spikes arriving through reinforced synapses in a
short integration window, and each one outputs a 1 (i.e., a spike)
if this count exceeds a threshold, and a 0 otherwise, leading to
a binary output vector, much like in a binary NAM. It is thus
unsurprising that sparsity is desirable both in our theory, and in
NAMs (Palm, 2013).
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