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The dynamic nature of functional brain networks is being increasingly recognized

in cognitive neuroscience, and methods to analyse such time-varying networks in

EEG/MEG data are required. In this work, we propose a pipeline to characterize

time-varying networks in single-subject EEG task-related data and further, evaluate

its validity on both simulated and experimental datasets. Pre-processing is done

to remove channel-wise and trial-wise differences in activity. Functional networks

are estimated from short non-overlapping time windows within each “trial,” using

a sparse-MVAR (Multi-Variate Auto-Regressive) model. Functional “states” are then

identified by partitioning the entire space of functional networks into a small number

of groups/symbols via k-means clustering.The multi-trial sequence of symbols is then

described by a Markov Model (MM). We show validity of this pipeline on realistic

electrode-level simulated EEG data, by demonstrating its ability to discriminate “trials”

from two experimental conditions in a range of scenarios.We then apply it to experimental

data from two individuals using a Brain-Computer Interface (BCI) via a P300 oddball task.

Using just the Markov Model parameters, we obtain statistically significant discrimination

between target and non-target trials. The functional networks characterizing each ‘state’

were also highly similar between the two individuals. This work marks the first application

of the Markov Model framework to infer time-varying networks from EEG/MEG data.

Due to the pre-processing, results from the pipeline are orthogonal to those from

conventional ERP averaging or a typical EEG microstate analysis. The results provide

powerful proof-of-concept for a Markov model-based approach to analyzing the data,

paving the way for its use to track rapid changes in interaction patterns as a task is being

performed. MATLAB code for the entire pipeline has been made available.

Keywords: EEG/MEG dynamic connectivity, EEG/MEG time-varying networks, sparse-MVAR modeling, markov
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1. INTRODUCTION

In the last two decades, there has been a gradual change in
the dominant paradigm for understanding the neural basis of
cognition. In particular, the view that cognitive function is
subserved by individual brain regions has been supplanted by
recognizing the importance of functional integration between

brain regions in large-scale brain networks (Bressler and Menon,
2010; Meehan and Bressler, 2012). Although this idea can be
traced back to (Pavlov, 1949), Luria (1966), and (Wernicke,
1970) its emergence as a paradigm has been facilitated by the

availability of non-invasive neuroimaging methodologies (fMRI,
EEG, MEG), and gained acceptance through work of Mesulam
(1990), Bressler (1995), Horwitz et al. (2000), McIntosh (2000),
Sporns et al. (2004), and Bressler and Tognoli (2006) among
others.

Traditionally, networks active during task or at rest have
been considered static with respect to time and techniques
to measure network interactions have largely reflected this

assumption. However, conceptual frameworks proposed by for
example Rabinovich et al. (2008) and Tognoli and Kelso (2004)
are suggestive of dynamic changes in network structure. Under
this view of brain function, both at rest and while performing
a task, the brain is considered to alternate between dwelling in
certain states and rapid transitions between these states. Each

state is assumed to be represented by a particular functional
network pattern. This view has been corroborated by biophysical
network models emulating population-level brain activity, for
example work by Deco and Jirsa (2012) and Hansen et al. (2015).
The time-varying nature of functional networks has also been
confirmed in empirical work, in both resting-state (Chang and
Glover, 2010) and task-based experimental data (Sakoglu et al.,
2010).

EEG/MEG, due to their fine temporal resolution and direct
access to electrophysiological activity, are well suited to track
these changes in functional networks with time. However, the
analysis methods to be able to do this are still being developed.
The first methods to capture the time-varying nature of cognitive
neuro-dynamics were proposed in Lehmann (1971, 1972), and
these methods were used to identify four classes of EEG
“microstates” from resting-state EEG (Koenig et al., 2002). This
was done by applying k-means cluster analysis to the set of
vectors defining instantaneous scalp field potential distribution.
The mean duration of each microstate was between 80 and
100 ms. (Allefeld et al., 2009) adopted a similar approach to
describing time-varying nature of dynamics reflected in EEG
activity. The instantaneous state reflected by the EEG activity was
indicated by the global amplitude after locally matching ellipsoids
to the multivariate EEG data. Two states were identified,
corresponding approximately to the periods of normal and
epileptic EEG activity.

While these methods do describe the time-varying nature of
dynamics revealed by EEG, the scalp field patterns described are
only indirectly related to the underlying functional networks of
interest. Some recently proposed methods (Baker et al., 2014;
Hirayama and Ogawa, 2014) also have a similar limitation.
For example, the methods proposed in Baker et al. (2014) and

Hirayama and Ogawa (2014) characterized states as realizations,
respectively, of a multi-variate Gaussian process and Student’s t
distribution. These descriptions are also only indirectly related to
the underlying functional network. Some other recent methods
however (Ito et al., 2007; Daly et al., 2012; Vidaurre et al.,
2016), do use characterisations which are likely to reflect the
functional network. Daly et al. (2012) use complex network
measures, i.e., mean clustering coefficient, to describe patterns
of phase-locking at the level of EEG electrodes. These are used
as observables to a Hidden Markov Model (HMM), which uses
these observables to identify hidden states and probabilities of
transitions between states. Similarly, Vidaurre et al. (2016)) use
anMVAR (multi-variate auto-regressive) model to describe time-
delayed dependencies of MEG source-level activity. The MVAR
parameters are also used as observables to an HMM.

In parallel with the above methods which identify putative
functional states from EEG/MEG activity, some other methods
have adopted a different approach of simply determining
functional connectivity (statistical dependencies) or effective
connectivity (causal dependencies) patterns at successive time
points (Ding et al., 2000; Valencia et al., 2008; Wilke et al., 2008;
Sommerlade et al., 2009; Hu et al., 2012). For example, Ding et al.
(2000) demonstrated how MVAR models could be estimated on
short time segments by combining data from multiple trials - the
adaptive MVAR approach. By fitting MVARmodels to successive
windows of 50 ms, they revealed rapidly changing dynamics
during different stages of a GO/NO-GO task performed by
macaques on an intracranial EEG study.

While this second group of methods (e.g., Ding et al., 2000;
Valencia et al., 2008) use advanced estimation techniques to infer
connectivity patterns on a sample-by-sample basis, a limitation
is that they do not group these connectivity patterns into states
and model transitions between states. For example, an elegant
formulation of the adaptive MVAR approach within a state-space
modeling framework was proposed by Wilke et al. (2008), using
a Kalman-filter algorithm to estimate the time-varying coefficient
matrices. The method was validated using simulated data as well
as epileptiform EEG data, in which results from the method were
consistent with clinical assessments performed by neurologists.
Sommerlade et al. (2009) extended the adaptive MVAR approach
further, by including two state spaces - one for the time-varying
auto-regressive coefficients and one for the hidden variable itself.
Hu et al. (2012) used a Kalman-smoothing algorithm rather
than a Kalman-filter algorithm to estimate the time-varying
auto-regressive coefficients, to avoid the estimation bias due to
tracking lag from Kalman-filters. The method also produced
plausible results when applied to experimental data from an SEP
(somato-sensory evoked potential) paradigm. Recently, Brookes
et al. (2014) applied windowed Canonical Correlation Analysis
(CCA) to produce time courses of connectivity from MEG
source-reconstructed time series and O’Neill et al. (2016) applied
ICA to identify groups of connections which varied in a similar
manner across time.

There is thus a need for a method which both identifies
functional states (each represented by a unique functional
network) and describes the transitions between these states, in
a task-related EEG/MEG context. In this paper, we propose
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an analysis pipeline to achieve this at the single-subject level.
Pre-processing is first done to remove channel-wise and trial-
wise differences in activity. We then use an extension of MVAR
modeling which assumes sparse networks (Valdés-Sosa et al.,
2005), to define functional networks from short, non-overlapping
time segments. k-means clustering is then performed to partition
the entire set of networks into a small number of groups or
symbols. Markov Modeling is subsequently employed to model
this multi-trial sequence of symbols. This is the first time, to
our knowledge, that the Markov Modeling approach has been
applied to analyse time-varying networks from EEG/MEG data.
Notably, results from the pipeline are orthogonal to results
from conventional ERP averaging or a typical EEG microstate
analysis.

We validate the pipeline on realistic simulated EEG data
by demonstrating its ability to discriminate “trials” from
two experimental conditions, in a range of scenarios. We
further validate its use by establishing that it can discriminate
“trials” from two experimental conditions, when applied
to experimental EEG data from a BCI P300 oddball task.
The next section (section Methods) describes the method
in more detail as well as the investigations performed
on simulated and experimental data. In section Results,
we present results from simulations as well as results
of applying the method to experimental data. In section
Discussion, we discuss merits and limitations of the method,
compare it to other methods which analyse time-varying
connectivity, and propose how the method could be developed
further.

2. METHODS

The entire analysis pipeline is illustrated in Figure 1. The input
dataset Y for a single participant can be considered to have
dimensionsm× n× d, containing multi-channel ERP data from
multiple trials across experimental conditions. Here, m is the
number of channels, n is the number of samples per trial, and
d is the number of single-trials.

2.1. Pre-Processing
As presented in Figure 1, the dataset is first pre-processed.
Specifically, values representing activity on each channel were
z-scored (subtracted by mean and divided by standard deviation)
for each single-trial separately. This was done to make values
comparable across trials. Then, at each sample, values were
z-scored across trials (subtracted by mean across trials for each
channel and divided by standard deviation across trials for each
channel), for each condition separately. This was done to remove
first-order and second-order sources of non-stationarity from
the dataset, represented by the mean and standard deviation,
respectively. Notably, subtracting the mean across trials from
each channel amounts to removing the ERP (event-related
potential) for that experimental condition, from the dataset. The
above two pre-processing steps were recommended in Ding et al.
(2000) for cases in which non-stationary network dynamics are
being investigated.

FIGURE 1 | Schematic illustration of the analysis pipeline to characterize

time-varying network dynamics. The input dataset is of dimensions m× n× d,

where m is the number of channels, n is the number of samples and d is the

number of trials across conditions. Pre-processing is performed by first

z-scoring across samples and then, z-scoring across trials. Next, s-MVAR is

employed to infer functional networks from short, non-overlapping windows.

To identify putative functional states, the high-dimensional network space is

partitioned using k-means clustering and each functional network is assigned

a symbol or cluster number. For each condition, this multi-trial sequence of

symbols is then modeled using a Markov Model (MM) and the estimated

Markov model parameters from the two experimental conditions are then

compared using non-parametric hypothesis testing.

2.2. Network Estimation
Multi-Variate Auto-Regressive (MVAR) modeling is an
established technique to characterize multi-channel EEG data
(Ding et al., 2000). Both MVAR and measures derived from it
such as Partial Directed Coherence (PDC) and Directed Transfer
Function (DTF) have been interpreted in terms of information
flow between channels. Mathematically, an MVAR model can be
described as:

yi(t) =

m
∑

j=1

p
∑

k=1

ai,j(k)yj(t − k)+ ui(t) i = 1, ...,m (1)

where yi(t) is the current value at channel i, modeled as the linear-
weighted combination of past values of all channels including
itself, summed with white Gaussian noise ui(t). The weights
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are specified by ai,j(k) and the model order is p, indicating the
number of preceding samples from each channel included in
predicting the current value at a given channel. The functional
network can then be calculated from the MVAR coefficients
themselves, or from derived measures like PDC and DTF. A
useful feature of the MVAR framework as well as the sparse-
MVAR extension described below, is that functional networks
inferred from the model parameters are directed in nature. Also,
because of the multi-variate nature of the fit, the connections
correspond to direct connections rather than mediating/indirect
connections - assuming that all sources of interest are included in
the modeling.

2.2.1. s-MVAR Modeling
For a given number of channels m and a model order p, the
number of parameters to be estimated are m × m × p and
the minimum number of samples required to estimate the
model increases with the number of model parameters. In a
task-related context, the MVAR model is generally estimated
across trials, from short overlapping time-windows (Ding et al.,
2000). However, the relationship between number of parameters
in the MVAR model and the minimum number of samples
required to estimate the model, limits the ability to track
changes in functional networks with high temporal resolution. To
infer networks from a smaller number of samples, Valdés-Sosa
et al. (2005) proposed sparse-MVAR modeling, using penalized
regression techniques under the assumption of network sparsity.
We exploit this characteristic of s-MVAR to estimate functional
networks from short non-overlapping windows, thus allowing for
the investigation of fast changes in functional networks.

The s-MVAR model can be understood by expressing the
original MVAR model as a multivariate regression,

Y = XA+ U Ui ∼ N(0,6), (2)

where Y is a n×mmatrix (n being the number of samples), A is
a q × m (where q is the product of m and p), X is a n × q matrix
and contains time-lagged versions of Y up to the specified model
order, and U is a n × m matrix of residuals. 6 is the covariance
matrix of the residuals. Since estimating regression coefficients
does not depend on the covariance matrix of residuals, each
column of the MVAR coefficient matrix A can be estimated
separately. This can be expressed as:

α̂ = argmin
α

‖Y− Xα‖2 (3)

where α are MVAR coefficients for a single column of A.
When including a penalty function, specifically the L1 norm, the
estimation becomes:

α̂ = argmin
α

‖Y− Xα‖2 + λ2
d

∑

j=1

|αj| (4)

In general, the L1 norm constrains the sum of absolute values
of the regression coefficients to be low, thereby shrinking the
values of the low coefficients toward zero. Therefore, for sparse

functional networks, s-MVARmodeling can lower the number of
samples required to estimate a functional network with a given
level of accuracy. To determine the set of values which minimize
the above function, we used a numerical optimization technique
called theMajorization-Minorization algorithm (Hun and Lange,
2004), which is a generalization of the Expectation-Maximization
(EM) method. This approach operates by constructing a simple
surrogate function that minorizes (or majorizes) the original
objective function, i.e., when the surrogate function is iteratively
optimized, the objective function is driven up or down as
needed. It reduces the complexity of the optimization problem,
in particular by avoiding large matrix inversions, linearizing the
optimization problem and turning a nondifferentiable problem
into a smooth problem. Hence, it is computationally simple while
also maintaining a reasonable (linear) rate of convergence. Please
refer to Hun and Lange (2004)) for a more detailed account of the
technique. The technique has been employed to infer functional
networks from fMRI data (Valdés-Sosa et al., 2005), and we
obtained a MATLAB implementation of the technique from the
journal website of that paper.

To select the sparsity level λ, a Generalized Cross Validation
(GCV) criterion was used. Specifically, models were estimated for
a range of λ values and for each of these models, the GCV was
estimated by

GCV =
RSS

(L− df )2

where RSS is the residual sum of squares from the multivariate
regression, L is the number of independent observations and df
is the estimated degrees of freedom in the multivariate regression
(Hun and Lange, 2004). The λ value corresponding to the lowest
GCV value was selected. Lwas set to the difference of the number
of samples and the assumed model order.

The model order was selected as the order corresponding
to the lowest Bayesian Information Criterion (BIC) value, for a
range of model orders. BIC was calculated as

BIC = log(σ )+
(log(L)− 1)df

L

where σ was the error variance of the estimated model.

2.2.2. Application of s-MVAR
After pre-processing, the data were split into non-overlapping
windows of 50 ms or 12 samples (40 ms or 40 samples for
simulations), so the number of windows for a 1 s trial was 20
(25 for simulations). The width of the windows was chosen
to be half the assumed duration of functional states (80–100
ms), as reported in the EEG microstate literature (Koenig et al.,
2002). This would allow to track even rapid changes in these
states. The functional network for each window was derived from
parameters of the s-MVAR model fitted to data in that window.
In practice, the short windows contained too few samples to
estimate the s-MVAR model reliably, so we combined data from
a few successive trials to estimate the functional network, rather
than estimating them for each single-trial separately. We did this
by concatenating data from multiple trials, after removing mean
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across samples from each individual trial. Data from 10 trials (3
trials for simulations) were concatenated, to be able to estimate
the s-MVAR model from 120 samples. This procedure assumed
that the s-MVAR process was stationary across the concatenated
trials. Please see Figure S1 for details of our investigations on
performing multi-trial estimation of a s-MVAR model. The λ

values were calculated for a randomly selected 10% of windows
(1% for simulations) across experimental conditions, the average
of these values was taken as the sparsity level. Model order was
determined on another sample of randomly picked 10% of the
windows, exploring orders between 1 and 6. Given the short
window width, 6 was considered upper bound of model order.
With the chosen λ value and model order, s-MVAR coefficients
were estimated for each window, and organized into anm×m×p
matrix. The absolute value of s-MVAR coefficients was taken and
their mean computed along the dimension of model order, to
furnish a characterization of the functional network. After the s-
MVAR stage, each window is represented by anm×mmatrix of
functional connection strengths.

2.3. Partitioning Space of Functional
Networks
The entire set of functional networks constitutes a set of square
matrices, considered as a set of points in high-dimensional space.
To identify putative functional states (before modeling their
transitions using aMarkovmodel), we used k-means clustering as
a way of coarse-graining the high-dimensional space and labeling
each functional network by the region it occupies in this space.

2.3.1. k-means Clustering
k-means clustering is an iterative refinement technique
formalized in Hartigan and Wong (1979), which partitions
a dataset into k clusters. It does this by finding the set of k
cluster centroids which minimizes the sum, over all clusters, of
the within-cluster sums of point-to-centroid distances, where
“point” is a functional network representation in our case.
Typically, the cluster centroids are initialized by randomly
selecting k points from the dataset and then, an assignment step
and update step are performed iteratively until convergence or a
maximum number of iterations (please see Hartigan and Wong,
1979 for details).

2.3.2. Application of k-Means Clustering
We performed k-means clustering on the set of vectorized
functional network representations. The vectors characterizing
each of the functional networks were collected into a matrix.
In this matrix, the number of rows was equal to the number
of functional networks, i.e., the product of the number of
experimental conditions, the number of trials (after combining)
for each condition and the number of windows per trial. The
number of columns was the number of elements in the functional
network representation, after removing diagonal elements. The
cluster centroids for the k-means algorithm were initialized
by randomly choosing k rows from the dataset. Clustering
was performed with 1,000 such initializations and the solution
corresponding to the minimum value of the cost function (sum,
over all clusters, of the within-cluster sums of point-to-centroid

distances), was chosen. The distancemeasure used was 1-r, where
r is the sample correlation between the given point and the
cluster centroid. We chose correlation as the distance measure
to reflect our assumption that functional states are distinguished
by the pattern of the corresponding functional networks. While
Euclidean distance is another valid option for a distance measure,
we did not choose it because it confounds strength and pattern
of connections when comparing functional networks. Since
determining the number of clusters in a data-driven manner is
prone to error, we explored results for k set from 2 to 8 (intervals
of 1), the chosen range reflecting our assumption of a small
number of functional states. The maximum number of iterations
was set to 100. For the update step, both batch update and online
update were performed for each iteration, i.e., cluster centroids
were re-calculated on the basis of learning from from both the
whole dataset and individual rows respectively.

2.4. Modeling State Changes
After clustering, each functional network representation can be
replaced by the respective cluster number, indicating the region
it occupies in high-dimensional space. Hence, the responses for
each experimental condition can be presented as a multi-trial
sequence of symbols, where the number of rows is the number
of trials (after combining) and the number of columns is the
number of symbols per trial. For each experimental condition,
this matrix can be characterized by a Markov Model.

2.4.1. Markov Modeling (MM)
Markov models (Rabiner, 1989) are a type of stochastic signal
model which assume theMarkov property i.e., that the next state
of the system depends only on the present state and not on those
preceding it. Thus, to identify a given Markov model, one needs
to determine the distribution of probabilities over the initial state
P(S1) and the Q× Q (where Q is the number of states) matrix of
probabilities of going from each state to all states including itself.

The initial state probabilities are

πi = P(q1 = Si) i = 1, ...,Q

and the state transition probabilities are

αi,j = P(qt = j|qt−1 = i) i, j = 1, ...,Q

2.4.2. Application of Markov Modeling (MM)
The parameters of the Markov model were estimated using
the Baum-Welch Expectation Maximization (EM) algorithm,
implemented in the HMM (Hidden Markov Model) MATLAB
toolbox developed by Kevin Murphy 1 (by fixing emission matrix
to identity matrix). The vector of starting probabilities was
initialized with values between 0 and 1, summing to 1. Thematrix
of transition probabilities was initialized as a randomly specified
stochastic matrix, i.e., with elements of each row summing to 1.
Furthermore, the number of states Q was set to be the number of
clusters k in the dataset. The maximum number of iterations of
the Baum-Welch algorithm was set to 100, and the convergence
threshold was set to 1e− 04.

1https://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
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2.4.2.1. Hypothesis testing
To determine the ability of the pipeline to discriminate between
trials from two different experimental conditions, we used
the performance measure of ’model distance’, i.e., the distance
between the estimated Markov models of the two experimental
conditions. Model distance was calculated according to the
definition in Rabiner (1989) as a measure of how well model
M1 matches state sequences from model M2, compared to how
well it matches state sequences from itself. Mathematically, this is
defined as

D(M1,M2) =
1

T
[logP(S(2)|M1)− logP(S(2)|M2)]

where T is the number of symbols in a trial, and Sc is
a sequence of states from model c. Since this measure of
model distance is asymmetric, the average of D(M1,M2) and
D(M2,M1) is typically taken. To ensure that log-likelihood is
a finite value, transition probabilities of zero were replaced by
an infinitesimally small value (2.2204e-16, i.e., eps in MATLAB)
before corresponding log-likelihood was calculated.

To determine if the estimated model distance was statistically
significant, we compared it to a corresponding null distribution.
In order to make minimal assumptions about the null
distribution, we performed hypothesis testing via non-parametric
randomization tests. Specifically, we generated an empirical null
distribution of “model distance” by applying the above procedure
on 1,000 sets of randommixed (without replacement) trials from
the two conditions. By comparing obtained ’model distance’ with
the lower tail of this null distribution, an approximate p-value
was obtained.

We have made MATLAB code for the entire pipeline available
for download 2.

2.5. Simulations
2.5.1. Simulation 1 - MVAR and s-MVAR Comparison
We first performed simulations to compare accuracies of
estimating the MVAR coefficients with a conventional MVAR
approach and a sparse-MVAR approach. The parameters of
the simulations which were held constant were the number
of sources (32), the model order (1) and the range of MVAR
coefficient values (0.1 ≤ x ≤ 0.2). One of the parameters which
was varied was the number of samples of the MVAR process, as
a ratio of the number of parameters to be estimated (which was
322 = 1024). The levels were 0.05, 0.1, 0.2, and 0.5. The number
of non-zero MVAR coefficients was also varied, as a ratio of the
number of parameters to be estimated. The levels were 0.05, 0.1,
and 0.2 - these corresponded to sparse networks in which 5 , 10,
and 20% of connections were present respectively. Finally, signal-
to-noise (SNR), as calculated by the ratio of standard deviation
of signal to standard deviation of white Gaussian noise, was also
varied. The levels were 0.1, 1, 10 and∞.

For each three-way combination of the factor levels, 40
replications were generated. In each replication, an MVAR
process was generated with the given number of samples,

2https://github.com/nitinwilliams/eeg_meg_analysis/tree/master/

sMVAR_MM_toolbox

network density and SNR, and estimated using both s-MVAR and
MVAR approaches. The sparsity level parameter at each level of
network density was set by estimating it from an independently
generated dataset, using the GCV index previously described.
This independent dataset had SNR=∞ and the number of
samples was 10 times the number of parameters to be estimated.

The accuracy of estimation was quantified by the Root Mean
Square Error (RMSE) between the actual MVAR coefficient
matrix and the estimated MVAR coefficient matrix, lower values
indicate more accurate estimation. Once this was done for all
replications, for each three-way combination of factor levels,
the s-MVAR, and MVAR performances were compared using a
paired, one-tailed sign test, for each of the factors (number of
time points, network density and SNR). For each of the factors,
this tested the hypothesis that the median of the difference
between the two samples was zero. The sign test was used instead
of the t-test because the data were found to be non-Gaussian
(using Lilliefors test). Since accurate network estimation (low
RMSE) implies that not just the connection strengths but also the
pattern of the functional network are well approximated, results
from this test indicated which of the s-MVAR orMVARmodeling
frameworks was better suited to our purpose of identifying
functional states based on functional network patterns.

2.5.2. Simulation 2 - Pipeline Validation
We generated simulated EEG datasets of two experimental
conditions, each condition having different time-varying network
structure. For this, we assumed three functional states per
condition, where each state is represented by a different pattern
of functional connections. To generate the sequence of states for
a given experimental condition, we assumed a Markov process.

The transition probabilities for Condition 1 were set to:





0.8 0.1 0.1
0.05 0.8 0.15
0.05 0.05 0.9



 (5)

The transition probabilities for Condition 2 were set to:





0.7 0.2 0.1
0.1 0.8 0.1
0.2 0.05 0.75



 (6)

The high transition probabilities on the diagonal reflected our
assumption that given the fine temporal scale (narrow window
width) at which we track network changes, that the brain is
likely is dwell in the same state at successive time points.
A total of 300 trials were assumed for each experimental
condition. The same sequence of states across trials was used
for a given condition, as would be expected in a task-related
EEG experiment. The number of states per trial was set to
25, thus the matrix specifying the sequence of states across
trials had dimensions of 300 × 25 for each experimental
condition.

As mentioned, each state was represented by a unique
functional network pattern. The number of sources in the
functional network wasM, whereM had three levels: 8, 16 or 32.
Within the M × M connectivity matrix of possible connections
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for each state, 10 % randomly chosen connections were assigned
strengths between 0.1 and 0.5, all others were set to 0. Hence, each
of the 6 states (2 experimental conditions, 3 states each) had a
different connectivity pattern.

Then, for every occurrence of a state in the 300 × 25
matrix specifying the sequence of states (for each condition),
an MVAR process of M sources, order 1 and 40 samples was
substituted, with the MVAR coefficient matrix corresponding to
the connectivity pattern for that state. This M × 1, 000 × 300
matrix for each condition, was the source-level data for that
condition.

To fix this data in physical space, M randomly chosen
locations just below the cortical surface on the dorsal side
were selected as locations of neuronal sources, corresponding
to the M signals in the MVAR processes. All locations were
0.8 units away from the origin of a unit sphere, where the
surface of the sphere at radius 1 units represented the scalp
surface. A three-shell spherical head model was used to project
the data from the level of the brain to 32 standard electrode
locations at the surface of the scalp. The radii of the three
shells (brain, skull, scalp) were 0.88, 0.92 and 1 and their
respective conductivities were 0.33, 0.0042, and 0.33. At the
level of the scalp, white Gaussian measurement noise was added,
whose standard deviation was (1/SNR) times the Root Mean
Square (RMS) level of the noiseless scalp-level data, where
SNR was signal-to-noise ratio. SNR had levels of 10, 3, 1,
and 0.1.

Hence, the pipeline was tested under 12 different situations,
i.e., every combination of 3 levels of M (number of sources)
and 4 levels of SNR. To estimate sparsity level as indicated by
the λ parameter, we generated independent training simulated
EEG datasets for each of the 12 different parameter combinations
and used GCV criterion to determine λ. Then, we generated
corresponding testing datasets, with 20 datasets for each of the
12 parameter combinations. For each of these 20 datasets (for
a given parameter combination), the MVAR coefficients of each
state, the particular state sequence and the locations of the
M sources were varied randomly, while all other settings were
held constant. Thus, the ability of the pipeline to discriminate
trials from two conditions was tested in a wide range of
situations.

Since the pipeline was applied to data from both experimental
conditions together, each dataset was 32×1, 000×600. These are
typical dimensions of an EEG dataset combining trials from two
experimental conditions. 20 such datasets were created for each
of the 12 parameter combinations. For each of the 12 parameter
combinations, the performance measure of model distance,
averaged across the 20 datasets, was inspected to determine if
the method was able to discriminate trials from experimental
conditions of different time-varying network structure.

2.6. Experimental Data
We applied the pipeline to a dataset from a P300 speller
paradigm used in brain-computer interfacing (BCI) research.
This comprised data from 2 participants, collected with the
Wadsworth BCI2000 software from theWadsworth Centre, New

York, and is available for download online 3. Details of the data
collection are available in Blankertz et al. (2004). Due to the high
rate of intensifying rows/columns (5.7 Hz), there is a possibility of
a P300 ERP from the preceding or following trials being present
in the 1 s window. To preclude this, all trials in both datasets were
selected on the basis that they did not have a target trial for the
three preceding and five following trials. For each participant,
data was analyzed from 28 electrodes covering the entire scalp,
for 700 trials each from the target and non-target conditions.
Each trial was from the time of stimulus presentation to 1 s post-
stimulus. Since the sampling frequency was 240 Hz, the input
dataset to the pipeline was 28× 240× 1400, since it was applied
to trials from both conditions together. Each trial was baseline
corrected by the average of activity up to 175ms pre-stimulus.

3. RESULTS

3.1. Simulation 1 - MVAR & s-MVAR
Comparison
The simulations revealed that, for the factors investigated, sparse-
MVAR modeling estimated the connectivity patterns more
accurately than conventional MVAR modeling. The comparison
across factors was found to be significant (p = 6e − 284)
(Figure 2A). Individual factors were also studied at each level - all
comparisons were found to be statistically significant (p < 1e−20
for all).

Figure 2 illustrates each of the comparisons with box plots
of the RMSE values for s-MVAR (left) and MVAR (right)
respectively. The corresponding p values are also displayed. The
p-values in Figure 2B indicate that the performance of the s-
MVARmethod is superior to MVAR at a low number of samples.
Further, the p values in Figures 2C,D indicate that s-MVAR
particularly outperforms MVAR at low network densities (high
sparsity) and at low SNRs respectively. Therefore, assuming
network sparsity, it is clear that s-MVAR provides more accurate
estimates than conventional MVAR, in a range of situations.

To estimate the MVAR model, we used the s-MVAR model
with regularization parameter λ set to 0, in order that the s-
MVAR and MVAR fitting were as similar as possible. However,
we also obtained the same pattern of results (not shown) when
we repeated the analysis using the Vieira-Morf method (Marple,
1986) to estimate the MVAR model.

3.2. Simulation 2 - Pipeline Validation
To generate the simulated data, the connectivity patterns of
the 6 states (2 experimental conditions, 3 states each) were
first generated, by setting MVAR coefficients (lag 1) of 10%
of randomly selected connections to values between 0.1 and
0.5. Given the state sequences for each experimental condition,
these were used to produce electrode-level EEG data for both
conditions. 20 simulated EEG datasets each, were generated for
each combination of three different levels of number of sources
(8,16,32) and four levels of signal-to-noise ratio (10,3,1,0.1).
Figure 3 displays the connectivity patterns of the functional

3http://www.bbci.de/competition/iii/
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FIGURE 2 | Comparing accuracies of network estimation of the MVAR and s-MVAR modeling approaches. (A) Box plot of estimation accuracies (RMSE) with

s-MVAR (left) and MVAR (right) approaches across all factors studies. The red line indicates the median of the sample, while the lower and upper bounds of the blue

rectangle indicate the 25th and 75th percentile levels respectively. Red dots outside blue rectangle indicate sample outliers. p-values are the result of one-tailed

sign-tests of the hypotheses that the median of the difference between two samples is zero. Low p-values indicate that the accuracy of the s-MVAR estimation is

higher than that of MVAR estimation. (B) Box plots and results of one-tailed paired sign-tests comparing s-MVAR and MVAR at different levels of the

samples/parameters ratio. The s-MVAR performs better than the MVAR at all levels, especially when the ratio of samples/parameters is small. (C) Box plots and

results of one-tailed paired sign-tests, comparing s-MVAR and MVAR at different levels of network density. s-MVAR performs better than MVAR at all levels, especially

when network density is low. (D) Box plots and results of one-tailed paired sign-tests, comparing s-MVAR and MVAR at different levels of signal-to-noise ratio (SNR).

s-MVAR performs better than MVAR at all levels. This difference is highest at high values of SNR, but most reliable at low values of SNR.

states of each condition, for an example dataset where the
number of sources was 16 and the signal-to-noise ratio was 10.

Once a simulated dataset of 300 trials was generated, pre-
processing was performed. Then, sparse-MVAR modeling was
applied to non-overlapping windows of 40 ms each. Since the
simulated data were assumed to have a sampling frequency
of 1 kHz, this corresponded to windows of 40 samples. To
obtain sufficient number of samples to estimate the s-MVAR
model, we concatenated data from 3 consecutive trials (totally
120 samples) before performing the model estimation. After
concatenation, we had 100 “trials” per condition. Since the
pipeline was applied to data from both simulated conditions
together, the s-MVAR modeling was effectively applied to 200
trials, with 25 windows per trial. Model order was set to 1.
The λ value was calculated using the GCV criterion from 1%

(50 windows) randomly selected windows of a corresponding
training dataset, and the mean λ value was used. For the 12
different parameter combinations, the mean λ values obtained
from the training set varied from 1.9 (number of sources=32,
signal-to-noise ratio=10) to 12.8 (number of sources=8, signal-
to-ratio=0.1) across the parameter combinations. Notably, the
values were higher for lower numbers of sources at high signal-to-
noise ratios, but these distinctions disappeared as signal-to-noise
ratio decreased.

The set of vectorized connectivity matrices was then entered
into k-means clustering with k set to 6, i.e., the total number
of states. After clustering, each connectivity matrix could be
represented by one of 6 numbers/symbols, each corresponding to
a certain cluster. Results from clustering were used to produce a
multi-trial sequence of symbols for each experimental condition.
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FIGURE 3 | Simulated connectivity matrices for each state, for each experimental condition. While all the states had 10 % connections with strengths between 0.1

and 0.5, the actual connectivity patterns were different for each state. Note also that the functional networks defined by the states were asymmetric. Connectivity

matrices are shown for example dataset, number of sources = 16, signal-to-noise ratio = 10.

These multi-trial sequences were characterized using a Markov
model for each experimental condition. The number of states
was set to the number of clusters. Non-parametric hypothesis
testing was then used to determine if the differences in the
Markov model parameters of the two experimental conditions,
as measured by “model distance,” are higher than expected by
chance. This was done for each of the 12 parameter combinations.

We found that the pipeline could clearly discriminate trials
from the two experimental conditions for each level of number
of sources, down to signal-to-noise ratios of 1 (Table 1). The

effectiveness of the pipeline at realistic signal-to-noise ratios

suggest it is able to identify underlying functional states (by
k-means clustering) and model the transitions between these

states (by Markov modeling), thereby justifying its application to
experimental EEG data.

On one example trial (number of sources=16, signal-to-
noise ratio = 10), we also tested the ability of the pipeline to
discriminate conditions when trials were randomly jittered in
time. To do this, we jittered each trial (before concatenation)
by randomly specified numbers of samples between 1 and 20
(i.e., 1–20 ms). Notably, the pipeline was able to discriminate
between the two experimental conditions (p < 0.001) even in such
a scenario.

Figure 4 shows a comparison of the actual and estimated
sequence of states for two simulated experimental conditions,
for the same example dataset as in Figure 3 for which number
of sources=16, signal-to-noise ratio=10. The estimated sequence
of states can be obtained from the pipeline after the s-MVAR
and clustering stages are performed. While there is a rough
correspondence between the actual and estimated sequence

TABLE 1 | Mean (SD) of model-distance, measuring difference in model

parameters for the two simulated experimental conditions, across 20 datasets.

SNR = 10 SNR = 3 SNR = 1 SNR = 0.1

Number of

sources = 8

–68.2 (82.8) –47.8 (143) –6 (4.9) –1.2 (0.3)

p < 0.001 p < 0.05 p < 0.05 p > 0.05

Number of

sources = 16

–252.1 (302.2) –73.6 (162.8) –24.3 (48.2) –1.3 (0.2)

p < 0.001 p < 0.001 p < 0.001 p > 0.05

Number of

sources = 32

–1.8263e+03 (843.3) –179.1 (196.2) –28.4 (29.7) –1.2 (0.3)

p < 0.001 p < 0.001 p < 0.001 p > 0.05

Average p-values across 20 datasets, obtained from non-parametric hypothesis testing

are also shown. The p-values indicate that trials from the two experimental conditions can

be discriminated at levels of numbers of sources, down to signal-to-noise ratio=1.

of states, there are also a number of state mis-allocations.
These mis-allocations might be caused by linear mixing due
to volume conduction. Once the Markov modeling stage is
performed, characteristic electrode-level functional networks for
each state and probabilities of transition between states can
be obtained. Figure 5 shows actual and estimated electrode-
level functional network for each state, as well as actual and
estimated transition probabilities between states for the same
example dataset. Apart from states S2 (dark yellow) and S6
(blue), the mis-allocation of states in the clustering stage,
presumably due to volume conduction, produces distortion of the
characteristic functional networks of the states, as compared to
the actual pattern of connections (Figure 5A). Themis-allocation
of states in the clustering stage also produces distortions in the
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FIGURE 4 | Comparing actual and estimated sequence of states for two simulated experimental conditions. Matrices in the top row display multi-trial state sequences

for simulated conditions 1 and 2, different colors indicating different states. Matrices in the bottom row display state sequences inferred from 32-electrode EEG

simulated data of the two conditions, following s-MVAR and clustering stages, for an example dataset for which number of sources = 16, signal-to-noise ratio=10. A

rough correspondence is evident between assumed and estimated state sequences, for both experimental conditions. There are however a number of mis-allocated

states, which might be due to blurring due to volume conduction, of the differences between the underlying source-level functional networks.

estimated probabilities of transition between states (Figure 5B,
spurious paths shown in red). Thus, while the pipeline is able to
discriminate between trials of the two experimental conditions,
simulations suggest that estimated electrode-level connections
patterns of each state, and estimated probabilities of transitions
between states are distorted versions of the ‘ground-truth’.

3.3. Experimental Data
As mentioned above, the pipeline was also applied to 700 target
and 700 non-target trials from a BCI oddball paradigm. The
sampling frequency was 240 Hz. To obtain sufficient number
of samples (120 samples) to estimate the s-MVAR model at the
required window width of 40-50ms, we could have concatenated
12 samples (50 ms) of data from 10 consecutive trials or 10
samples (40 ms) of data from 12 consecutive trials. We chose
the former since it makes weaker assumptions about stationarity
of the s-MVAR process across trials. Hence, we applied the
pipeline simultaneously to 70 ‘trials’ from the target and non-
target conditions each. The number of non-overlapping windows
for each ‘trial’ was 20.

First, we performed the pre-processing, i.e., z-scoring across
samples and then across trials. This eliminated first-order
(mean) and second-order (standard deviation) sources of non-
stationarity from the dataset. Note that removing themean across
trials effectively removes ERPs from the data. Figure 6 displays
the average across trials, for each of the channels, before and
after the z-scoring across trials was performed. The scale of the
plots on the right compared to those on the left clearly reveal that
first-order sources of non-stationarity are eliminated.

After pre-processing, we performed the sparse-MVAR
modeling on each non-overlapping window. The model order
for this was determined as 1 for both participants, by estimating
the modal value of the model order on 10% of randomly selected
windows for each participant separately. The sparsity level
parameter λ, was also estimated as the mean value obtained from
estimating it on 10% of randomly selected windows, using the
GCV index. The λ value for Participant 1 was 1.03 and was 0.89
for Participant 2.

We then ran the clustering stage with the number of clusters
k, set from 2 to 8 (intervals of 1). For each of these values of k, we
obtained a multi-trial state sequence and corresponding Markov
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FIGURE 5 | Comparing actual states and state diagrams with estimated states and state diagrams. (A) The left panel displays the EEG electrode-level connectivity

patterns of the states for the two experimental conditions. The right panel displays the corresponding electrode-level connectivity patterns of the states, after applying

the analysis pipeline. The width of the lines are linearly proportional to the value of s-MVAR coefficients. Apart from states S2 (dark yellow) and S6 (blue), there are

substantial differences between the estimated and actual electrode-level connectivity patterns. For both left and right panels, the electrode-level connectivity patterns

for a state are obtained by averaging functional network representations (i.e., the inputs to the clustering stage) belonging to that state. Note, only connections within

the top 10th percentile strength are displayed. (B) The left panel displays state diagrams of both simulated conditions, i.e., probabilities of transition from each state to

all states including itself. The right panel displays transition probabilities inferred by estimating the Markov model for each of the conditions. While some of the

transition paths are correctly revealed (black lines), many spurious paths are also produced (red lines). Only values in top 25 percentile are shown.

model parameters for each experimental condition, which were
then used to discriminate trials between conditions based on the
measure of ’model distance’. Please see Table 2 for results.

For both participants, the estimated models from the two
conditions were found to be different at k values of 4 and
6 (p ≤ 0.05). Participant 2 also had statistically significant
model distance for k=5 and 7 (p ≤ 0.05). The ability of the
pipeline to discriminate trials from two experimental conditions
suggest that it is able to identify functionally relevant states (by
k-means clustering) and model the transitions between these
states (by Markov modeling). We also inspected the time courses
of example s-MVAR processes, whose parameters had been
estimated from the EEG data of Participant 1 and Participant
2. The resemblance of these processes to typical EEG dynamics
is also consistent with functional relevance of the states they
represent (Figure S2).

Figure 7 displays the multi-trial sequence of states for
Participants 1 and 2, when k was set to 4. For both participants,
the probability of staying in the same state is high for each

of the states, for both target and non-target experimental
conditions. This might suggest that the temporal resolution
obtained from identifying states on short non-overlapping
windows is sufficient to detect state changes. Figure 8 displays
the characteristic electrode-level functional networks of each
state for each of the participants, as well as their corresponding
state diagram (indicating probability of moving between states).
Remarkably, Participants 1 and 2 have highly similar electrode-
level connectivity patterns for S1 (red), S2 (dark yellow)
and S3 (blue). The similarity of electrode-level connectivity
patterns between Participants 1 and 2 suggests that the
functional states they represent might be neuro-physiologically
relevant.

The state diagrams for Participant 1 suggest that there is a
stronger tendency to switch between states in the target than
the non-target condition, while no such difference is apparent
in Participant 2. However, interpretation of the electrode-level
connectivity patterns or state diagrams in terms of underlying
neuronal processes is difficult, due to distortion of networks and
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FIGURE 6 | Averages across trials before and after the pre-processing stage of z-scoring across trials (within each experimental condition). The left panels in the top

and bottom row display averages across trials after z-scoring across samples for Participants 1 and 2 from the BCI dataset, respectively. Averages from each of the

28 electrodes are shown in different colors. The P300 ERP is evident between around 0.2 and 0.5 seconds for both participants, in the left panels. The right panels in

the top and bottom row display averages across trials for Participant 1 and 2 respectively, after the further pre-processing stage of z-scoring across trials. It is clear

from scale of the right panels that across electrodes, any first-order (mean) sources of non-stationarity are eliminated.

spurious transition paths that manifest, as demonstrated in our
previous simulations.

An implication ofMarkovian dynamics is that the distribution
of state dwell times follows a geometric distribution. Inspection
of the histogram of dwell times for each participant, for each
experimental condition, does indeed reveal that the distributions
of dwell times of each of the states approximates the geometric
case (please see Figure S3).

4. DISCUSSION

4.1. Significance
In this work, we proposed and applied a pipeline to characterize
the time-varying structure of functional networks in a cognitive
neuroscience task context. Using scalp-level simulated data
generated with a realistic EEG forward model, we were able
to demonstrate that trials from two experimental conditions
could be discriminated under a range of simulated scenarios.

This justified the application of the pipeline to experimental
data. Applying the pipeline to experimental data of two
participants performing a BCI oddball task, we reported
statistically significant discrimination between trials from the
two experimental conditions, using only the Markov model
parameters. That we were able to achieve this on such a
parsimonious representation of the EEG activity, characterized
primarily by the transition probabilities between states, is
of relevance. Notably, there was similarity between the two
participants, in the electrode-level connectivity patterns of the
functional states. Both the ability to discriminate trials between
conditions on simulated data and experimental data, and the
between-participant similarity in the connectivity patterns of the
identified functional states suggest that the pipeline is able to
identify the underlying functional states (by k-means clustering)
and transitions between these states (by Markov modeling).

The pipeline can thus be used to compare two experimental
conditions, specifically in terms of their patterns of fast
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TABLE 2 | Model Distance (MD) and corresponding p-values for two participants

(Participant1 and Participant 2), for a range of values of k, i.e., the number of

clusters.

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

P1 MD –0.4 –0.63 –2.78 –2.58 –3.75 –3.91 –4.91

p-value >0.05 >0.05 < 0.05 >0.05 < 0.05 >0.05 >0.05

P2 MD –0.79 –1.42 –1.95 –2.49 –3.7 –4.8 –5.5

p-value >0.05 >0.05 = 0.05 = 0.05 < 0.01 <0.05 >0.05

p-values are indicated in brackets. Both participants had statistically significant model

distances at k=4 and k=6 (p-values ≤ 0.05), while Participant 2 also had statistically

significant model distance at k=5 and 7 (p-values ≤ 0.05).

transitions between identified functional states. To our
knowledge, this is the first instance of the use of the Markov
modeling framework to analyse time-varying networks in
EEG/MEG data. sparse-MVAR modeling has been used to
estimate functional networks in fMRI (Valdés-Sosa et al.,
2005) as well as EEG/MEG (Haufe et al., 2009), but to our
knowledge, this is also the first time its potential to estimate
networks from a small number of samples is being harnessed
to infer time-varying networks in EEG/MEG data. The
information provided by the pipeline is orthogonal and hence
complementary to other analysis approaches. Specifically, the
first pre-processing stage of z-scoring across channels removes
spatial differences in amplitudes of channels that are used
in EEG microstate analyses, while the second pre-processing
stage of z-scoring across trials removes the conventional ERP
average.

4.2. Relevance to Cognitive Neuroscience
In the context of cognitive neuroscience, tracking changes
in the pattern of the functional network as a task is
being performed, is particularly relevant to inform models
of the neuronal processes underlying cognition. EEG/MEG
are well suited to capture these network changes, due to
their millisecond-level temporal resolution and direct recording
of electrophysiological activity. Using analysis methods which
capture these changes, like the method we propose, allow
researchers to dispose off the limiting assumption of static
connectivity, and test detailed hypotheses of rapid changes in
interaction patterns between brain regions, as a task is being
performed.

There is also a growing literature on emulating MEG/fMRI
activity using whole-brain computational models of brain
function (see for e.g., Cabral et al., 2014; Nakagawa et al., 2014).
Many of these modeling efforts are constrained to using a static
connectivity framework to compare model-generated data with
experimental data. Through the use of the proposed method,
the model’s ability to generate non-stationary network dynamics
can be evaluated, and results from applying the pipeline offers
novel features (e.g., transition probabilities) to compare model-
generated data with experimental data, as well as to tune free
parameters of the model.

4.3. Comparison With Other Methods
Our approach bears similarities to methods proposed in Wilke
et al. (2008), Sommerlade et al. (2009), andHu et al. (2012).While
these approaches combined an MVAR model with a Kalman-
filter/smoothingmodel, we combined a sparseMVARmodel with
aMarkovmodel via an intermediate clustering stage to reduce the
dimensionality and complexity of input to the Markov model.
These previous approaches are powerful in that they furnish a
sample-by-sample estimate of the functional network, in contrast
to our approach of estimating the network on non-overlapping
windows. However, we considered that the assumption of the
Markov model, with regard to the discrete nature of state
space, to be appropriate. Related to this, we considered that a
Markov model, with its parameterisation of transitions between
states, is better suited to describe observedmetastable/multistable
network dynamics. As mentioned, this metastable/multistable
perspective has also been adopted by earlier approaches and is
supported by empirical data (Koenig et al., 2002; Ito et al., 2007;
Baker et al., 2014).

A method which is close to ours in terms of modeling
assumptions is the HMM-based method proposed in Baker
et al. (2014). The method furnishes a sample-by-sample estimate
of HMM parameters and since the HMM is fit to source-
reconstructed MEG data, the states can be related to patterns
of activity in the brain itself, rather than at the electrode/sensor
level. However, unlike the method proposed here, the states do
not correspond to functional networks but rather multivariate
patterns of activity. Another method similar to ours, that has
been proposed, is that by Hirayama and Ogawa (2014). In this
paper, the authors introduce a unified method which estimates
source-level activity via Blind Source Separation (BSS) and infers
latent co-activity patterns corresponding to ’putative’ states via
a mixture model. Due to the simultaneous estimation of both
stages, the model is estimated more accurately than if the
parameters were estimated in two separate stages (Hirayama
and Ogawa, 2014). Apart from details of the mixing matrix, the
estimated model furnishes details of the co-activation patterns
and state probabilities. As in the Baker et al. (2014) paper, the
definition of a state is more general than a pattern of functional
connectivity. Furthermore, while individual states are identified,
the probabilities of transitions between these states are not
parameterized in the model.

Two related methods which are similar to ours are the ones
proposed in Daly et al. (2012) and Vidaurre et al. (2016). In
Daly et al. (2012), patterns of phase-locking at the electrode
level were described using complex network measures (mean
clustering coefficient) which were in turn used as observables
to an HMM. In Vidaurre et al. (2016), the observables to the
HMM were parameters from the MVAR model of MEG source-
reconstructed time series. A key difference between our method
and these is that we use a Markov model rather than a Hidden
Markov Model (HMM), to characterize time-varying network
dynamics. This produces a more parsimonious representation
than the above methods, of the EEG activity patterns indexing
a given cognitive process, based primarily on the matrix of
transition probabilities between states. Over and above the
parsimony of the representation, we demonstrated the sufficiency
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FIGURE 7 | Sequence of states for the target and non-target conditions, from Participant 1 (top) and 2 (bottom) of the BCI dataset. The sequence of states for 70

“trials” of target and non-target conditions. A feature of the state sequences across participants and experimental conditions is the high probability of the system

staying in the same state.

of the representation to discriminate trials from two conditions.
The representations of the functional networks also follow the
principle of parsimony, through our use of the s-MVAR rather
the conventional MVAR modeling framework.

4.4. Limitations
The primary limitation of the pipeline in its current form is
interpretability of its results, particularly how they relate to
source-level networks underlying each functional state. This
limitation has two aspects. One is that in its current form,
the pipeline yields connectivity patterns underlying states at
the level of electrodes rather than at the level of brain
regions. This problem could be addressed by including a
stage for reconstructing source-level activity through an inverse
projection, for e.g., Minimum Norm Estimation Hauk (2004)
or Beamforming van Veen et al. (1997), before the s-MVAR
estimation stage. Assuming a fine parcellation of brain regions

however, this would dramatically increase the number of
parameters to be estimated in the s-MVARmodel and potentially
increase the window width - the ability to track rapid changes
in functional networks would be diminished. An alternative
approach would be to project the estimated s-MVAR coefficients
to obtain directed connectivity patterns at the level of brain
regions (Michalareas et al., 2013). Compared to first projecting
the EEG/MEG data to the source-level and inferring the MVAR
model from the source time-series, this procedure would greatly
reduce the number of MVAR coefficients to be estimated and
likely lead tomore accurate estimation. Importantly, it would also
circumvent problems of sign ambiguity of source-reconstructed
time-series, as encountered for e.g., in Vidaurre et al. (2016).

The second aspect limitation is that, as demonstrated in
the simulations, the electrode-level connectivity patterns of the
states are themselves distorted versions of the ground-truth
electrode-level connectivity patterns, as also are the estimates
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FIGURE 8 | Results from applying the analysis pipeline to Participants 1 (top) and 2 (bottom) of the BCI dataset. EEG electrode-level connectivity patterns (left) for

four states, obtained by averaging the functional network representations belonging to that state. The width of the lines are linearly proportional to the values of the

s-MVAR coefficients.Electrode-level connectivity patterns of states S1 (red), S2 (dark yellow) and S3 (blue) are highly similar between Participants 1 and 2. State

diagrams (right) displaying transition probabilities for both target and non-target conditions. Only the transition probabilities above 0.2 are shown. Due to distortion of

the electrode-level network and spurious transition paths that can occur, as demonstrated by our simulations, interpreting these networks and state diagrams in terms

of underlying neuronal processes is difficult.

of transition probabilities between states. This is likely because
of mis-allocation of states during the clustering stage, due
to errors in the s-MVAR coefficients. These errors might be
caused by linear mixing due to volume conduction. Indeed,
we were able to estimate the clusters with perfect accuracy
when we applied the pipeline to source-level simulated data
(not shown). It is known that the linear mixing due to volume

conduction distorts estimates of functional networks at the level
of electrodes Brunner et al. (2016) as well as at the level of
brain regions (Hillebrand et al., 2012). A potential solution to
this could be to extend the present model to account for the
linear mixing due to volume conduction, that occurs as activity
travels from the brain to the scalp. A further limitation of
the pipeline is that similar to MVAR, the s-MVAR framework
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combines time-delayed dependencies in both signal amplitude
and phase, but these are likely to be functionally independent
phenomena(Bastos and Schoffelen, 2016).

Due to the short time windows we use, we use model order of
1 to estimate the sparse-MVAR models. Since the model order is
twice the maximum number of peaks in the frequency spectrum
between a given pair of EEG channels (Florian and Pfurtscheller,
1995; Schlogl and Supp, 2006), the frequency resolution of the
sparse-MVAR coefficients in our fitted models is poor. Hence,
while the pipeline is able to detect time-lagged correlations
between oscillatory activities of brain regions, the low model
order does not allow us to determine the frequency at which
these correlations are present. A further limitation of the method
is that the k-means procedure can produce different results
for different runs, unless the initial cluster centroid positions
are made identical across runs. Alternatively, deterministic
clustering procedures, for e.g., some forms of spectral clustering
(von Luxburg, 2007) could be employed.

4.5. Caveats
It is also useful to consider possible confounds to interpreting the
results in terms of time-varying connectivity. While first-order
(mean) and second-order (standard deviation) sources of non-
stationarity were effectively removed through pre-processing,
network-level sources of non-stationarity might be present in the
data, for e.g., the variation of zero-lag correlation in channels
over time. Further, one should be cautious in making inferences
about the nature of state changes due to the apparent validity
of an Markov model approach, i.e., whether deterministic or
stochastic. While the Markov model is a stochastic model,
it is agnostic with regard to whether the sequence of states
is deterministic or stochastic, provided the model parameters
are stationary across trials. In this regard, the framework
is general enough to characterize an identical/deterministic
sequence of states since this would be a special case of the
model.

4.6. Future Work
Notably, the use of the Markov model framework lays a
foundation for useful extensions of the method, particularly
to improve neuro-physiological relevance of the results.
Importantly, the estimation of the s-MVAR model and Markov
model could be combined, allowing for greater temporal and
spectral resolution. As mentioned above, once the MVAR
coefficients corresponding to each state have been estimated at
the electrode level, it has been demonstrated in Michalareas et al.
(2013) that it is possible to obtain source-level MVAR coefficients
by combining the original coefficients with the lead-field and
inverse operators (Michalareas et al., 2013). Hence, source-level
functional networks corresponding to each state can be obtained
without compromising the ability to resolve state changes at
a fine temporal scale. An alternative would be to extend the
present model to account for the linear mixing due to volume
conduction. This would also enable a more direct interpretation
of the model parameters in terms of underlying neurophysiology.

Work by Haufe et al. (2009) represents work in this direction
and could be built upon.

Notably, the pipeline is only applicable to single-subject
EEG/MEG data. To extend it to be applicable at the group-
level, the k-means procedure could be applied to the s-MVAR
coefficients (from each window, each trial, each condition), of all
subjects. This would impose a common labeling and number of
functional states across the different subjects. The Markov model
parameters could then be estimated from each subject, each
experimental condition separately, and the corresponding sets of
transition probabilities could be compared between experimental
conditions. This is also a topic for future work.

5. CONCLUSIONS

In this paper, we introduce a pipeline to analyse time-varying
networks in EEG task-related data. The purpose of the method
is to enable cognitive neuroscientists to test detailed hypotheses
about fast changes in functional interaction patterns as a task
is being performed. We established validity of the pipeline
by demonstrating its ability to distinguish between trials from
two simulated experimental conditions with different time-
varying network structure, in a range of simulated scenarios.
On applying the method to BCI oddball data from two
participants, we obtained statistically significant discrimination
between trials from target and non-target conditions. Apart
from demonstrating the method’s ability to discriminate between
conditions using just the Markov model parameters, this
work also marks the first application of the Markov model
framework to infer time-varying networks from EEG/MEG
data. Thus, the method represents a promising direction in
the effort to elucidate time-varying networks from EEG/MEG
data.
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