
ORIGINAL RESEARCH
published: 15 October 2018

doi: 10.3389/fncom.2018.00078

Frontiers in Computational Neuroscience | www.frontiersin.org 1 October 2018 | Volume 12 | Article 78

Edited by:

Reza Lashgari,

Brain Engineering Research Center,

Institute for Research in Fundamental

Sciences, Iran

Reviewed by:

Xiaoli Li,

Beijing Normal University, China

Hamid Reza Marateb,

Universitat Politecnica de Catalunya,

Spain

*Correspondence:

Mehran Jahed

jahed@sharif.edu

Received: 01 April 2018

Accepted: 07 September 2018

Published: 15 October 2018

Citation:

Zarei M, Jahed M and Daliri MR

(2018) Introducing a Comprehensive

Framework to Measure Spike-LFP

Coupling.

Front. Comput. Neurosci. 12:78.

doi: 10.3389/fncom.2018.00078

Introducing a Comprehensive
Framework to Measure Spike-LFP
Coupling

Mohammad Zarei 1, Mehran Jahed 1* and Mohammad Reza Daliri 2,3

1Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran, 2 School of Electrical Engineering, Iran

University of Science and Technology, Tehran, Iran, 3 School of Cognitive Sciences, Institute for Research in Fundamental

Sciences (IPM), Tehran, Iran

Measuring the coupling of single neuron’s spiking activities to the local field potentials

(LFPs) is a method to investigate neuronal synchronization. The most important

synchronization measures are phase locking value (PLV), spike field coherence (SFC),

pairwise phase consistency (PPC), and spike-triggered correlationmatrix synchronization

(SCMS). Synchronization is generally quantified using the PLV and SFC. PLV and SFC

methods are either biased on the spike rates or the number of trials. To resolve these

problems the PPCmeasure has been introduced. However, there are some shortcomings

associated with the PPC measure which is unbiased only for very high spike rates.

However evaluating spike-LFP phase coupling (SPC) for short trials or low number of

spikes is a challenge in many studies. Lastly, SCMS measures the correlation in terms

of phase in regions around the spikes inclusive of the non-spiking events which is the

major difference between SCMS and SPC. This study proposes a new framework for

predicting amore reliable SPC bymodeling and introducing appropriate machine learning

algorithms namely least squares, Lasso, and neural networks algorithms where through

an initial trend of the spike rates, the ideal SPC is predicted for neurons with low spike

rates. Furthermore, comparing the performance of these three algorithms shows that the

least squares approach provided the best performance with a correlation of 0.99214 and

R2 of 0.9563 in the training phase, and correlation of 0.95969 and R2 of 0.8842 in the test

phase. Hence, the results show that the proposed framework significantly enhances the

accuracy and provides a bias-free basis for small number of spikes for SPC as compared

to the conventional methods such as PLV method. As such, it has the general ability to

correct for the bias on the number of spike rates.

Keywords: local field potentials, phase locking value, spike field coherence, pairwise phase consistency, spike-

LFP phase coupling

INTRODUCTION

Synchronous neural activity plays an important role in brain studies (Galarreta and Hestrin, 2001;
Tallon-Baudry et al., 2004; Uhlhaas et al., 2009; Pipa and Munk, 2011; van Wijk et al., 2012;
Mendoza-Halliday et al., 2014; Seif and Daliri, 2015; Wong et al., 2016). Neural activities are
based on either spikes or local field potentials (LFPs). LFPs reflect the activity of a population
of neurons based on spatially averaged synaptic activity (Buzsáki and Draguhn, 2004; Buzsáki
et al., 2012). An appropriate approach to study rhythmic neuronal synchronization is provided
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by relating spiking activities to the oscillations of the ongoing
LFPs (Salinas and Sejnowski, 2001; Pikovsky et al., 2002; Tiesinga
et al., 2008; Fries, 2009). The relation between the spiking
activities and the oscillations of LFPs is a helpful way to
evaluate the rhythmic neuronal synchronization for a given
frequency band. As such, spike-LFP phase coupling (SPC)
should account for cell type and firing rate specification, must
allow for structured rhythmic activity and should avoid volume
conduction complications (Canolty et al., 2010; Hoerzer et al.,
2010; Vinck et al., 2010, 2012; Denker et al., 2011; Hansen and
Dragoi, 2011; Xu et al., 2013; Herreras, 2016).

Several spike-LFP synchronization measures have been
introduced in previous studies, e.g., cross correlation and
coherence coefficient, (Carter et al., 1973; Carter, 1987; Zeitler
et al., 2006; Lepage et al., 2011; Srinath and Ray, 2014) phase
synchronization or phase locking value (PLV) (Lachaux et al.,
1999), spike field coherence (SFC) (Fries et al., 2001, 2002; Curtis
et al., 2009; Grasse andMoxon, 2010; Hagan et al., 2012), pairwise
phase consistency (PPC) (Vinck et al., 2010), and spike-triggered
correlation matrix synchronization (SCMS) (Li et al., 2016).

Cross correlation and coherence coefficient methods are
biased on the power and are not suitable for non-linear and non-
stationary dynamics. In addition, coherence coefficient method
overlooks the time resolution. Hence, the main synchronization
measures are based on the PLV, SFC, PPC, and SCMS approaches.
However, as we will discuss later, the PLV and the SFC methods
are biased either on the spike rates or on the number of trials,
which varies across trials or neurons.

The PLV measure suffers from an extreme dependency on
the spike rates. Suppose that we have recorded spikes and the
LFPs simultaneously from a neuron for 1min. We first consider
a 10 s interval and calculate the PLV for this time slot where an
increase of the time interval results in a smaller average-vector
for the PLV. It should be pointed out that as long as the number
of included spikes within the time intervals are unchanged, the
neuron’s state remains unaffected. This observation illustrates
that the PLV is biased on the spike rates. As a result, studies
that use this method, equalize the spikes at a specified rate. Thus,
to calculate the SPC by the PLV method, an equalizing scheme
is used for the spikes based on a threshold T. The trials whose
number of spikes are below T are deleted, and those with higher
spikes than T, are equalized to T. As such, this method may
eliminate large portion of the data.

Measuring SPC as a function of frequency is provided by the
SFC method. SFC ranges between 0 and 1 for a given frequency.
Therefore, if the SFC for a given frequency is 1, then all spikes
associated with this frequency must have occurred with the same
phase. On the other hand, if the SFC for a given frequency is 0,
then the spike occurrence phase for spikes is considered dispersed
and disassociated to the LFP component. Furthermore, the SFC
is computed by comparing the magnitude of the frequency in the
spike-triggered average (STA) and the average magnitude of the
frequency in each of the LFP segments that are involved in the
STA. As the STA is provided by the sum of the magnitude for all
LFP segments, it is normalized by the spike rates. Additionally,
the STA is quantified by the power spectral density, which
specifies the strength of STA frequency components. Therefore,

as the PSD of the STA is dependent on the PSD of the LFP, a spike
which occurs during a high magnitude cycle of the LFP will have
more impact on the value of the SFC than a spike which occurs
during a low magnitude LFP cycle (Grasse and Moxon, 2010).

PPC computes the mean inter-spike resemblance of the LFP
phase across all possible pairs of spikes. It computes the cosine
of the absolute angular distance, namely the vector dot product
for all given pairs of relative phases. It is claimed that the PPC
is not affected by the bias on the spike rates (Vinck et al., 2010).
However, the PPC based methods suffer from bursting and noise.
They have high variance for low number of spikes and may result
in negative values which is physiologically meaningless.

The key idea of the SCMS method is to consider the
LFP segments placed in the center of each spike (spike-
triggered LFPs) as multi-channel signals and to compute the
index of the spike-LFP synchronization through constructing
a correlation matrix. The method constructs the correlation
matrix C through computing the PLV between pairs of the LFP
segments. Furthermore, the eigenvalues of the correlation matrix
is calculated and the maximum eigenvalue is reported as the
coupling synchronization (Li et al., 2016). As a result, the SCMS
measures the correlation in terms of phase in regions around the
spikes not just at the moment of the spike occurrence which is
its essential difference from the SPC. Also, Since the LFP signal is
filtered in a specific band, it is not considered a single tone signal
and there are probably different frequency components in each
LFP segment.

Suppose that we have several spikes in a trial which occur
close to 90

◦
phase of LFP. Although, all the spikes of each LFP

segment are in the same phase but because of their difference
in frequency components, the vector of the phase difference of
each pair differs. As such, the spikes will not be in the same phase
although it was expected that the SCMS would reveal maximum
synchronization. The aforementioned coupling bias points to a
challenge which is frequently faced by neuroscientists. Therefore,
to overcome the shortcomings of such coupling techniques one
has to equalize the spike rates of different trials or neurons, which
may discard important information.

In this study, a new framework is proposed to predict the SPC
in trials with low number of spikes. This is done via modeling
based on proper mathematical functions and by implementing
machine learning algorithms. This new framework is presented
in three phases. In the first phase, the ideal SPC is estimated
using a model which is based on exponential functions. Briefly,
the ideal SPC considers an infinite number of spikes by modeling
the full spike estimation based on the PLV method. The second
phase utilizes machine learning algorithms, namely least squares
(Abdi, 2007), Lasso (Tibshirani, 1996, 1997) and neural networks
(ELM) algorithms (Huang et al., 2006, 2012) where through
an initial trend of the spike rates, the ideal SPC is predicted.
The third phase presumes no systematic relationship between
the spike rates and the corrected SPC. As it is neither strongly
ascending nor descending, the estimated SPC is defined based on
the first 20 points or spike rates of the trained model. Hence,
it can be deduced that there may be no bias on the spike
rates and the proposed framework may provide an alternative
to the conventional methods such as the PLV. In what follows,
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the proposed method is introduced and the results based on
experimental data are discussed.

MATERIALS AND METHODS

Single-unit activity and the LFP signals were recorded from the
MT area of the brains of macaque monkeys using a five-channel
recording system discussed in a previous study (Seif and Daliri,
2015). Overall 100 sites were selected to be analyzed, where each
site contained about 200 trials. The time duration of the analysis
was 800ms which started from 200 to 1,000ms, measured based
on the onset of the stimulus. The 50Hz noise, and the LFPs
in the 5–8Hz band were band-pass filtered and removed using
EEGLAB (Delorme and Makeig, 2004). The most important
phase relation measure is the PLV which ranges between 0 and
1, as noted before. PLV method provides the magnitude of mean
phase difference between the LFP and spikes as the strength of
SPC.

The instantaneous LFP-phase is computed using the Hilbert
transform. For each trial spike which corresponds to the LFP
signal, the instantaneous LFP-phase to spike occurrence is
calculated using theHilbert transform. TheHilbert transform of a
function x (t) denoted byHT (x (t)), converts a real-valued signal
into a complex analytical signal from which the instantaneous
phase can be extracted (Gabor, 1946; Boashash, 1992; Huang and
Wu, 2008). The Hilbert transform is defined as,

y(t) = HT(x(t)) =
1

π
P

∞
∫

−∞

x(τ )

t − τ
dτ

where P is the Cauchy principal value of the singular integral.
Using the above equation, the instantaneous phase, φ can be
deduced from the analytical signal,

φ(t) = arctan

(

y(t)

x(t)

)

Also, the PLV method is defined by the following formula,

PLV =
1

N

∣

∣

∣

∣

∣

N
∑

n=1

exp
(

jϕ
)

∣

∣

∣

∣

∣

,

where ϕ is the LFP phase at which the spike occurs, and N is the
number of observations (Lachaux et al., 1999).

As noted before, the results of this study are obtained using
three separate algorithms, namely least squares, Lasso, and ELM.
These algorithms are briefly described below.

1. Least squares regression: This algorithm is a common
technique used in data fitting modeling. Least squares regression
is used as a primary approximation tool due to its efficiency and
fullness where the square changes of the data are summed and
minimized to find the best-fitting. Hence, for each sample data
points (xi, yi), i = 1, ..., n and the model function f (x,β), ri is
given by,

ri = yi − f (xi,β).

In order to obtain the optimal parameters, the least squares
algorithms minimizes the following equation (Abdi, 2007),

S =

n
∑

i=1

r2i .

2.Machine learning least absolute shrinkage and selection operator
(Lasso): Lasso is a regression analysis approach that utilizes
regularization to improve the estimation accuracy. Lasso was
originally stated in the framework of least squares. The lasso
solves the l1-penalized regression problem of finding β to
minimize,

min
β0 ,β

(
1

2N

N
∑

i=1

(yi − β0 − xTi β)
2
+λ

L
∑

j=1

|βj|),

where i = 1, 2, ...,N and j = 1, 2, ..., L that N is the total number
of observations. The tuning parameter λ regulates the strength of
the penalty. Each observation contains L covariates an dyi is the
ith outcome, xi is the ith covariate vector, β is the L-vector, and
β0 is a scalar. Letting X be the covariate matrix, so that Xij = (xi)j
and xTi is the i th row of X, the expression can be written more
compactly as

min
β0 ,β

{
1

2N

∥

∥y− β01N − Xβ
∥

∥

2

2
} subject to ‖β‖1 < t.

This is equivalent to minimizing the sum of squares with a
constraint of the form ‖β‖1 < t. Here t is a free parameter that
determines the amount of regularization. Because of the form of
the l1-penalty, the lasso provides variable selection and shrinkage,

β̂0 = ȳ− x̄Tβ .

This can be rewritten as,

β̂Lasso = min
β

∥

∥y− Xβ
∥

∥

2

2
+ λ

L
∑

j=1

∣

∣βj

∣

∣,

where “β̂Lasso = the linear regression estimate” is obtained for
λ = 0, and β̂Lasso =0 is attained for λ = ∞ . Hence the values
are within these two extremes, thereby fitting a linear model of y
on X and shrinking the coefficients (Tibshirani, 1996, 1997).

3. Extreme learning machine (ELM): ELM is feed forward
neural network for regression. It can be used with a single or
multi layers hidden nodes. In ELM, the hidden layer need not
be tuned and the output function of ELM with M hidden nodes
is given by,

fM(x) =

M
∑

i=1

Kihi(x) = h(x)K,

where Ki and hi(x) are the output weight and output function
of the i th hidden node, respectively, h (x) is a feature mapping
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where hi(x) = G(ai, bi, x) with G(ai, bi, x) defined as the sigmoid
function given by,

G(ai, bi, x) =
1

1+ exp(−(ai.x+ bi))
,

where ai and bi are hidden node parameters. ELMminimizes the
training error and the output weights,

Minimize :‖HK − T‖2 and ‖K‖ ,

where Hand T are the following hidden-layer output matrix and
T is the training data target matrix, respectively (Huang et al.,
2006, 2012),

H =







h(x1)
...

h(xN)






=







h1(x1) . . . hL(x1)
...

...
...

h1(xN) . . . hL(xN)






,T =







t1
...
tN






.

RESULTS

Estimation of the Ideal SPC
In order to study the dependence of SPC on number of spikes,
the first step is to check the exponential descending behavior of
neurons. We first take 100 neurons and select those trials with
the highest spikes or with the most information. Next, the SPC
is measured using the PLV method for each of these trials. The
ideal SPC considers an infinite number of spikes by modeling the
full spike estimation based on the PLV method. The results are
shown in Figure 1. The expression, “infinite number of spikes”
actually refers to the asymptote of the fitted model for each of the
SPC curves. In other words, the SPC value at the maximum rate
of its spike is chosen as the SPC value. In fact, this SPC is based on
the maximum information and is most closely related to the ideal
SPC value. Based on the PLV method, the higher the number of
spikes, the more accurate SPC will be. That is, as the number of
spikes continue to decrease, PLV is less likely to yield the ideal
SPC value. In fact, the ideal SPC occurs at its steady state value
and its maximum spike rate for each trial, which is the same as
the asymptote of the fitted model for each of the SPC curves.

Figure 1 illustrates SPC curves relative to the number of spikes
for all neurons, depicting an exponential descending behavior
which is biased on the spike rates. Therefore, the SPC value
exponentially descends as the spike rate increases. All other
neurons follow a similar pattern, confirming that acquiring SPC
by the PLV method is highly dependent on the number of
spikes. Therefore, generally and under any experimental setting,
if SPC analyses are based on the PLV method, such exponentially
descending behavior is expected.

Figure 2A shows the SPC curves for a sample of 4 neurons.
The blue curves in Figure 2A shows the SPC curves relative to
the number of spikes measured by the PLV method and the red
curves illustrates the model for fitting the SPC curves. The fitted
model consists of two exponential functions and one constant
term and is based on the total number of spikes or full spike
estimation. The asymptote of the fitted model to each of the
SPC curves shows the ideal SPC and illustrates their convergence.

The root-mean-square error (RMSE) criteria shows that the fitted
function is the best description for the SPC. RMSE is commonly
used in regression analyses to verify experimental results. The
average and error bar of RMSE for 100 trials among 100 neurons,
populated across different neurons with highest spikes, is shown
in Figures 2B,C depicts the distribution function of RMSE across
100 trials.

Predicting a More Reliable SPC
In the second step, training phase for the machine learning
algorithms is illustrated using the least squares, Lasso, and ELM
algorithms and depicted in Figure 3. To this end, the hold-out
validation method was applied and the procedure was repeated
100 times. In fact, 200 trials were selected according to the 100
neurons as primary trials, and for each iteration, 150 trials were
selected randomly for the training phase and the rest of trials
were chosen for the test phase. In order to obtain higher accuracy
for the training phase, trials with higher spikes are selected. We
attempted to obtain an average spike rates for all neurons but
noticed that there were not too many trials with at least 70 spikes.
Therefore, 200 trials were chosen among 100 neurons which had
at least 70 spikes. In the training phase, the first 20 points (SR =

20) of each 150 trials along with the asymptote of each of the trials
(ideal SPC) are depicted as the inputs of the machine learning
algorithms, namely inputs 1, 2 of Figure 3. The output of the
learning system or the corrected SPC is shown to closely follow
the ideal SPC with minor error and high accuracy. This model
is trained based on the trend of the first 20 points of trials and
the ideal SPC of each trial. Therefore, to determine the minimal
number of spikes or points, it is necessary to obtain the average
number of spikes for each trial. Using this average, it is possible to
estimate the number of SRs. The advantage of this model is that a
set number of spikes, in this case SR= 20, can easily be selected in
almost every trial as the minimum number of spike occurrence.

In Figure 4A, each of the bars shows the correlation between
the ideal SPC and the corrected SPC, which is either based on
trained SPC or on output of the training phase. As this correlation
is very high, it indicates that the training phase is appropriately
implemented. The correlation is performed using least squares,
Lasso, and ELM independent algorithms illustrated as red, blue,
and green bars in Figure 4, respectively. It is evident that a very
high correlation between the ideal SPC and the corrected SPC is
achieved. Furthermore, comparing the performance of the three
algorithms shows that the least squares has the best performance,
with a correlation of 0.99214.

In the test phase, 50 trials (50 test trials are independent of 150
training trails) are used and the first 20 points of each of these
trials are only used as the input to the trained model. Figure 4B
shows that the corrected SPC can accurately predict the ideal
SPC based on the first 20 points of each test trials with a high
correlation. The results of this section are also obtained using the
three aforementioned algorithms, and are similar to the training
phase, where the best result is obtained by least squares, with a
correlation of 0.95969.

In previous steps, we used 150 trials as the training data and 50
trials as the test data. Therefore, it is possible to have more than
one trial from a neuron in our analyses. In order to have only
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FIGURE 1 | Dependence of the spike-LFP phase coupling (SPC) on the number of spikes for 100 neurons. SPC curves exhibit an exponential descending behavior

and are biased on the spike rates.

FIGURE 2 | Estimation of the ideal SPC value using exponential modeling. (A) For a sample of 4 neurons, PLV based SPC exhibits an exponential descending

behavior and is biased on the spike rates (the blue curves). The red curves show an estimated SPC through modeling with two exponential functions and an

asymptote. (B) Depicts the average and error bar of RMSE across 100 trials among 100 neurons. The values are very small which illustrates high accuracy for

estimation of SPC (0.0003± 0.01). (C) Shows the distribution function of RMSE across 100 trials.
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FIGURE 3 | Proposed scheme to predict ideal spike-LFP phase coupling (SPC) based on the trend of the first 20 points (SR = 20) of trials and the ideal SPC of each

trial. In the training phase, the first 20 points of each 150 trials as input 1, along with the asymptote of each of the trials or ideal SPC as input 2, are designated as the

inputs to the machine learning algorithms of least squares, Lasso, and ELM. The output of the learning system or the corrected SPC is shown to be quite close to the

ideal SPC. This model is trained based on the trend of the first 20 points of trials and the ideal SPC of each trial.

FIGURE 4 | Predicting a more reliable SPC for trials with small spike rates. (A) Each of the bars shows the correlation between the ideal SPC and the corrected SPC

across 150 trials. The correlation is performed using three separate algorithms of least squares, Lasso, and ELM (the red, blue, and green bars, respectively). (B)

Shows that the corrected SPC can accurately predict the ideal SPC based on the first 20 points of each test trials with a high correlation. (C) Shows the correlation

between the ideal SPC and the corrected SPC for 25 trials which are selected from 25 independent neurons. Least squares approach has the best performance, with

a correlation of 0.99214, 0.95969, and 0.95817, for (A–C), respectively. (D) Shows the correlation between the ideal and the corrected SPC curves which is modeled

based on different spike rates across 150 trials. Statistically, the least squares algorithm is significantly different from the ELM algorithm (p < 0.05*; sign test) while it is

not significantly (“ns”) different from the Lasso algorithm.
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TABLE 1 | Goodness of fit [R-squared criterion (R2)] is presented to confirm the

proposed scheme’s ability to predict ideal spike-LFP phase coupling (SPC).

Validity criterion R-squared

Training and test phases A B C

Least squares 0.9563 0.8842 0.8532

Lasso 0.9314 0.8262 0.8129

ELM 0.9162 0.8123 0.7910

Column A represents R2 for the training phase, column B depicts R2 for the test phase,

and column C shows R2 for the test phase with independent neurons. The R-squared is

performed using three separate algorithms of least squares, Lasso, and ELM.

one trial from a neuron, we have to set a constraint for selecting
the trials in the test phase. That is, the test phase trials must be
from independent neurons. The purpose of this stage is to check
whether there exit a high correlation between the ideal and the
corrected SPC, when the trials are derived from independent
neurons and are used as the test data. Figure 4C shows the
correlation between the ideal SPC and the corrected SPC for
25 trials which are selected from 25 independent neurons. The
results show that the corrected SPC can well follow the ideal SPC
with high correlation in all three algorithms. Also, the best answer
is obtained by least squares, with a correlation of 0.95817.

Figure 4D shows the correlation between the ideal and the
corrected SPC curves which is modeled based on the different
number of points (between the first points from 1 to 100) of 150
trials. Different points (SR = 20) are evaluated for each of the
150 trials using all three algorithms. As it is shown in Figure 4D,
for trials with a spike rates higher than 10, the correlation is
very high between the ideal and the corrected SPC. Also, as the
number of spikes increases, the correlation increases as well. We
also used a statistical test (sign test) for quantitative comparisons
between least squares, Lasso, and ELM algorithms. According to
the statistical test outcome, it was observed that the least squares
algorithm was significantly different from the ELM algorithm
(p < 0.05∗; sign test) while it was not significantly (“ns” as
depicted in Figure 4) different from the Lasso algorithm.

Furthermore, we applied the R-squared criterion (R2) as a
statistical measure that indicates the model’s goodness of fit.
Table 1 depicts the Goodness of fit (R2) in order to confirm the
proposed scheme’s ability to predict the ideal SPC.

Figure 5A shows the comparison results for a sample neuron.
The results presented in Figure 5A are obtained based on trained
model in which only 20 primary spikes or trend of the first 20
points are used to predict ultimate or ideal value of SPC. This
calculated number is shown as a horizontal line which intercepts
the SPC axis at the final value of corrected SPC. As depicted, the
corrected SPC is quite close to the ideal SPC and while there is
very small error, the measure of the SPC is proved to be accurate.
As mentioned before, the PLV is biased on the spike rates and
equalizes the spikes at a specified rate. Thus, to calculate the
SPC by the PLV method, an equalizing scheme is used which
is based on a threshold T of number of spikes. Therefore, the
trials with number of spikes below T are deleted, and those with
higher number of spikes, are equalized to T. Here, we define a
spike N (“N-spike”) as the threshold for which the spike rates are

equalized and therefore associate this value with the PLV based
SPC measure. Figure 5A compares the proposed method with
the PLV based approach, which clearly shows the superiority of
the proposed approach.

Figure 5B shows the histogram distribution of the difference
between the N-spike and ideal SPC as well as the SPC and ideal
SPC, across 50 test trials (p << 0.001; sign test). Therefore,
the model-based estimation for the SPC provides a plausible
improvement as compared to the simple calculation of the SPC
by the PLV method.

A Bias-Free Framework for SPC
In the third step, for each test trial and for each of their spike
rates, the values of the corrected SPC are computed. It should
be noted that, the trained model and the test trials must be
based on the same spike rates. These results are presented in
Figure 6. Also, in Figure 6 our proposed method and the PLV
or conventional method are compared. In Figure 6A, the blue
curves depict PLV based method for a sample of 4 neurons and
illustrate a systematic and strictly descending spike rates and SPC.
This result is an expected behavior of the PLV-based method.

The blue curves in Figure 6B represent the results of the
third phase for a sample of 4 neurons. As an example for a
given test trial, in order to calculate the corrected SPC for
the first 20 points (SR = 20), we should use the trained
model associated with the same spike rate. This process is
performed for each rate of spikes in each of the 100 trials.
Figure 6B depicts proposed corrected SPCs for different spike
rates. That is, each point on the curve is a corrected SPC for the
correspondent value on spike rate axis. For example, if there are
spike rates from 1 to 70, the corrected SPC process is repeated
70 times. In fact, for each spike rate, a separate machine learning
algorithms is trained correspondent to that spike rate. Through
this approach, a unique corrected SPC is obtained that forms
one point in the “corrected SPC-spike rate” chart. Applying
corrected SPCs for corresponding spike rates leads to the blue
curve in Figure 6B. As illustrated, it is obvious that, one can
expect descending, ascending, or flat curves while SPCs are
corrected. In other words, our proposed method corrects each
SPC separately to achieve a corresponding point in the corrected
SPC curve. In both Figures 6A,B, the red lines depict the linear
estimations which are applied to each of the above mentioned
methods.

Figure 6C illustrates the distribution functions for linear
estimations based on the proposed method (blue histogram)
which suggests no bias and is symmetrically distributed around.
The red histogram in the Figure 6C illustrates linear estimations
based on the PLV method which illustrate a systematic bias with
strictly descending behavior (p << 0.001; sign test).

DISCUSSION

Measuring the coupling of single neuron’s spiking activities to the
LFP is a method which focuses on neuronal synchronization and
locking the spiking activity to the LFP is a feature of this inter-
neuronal synchrony. Several SPC synchronization measures have
been introduced in previous studies (Tibshirani, 1996, 1997;
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FIGURE 5 | Comparison of the error between the SPC based on “N-spike” and proposed corrected SPC with the ideal SPC. (A) For a sample trial of neuron, shows

that the corrected SPC is very close to the ideal SPC. The difference between the SPC based on the N-spike (green line) and the ideal SPC (turquoise line) is much

higher than the difference between the corrected SPC (dash red line) and the ideal SPC. (B) Depicts the histogram distribution of the difference between the N-spike

SPC and the ideal SPC, as well as the difference between corrected SPC and ideal SPC, across 50 test trials (p << 0.001; sign test).

Fries et al., 2002; Abdi, 2007; Curtis et al., 2009; Grasse and
Moxon, 2010; Hagan et al., 2012). This study proposed a new
framework to predict a more reliable SPC through modeling and
using machine learning algorithms for neurons with low spike
rates. Results show that the proposed framework is considerably
more accurate than the previous methods. Also, in this study we
introduced a bias-free framework for the SPC and compared it
with the conventional methods such as the PLV. Furthermore, it
is shown that the proposed framework has the general capability
to correct for the bias on spike rates.

As noted before, currently the main synchronizationmeasures
are the PLV (Lachaux et al., 1999), SFC (Grasse and Moxon,
2010), PPC (Vinck et al., 2010), and SCMS (Li et al., 2016). The
main characteristics of these synchronization measures are as
follows.

PLV computes the magnitude of mean phase difference
between the LFP and the spikes as the strength of the SPC. The
shortcoming of this method is its dependence on the spike rates.
Studies that use this method, equalize the spikes at a specific
rate. Thus, to calculate the SPC by the PLV method an equalizing
scheme is used for the spikes based on a threshold T.

SFC measures the synchronous activity between the LFPs and
the spike rates as a function of frequency. It is computed by
comparing the magnitude of the frequency in the STA and the

average magnitude of the frequency for each LFP segments that
is involved in the STA. Furthermore, a spike which occurs during
a high magnitude cycle of the LFP will have more impact on
the value of the SFC than a spike which occurs during a low
magnitude LFP cycle.

PPC computes the mean inter-spike similarity of the LFP
phase across all the possible pairs of spikes. However, the PPC
is unbiased only for very high spike rates while measuring the
SPC for short trials is considered to be a challenge for many
studies. Furthermore, PPC results in negative values for some
cases, which cannot be justified physiologically.

In the SCMS, each spike is placed in the center of the
time window with duration T. At the first step, LFP segments
are obtained by the PLV method and accordingly, the SCMS
calculates the point-to-point phase difference between each pair
of these LFP segments. Similarly, this process is done for all
other LFP segment pairs and as a result, a correlation matrix
is formed. The eigenvalues of this matrix must be calculated
and the maximum eigenvalue is reported as a measure of
synchronization. Accordingly, SCMS measures the correlation
in terms of phase in regions around the spikes, dictated by the
length of the LFP segments, and not at the moment of the spike
occurrence. Such behavior distinguishes the SCMS method from
the SPC.
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FIGURE 6 | A bias-free framework for SPC and comparing the proposed framework with the conventional method of PLV. (A) For a sample of 4 neurons, these

curves are provided based on the PLV method with no correction. There is a systematic relation of strictly descending between the spike rates and the PLV (blue

curves). The red lines show the linear estimations. (B) For a sample of 4 neurons, for each of the test trials and for each of their spike rates, the value of the corrected

SPC (blue curves) is computed. The red lines show the linear estimations. (C) The blue histogram shows the distribution for all linear estimations across 100 trials

among 100 neurons which suggests no systematic relation between the spike rates and the corrected SPC and is symmetrically distributed about zero. The red

histogram shows the distribution for all linear estimations across 100 trials among 100 neurons which suggests a systematic relation between the spike rates and the

PLV, and is strictly descending (p << 0.001; sign test).

This study proposed an approach which overcomes the
aforementioned problems through the following steps.

Estimation of the Ideal SPC Value Using
Mathematical Modeling
The ideal SPC was estimated by a modeling scheme which
is based on two exponential functions and the asymptote of
the fitted model to each of the SPC curves. The average
and error bar of RMSE across 100 trials among 100 neurons
were shown to be quite small (0.0003 ± 0.01). This suggests
that the exponential model accurately represents the SPC
curve.

Predicting a More Reliable SPC by
Machine Learning Algorithms for Trials
With Small Spike Rates
Training and test phases were performed using a proposed
approach based on three separate algorithms, namely least

squares, Lasso, and ELM. This model was trained based on
the trend of the first 20 points (SR = 20) of each trial.
The advantage of this method is that the number of spikes
is made possible in trials with the lowest spike rates. In
the test phase, the model accurately predicted the ideal SPC
based on the first 20 points of each test trials. Comparing
the results of the three algorithms showed that the least
squares had the best performance, with a correlation of
%96.

A Bias-Free Framework for SPC as
Compared With Conventional Methods
Such as PLV
For each test trial and for each of their spike
rates, the value of the proposed corrected SPC was
computed. Hence, a linear estimation was applied to
each of the corrected SPC curves. The distribution
function for all linear estimations across test trials was
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obtained, which suggested no bias in the corrected
SPC. Furthermore, the p-value was calculated for
these results using the statistical sign test that
demonstrated its statistical significance (p << 0.001; sign
test).

In summary, this study proposed a new framework
for predicting a more reliable SPC for neurons with low
spike rates. As a result, due to absence of bias on the
spike rates, there is no need for equalizing the number of
spiking neurons, and therefore the related information is
preserved. Furthermore, this framework has the general
capability to correct for the bias in the spike rates for various
methods.
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