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Success in the fine control of the nervous system depends on a deeper understanding

of how neural circuits control behavior. There is, however, a wide gap between the

components of neural circuits and behavior. We advance the idea that a suitable

approach for narrowing this gap has to be based on a multiscale information-theoretic

description of the system. We evaluate the possibility that brain-wide complex neural

computations can be dissected into a hierarchy of computational motifs that rely on

smaller circuit modules interacting at multiple scales. In doing so, we draw attention to

the importance of formalizing the goals of stimulation in terms of neural computations so

that the possible implementations are matched in scale to the underlying circuit modules.
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1. OVERVIEW

In this theoretical perspective article, we propose the need for a multiscale information theoretic
framework on how to better control an adaptive complex system such as the mammalian nervous
system. We start with a brief historical overview of neural stimulation from Galvani’s pioneering
work to modern opto-electrical methods. Pointing to control obstacles, we portray why an
understanding of the information processing levels of neuronal networks is crucial to the proper
design of a control paradigm. We then emphasize the importance of scale-interdependence and
examine the shortcomings of network control without it. This interpretation lays out both the
need for attention to the dynamic nature of computation and the functional robustness in the
light of structure variability that illustrate the multiscale information processing nature of neuronal
networks. We advance the idea that, within this framework, better control can be achieved through
targeting the aggregate computational output rather than attempting to control the system at its
finest scales.

2. CONTROL OBSTACLES AND FAILURES OF NEURAL

STIMULATION

In 1780, Luigi Galvani discovered that an electrical spark causes the twitching of a dead frog’s legs.
This discovery was pivotal to the birth of bioelectromagnetism and led the to the idea of controlling
action and behavior with electricity (Whittaker, 1910; Bresadola, 1998). A century after Galvani’s
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famous experiment, Gustav Fritsch and Eduard Hitzig
showed that, in dogs, in vivo motor cortex stimulation
causes limb movement (Fritsch and Hitzig, 2009). Electrical
neuromodulation as a therapeutic tool has since been recognized
as a viable and concrete path to control neurological diseases
(Gildenberg, 2005). Recognition of the implication of the
Substantia Nigra’s damaged cells in Parkinson’s disease (Langston
et al., 1983), better understanding of the operational principles of
basal ganglia-thalamocortical loops (Alexander et al., 1991) and
the effective reduction of tremor by lesioning the subthalamic
nucleus in monkey model of Parkinson’s (Bergman et al.,
1990) provided the path to tackle Parkinson’s. Following these
discoveries and a century after Fritsch and Hitzig’s experiments
the first deep brain stimulation (DBS) operation was performed
in Parkinsonian patients in 1987 and positive clinical effects were
reported a few years later (Limousin et al., 1995; Kringelbach
et al., 2007).

However, despite the technological advancements in electrical
stimulation, control of the behavior has been plagued by
improper precision and lack of understanding of the network
response. In the case of macro-stimulation (such as TMS—
transcranial magnetic stimulation, tDCS—transcranial direct
stimulation, DBS), much of the effort is focused on improved
targeting of a smaller area. The hope is that via fine-tuned
targeting, one would eventually achieve the proper level of
control. Nonetheless, electrical micro-stimulation has not shown
much promise in precise control of the output of circuits. For
example, microstimulation of MT (middle temporal visual area)
directional-selective neurons shows variable behavioral efficacy
across single trials, where this variability has been ascribed to
attention gating (Moran and Desimone, 1985) or spatial feature-
selective gating (Motter, 1994; Seidemann et al., 1998). A major
issue with the electrical micro-stimulation is the imprecision in
targeting a specific cell-group (excitatory vs inhibitory, or a given
group of inhibitory cells) as well as the nebulous temporal control
of the stimulation effect. These imprecisions turn neural control
to art rather than exact science. Fine tuning DBS for selection
of good stimulus parameters is done mostly with trial and error
(Wilson and Moehlis, 2014). Additionally, the timescale within
which TMS effects may last can vary over orders of magnitude.
Moreover, the effects of TMS or tCS (direct or alternating
transcranial stimulation) can easily spread to spatial neighbors
of the actual target (Davis and Koningsbruggen, 2013).

The discovery of optogenetics (use of light to control
neuron) in culturedmammalian neurons (Zemelman et al., 2002)
triggered the next wave of neuromodulatory attempts through
temporally precise stimulation of individual excitatory and/or
inhibitory neurons with millisecond resolution (Boyden et al.,
2005; Zhang et al., 2007). An ever-growing list of studies relying
on optogenetics stimulation have since followed, including those
targeting Parkinson’s (Kravitz et al., 2010), aimed at behavioral
conditioning (Tsai et al., 2009) or fear-conditioning (Haubensak
et al., 2010), as well as targeting deep structures (brainstem) (Lin
et al., 2013), or for inducing fast (γ ) rhythms (Cardin et al.,
2009), modulating sensory processing (Shusterman et al., 2011)
and attempts to control network disorder (hippocampal seizure)
(Krook-Magnuson et al., 2013). From a device engineering

perspective, optogenetics’ major challenges include geometrical
and mechanical design issues, light delivery stability and
precision, optimization of light/power efficiency, heat dissipation
(Williams and Denison, 2013; Goncalves et al., 2017; Zhao, 2017).
Other issues, especially for applicability in clinical settings, relate
to safe opsin molecular engineering, safe opsin delivery and
optical stimulation techniques (Jarvis and Schultz, 2015). For
these reasons, optogenetics is still not a viable option for clinical
purposes (Jarvis and Schultz, 2015; Goncalves et al., 2017).
However, the main biophysical challenges are photoelectric
artifact (Becquerel effect) and photothermal effects (Kozai and
Vazquez, 2015). Specifically, simultaneous optical stimulation
and electrical recording leads to photoelectric artifacts which
could be incorrectly interpreted as the light-induced rhythmic
activity (Kozai and Vazquez, 2015; Zhao, 2017).

Many of these optogenetics challenges will be resolved
with engineering advances. However, the attempts for control
through optogenetics have faced other serious challenges related
to the underlying information processing of the systems
under study. The biggest hurdle is our limited system level
understanding of brain functions (Jarvis and Schultz, 2015).
The observed variability of the evoked behavior following
transient inactivation of the motor cortex in rats and nucleus
interface (Nif) in songbirds (Otchy et al., 2015) has seriously
challenged the assumption that optogenetics can effectively
overcome nonspecific cell targeting and temporal imprecision.
As proposed, ignoring the indirect effects of downstream circuits
(Otchy et al., 2015) and disregarding the interconnectedness of
the complex circuitry are among the key reasons that even a
temporally-precise cell-specific control of individual elements
(i.e., neurons) of the network can not yield precise control of
the network function. The macroscopic behavior of the system
(such as network balance of excitation/inhibition) is insensitive
to the computational state of individual neurons (Dehghani et al.,
2016). This insensitivity is not because the functional symmetry
of individual elements transcends to the total state (Anderson,
1972), but because interconnectedness renders many details (at
fine scale) to be irrelevant at the large-scale behavior of the system
(Goldenfeld and Kadanoff, 1999). Thus, attempts for precise
control of the system at its fine scale is precisely where it will fail.
This failure roots in the breakdown of the constructionist view
and its emphasis on the independence of behavior at microscopic
and macroscopic scales (Anderson, 1972). In what follows, we
emphasize on the need for a paradigm shift to understand
and control the system in a multiscale information theoretic
framework.

3. LEVELS OF INFORMATION

PROCESSING

Proper success in augmentation/alteration of the nervous
system’s behavior is rooted in the deep understanding of the
complexity of this computational system. Here, by complexity
we explicitly refer to (a) existence of multiple scales of
structure/dynamics, (b) although the structural elements of
coarser scales can be physically reduced to those of the finer
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scales, the macro-micro dynamical elements are neither fully
independent nor completely coherent, and (c) the number of
possible states of the system (i.e., the amount of information—
in bits–needed to define the system) is scale-dependent. Early
attempts to describe the nervous system at multiple scales, led to
the formation of a tri-level hypothesis of information processing.
This approach divides the description of the system into its
computational, algorithmic, and implementational subsets after
David Marr (Marr and Poggio, 1976; Marr, 1982) or to semantic,
syntactic, and physical categories according to Pylyshyn (1984).
While this view in neuroscience and philosophy/cognitive
science has had a tremendous impact (specifically in the field of
visual neuroscience), the missing links across the tri-levels have
been the target of criticisms and a source of observed failures in
the description of neural computation at the system level and its
connection to behavior. Interestingly, even thoughMarr initiated
this classification of levels, his own studies were always focused
on only one level at a time. In fact, Marr’s own quest was initially
more focused on the fine scale level (Marr, 1969, 1970, 1971),
but later he became skeptical (Marr, 1975) and switched to the
top, i.e., computational, level (McClamrock, 1991; Rolls, 2011).
The main issue in this approach is reliance on the separation
of scales, a notion deeply in conflict with the nature of complex
systems (Bar-Yam, 1997). The behavior of the systems harboring
hierarchical levels of sub-assemblies is defined by the interaction
of the sub-assemblies at higher levels not by details in a given sub-
assembly (Simon, 1962, 1969). Surprisingly, a recent reversal of
interest in the implementational level (mainly due to advances in
microscopy and computational tools) has led to the revival of the
constructionist view. This approach suggests that by taking into
account the adjacent biophysical details of cell type categories,
their placement in microcircuitry and their afferent and efferent
projections, one could achieve proper control/alteration of neural
information processing systems.

The recent surge of interest in the fine level details of
both structure (Briggman et al., 2011; Kleinfeld et al., 2011)
and simulation (Markram et al., 2015) parallels Marr’s initial
emphasis on fine implementational details. This approach has
drawn criticism from advocates for his later emphasis on the
computational level. The underlying assumption is that through
a combined study of in vivo physiology and network anatomy
(Bock et al., 2011), one can build functional connectomics
(Seung, 2011) and decipher the behavior of the system. In
small systems lacking the hierarchical architecture of complexity,
separation of scales is justifiable and such an approach may
lead to a good understanding of the system’s behavior (such as
Dorsophila motion detection Takemura et al., 2013), or yield
relatively good control of simple behaviors (such as optogenetic
control of simple motor in C elegans Leifer et al., 2011).
The opposing view – mainly driven by system neuroscience
investigations of the mammalian neocortex – argues that the
understanding the underlying details will not resolve the issues
relevant to the neural computation of interest (Carandini, 2012).
This vantage point suggests that a repetition of canonical
computation such as linear filtering (Movshon et al., 1978; Rust
et al., 2006) or divisive normalization (Heeger, 1992; Zoccolan
et al., 2005; Solomon et al., 2006) serves as a building block of

computation and is the cornerstone of information processing
(Carandini and Heeger, 2011) leading to progressively more
complex representation in the hierarchy of sensory processing
cortical areas (Kouh and Poggio, 2008). It is suggested that
such canonical computations themselves could be embedded in
canonical circuits (Douglas et al., 1989; Douglas and Martin,
2004). The canonical circuit is thus portrayed as the structural
component of the computational unit (Douglas and Martin,
2007) where slight modifications of either the hardware or
software can shape a rich repertoire of network output (Harris
and Shepherd, 2015; Miller, 2016). Thus, an argument for
straying away from the implementational level is rooted in
computational identity of different circuits (across species) in the
face of the multiplicity of their physical implementation (Tank,
1989; Priebe and Ferster, 2012).

We suggest that for fine scale information (connectome or
biophysically-detailed simulations) to provide any significant
insight about the nature of computation, they should be further
examined within a scale-dependent framework and considering:

The observation scale: Although one can ignore detailed
connectivity profile as unnecessary while considering the
overall statistical properties as important, the proper choice
of the scale remains crucial.
The structure-function relationship: Physical details of the
circuit affect the dynamics, suggesting that the structure
constrains the computational function. However, constraining
the space of possible computations does not provide an exact
characterization of the performed computations because there
exists no one-to-one mapping of structure-function.
Plasticity: The ever-changing structure of the network implies
a robustness in computational function despite changes in fine
details of connectivity.
Subcellular control elements: These elements (whether they
are gap junctions, ion channels, dendritic spines, etc) provide
mechanisms for change of function without apparent change
of structure at the scale of microcircuitry.

We have to recognize that since our system of interest harbors
plasticity and homeostasis among other fundamental features
outlined above (e.g., its hierarchy). These two aspects demand
that our manipulations of the system be dynamic in nature in
order to achieve the intended effect over a sustained over period
of time despite the changing conditions (plasticity) and overall
constraints (homeostasis).

4. WHAT DOES NETWORK CONTROL

ENTAIL?

In the search for a proper spatiotemporal dynamics of
control, some may resort to modern interpretations of network
control. It is essential to recognize the shortcomings of such
an admixture of computational and implementational levels.
Although network structure determines certain properties of
network dynamics such as limit-cycle oscillator synchrony
(Strogatz, 2001) or the likelihood of reliable dynamical attractors
(Klemm and Bornholdt, 2005), not all dynamics can be
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captured by the network structure alone. Some studies have
considered a connectivity graph of complex networks equivalent
to its dynamical nature, and have drawn the conclusion that
recognizing the driver nodes is sufficient for understanding
the strategy for controlling the network (Liu et al., 2011). By
reducing the dynamics to structural connectivity, they conclude
that a large fraction of driver nodes (80%) are needed to control
biological systems. Even though they point to the difficulty of
controlling sparse inhomogeneous networks, in comparison to
dense homogeneous ones (Liu et al., 2011), their assumptions of
reduction of dynamics to network structure and the definition
of control and numerical methods in defining driver nodes are
criticized by (a) the evidence that a few inputs can reprogram
biological networks (Müller and Schuppert, 2011), (b) the trade-
off between phase space nonlocality of the control trajectory and
control input nonlocality (Sun andMotter, 2013) and (c) that the
node dynamics—not degree distributions—define the nature of
controllability (Cowan et al., 2012).

Another approach in advocating the structural control
has been based on the assumption that active nodes can
simultaneously activate all its connected neighbors but no further
than that (Nacher and Akutsu, 2013). This assumption is neither
valid in the nervous system nor has any relevance to biological
networks composed of elements with a variety of time constants
and delayed communication. Additionally, not only the internal
structure but also its connectivity pattern to the drivers and the
depth of the network are essential in the emergent dynamics
that follow stimulation. If the network is composed of a high
external/internal node ratio, it will be largely influenced by the
outside and its individual nodes will have a greater degree of
independent behavior from the external stimulus. In contrast, if
within system links are strong, then the system moves toward
synchrony (Chinellato et al., 2015). Likewise, the depth of the
system is very crucial in its response to incoming stimuli. Systems
with shallow depth are easier to force to behave in the desired
way, as we can directly probe and influence the effects of external
nodes on internal ones. A successful implementation of this
principle is the first experimental evidence for the importance of
individual neurons in C. elegans locomotion (Yan et al., 2017).
Using the wiring diagram of a shallow network (based on the
only available full connectome, i.e., that of C. elegans; White
et al., 1986; Varshney et al., 2011), it was predicted and confirmed
that within a given class of motor neurons, only ablation of a
subset should affect locomotion (Yan et al., 2017). However, it
was also noted that the connectome alone can not distinguish
between different behaviors even with the same sets of input
/output nodes. This issue is not surprising, since as we discussed
in section 5, one of the characteristics of a given network (even)
with fixed wiring, is its ability to manifest functional variability.

In contrast to shallow networks, deep networks are harder
to control, and along each step we have to tweak the internal
vs external nodes to achieve the desired outcome. One of the
main practical challenges is that even controlling a “static” large
network would require significant energy (Sun and Motter, 2013;
Pasqualetti et al., 2014). The requirement for high energy is due
to the nonlocality of control trajectories in the phase space and
its trade-off with the nonlocality of the control inputs in the

network itself (Sun and Motter, 2013). As a result, if the number
of control nodes were to be constant, the required energy for
driving the network scales exponentially with the number of
network nodes (Pasqualetti et al., 2014). This “required energy”
exponentially decreases if the number of network nodes were to
be constant while the number of driver nodes increases (Yan et al.,
2015). In addition, even if in certain cases network dynamics
could be linearly approximated locally, two standing issues would
remain that are not easily resolvable: first, control trajectories
follow a nonlinear mode and second, the local linear dynamics
do not explain the major global properties of the network such
as the basins of attraction (Cornelius et al., 2013; Sun and
Motter, 2013). Even if controllablity of static networks could be
achieved, as soon as dynamic enters the game (in time varying
systems), the required energy for controlling the system will
make the control infeasble (Yan et al., 2015). Overall, in high-
dimensional systems that are governed by nonlinear dynamics,
have dissipative properties (trajectories are confined only to a
limited part of the permissible phase space), and where feedback
imposes constraints on controllability, the mere identification of
driver nodes and quantifying node variables are not sufficient to
control the network (Motter, 2015; Gates and Rocha, 2016). Thus
the control of complex networks requires both knowledge of the
structure and dynamics across multiple scales of the system. To
achieve multiscale control, and for not being obstructed by the
inherent nonlinearity of the network dynamics, neuroengineers
have to resort to designing system that are capable of providing
compensatory perturbations in order to harness the nonlinear
dynamics. This form of systematic compensatory perturbations is
shown to be an effective tool in control of networks that manifest
nonlinear dynamics (Cornelius et al., 2013).

5. DYNAMICAL NATURE OF

COMPUTATION AND

STRUCTURE/FUNCTION VARIABILITY

The alterations in network behavior can originate from constant
structural reshaping of the network (addition or deletion of
links), or through modified intrinsic properties of the network
nodes (i.e., neurons) and via changes in possible states of the
interaction among the network nodes (i.e., synaptic weights).
These different modes of reconfiguration of the network behavior
set the dynamics of the information flow and the active behavior
of the organism. A functional translation of these attributes leads
to few rules, where a) one neuron can be involved in more than
one behavior, b) one behavior can involve several circuits and
c) one neuromodulator can alter multiple circuits. Naturally the
involvement of these different modes in reconfiguration of the
network behavior changes according to the size of the system and
the repertoire of its functional states. In non-vertebrates with a
very limited set of neurons, it is possible to pinpoint individual
or several neurons as the key or even unique elements involved
in highly reliable functions. For example, it is suggested that a
single neuron in C elegans can be involved in highly reliable
function (de Bono and Maricq, 2005). In vertebrates (with larger
brains), where routing and coordination of information flow
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becomes increasingly more important, local or global effects of
neuromodulators and oscillatory rhythms play an essential role
(Kopell et al., 2014; Le Van Quyen et al., 2016). One can conclude
that precision in control of the system depends on its complexity
profile (i.e., the amount of information necessary to represent a
system as a function of scale). As the number of neurons/circuits
and diversity of network components increases, the reliability
of functional dependence on individual components decreases.
This increased complexity provides robustness at larger scale
dynamics while it forgoes the details. Assessing the variability of
structure/function thus becomes an essential aspect for directing
stimulus at the right scale.

While the observed variability can be externally or
intrinsically-driven (Renart and Machens, 2014), in order
to achieve functional adaptability in the light of external
variability, the nervous system benefits from adapting stochastic
responses (Ernst and Banks, 2002) where a given population
activity can be construed as a likely sample from a posteriori
distribution (Hoyer and Hyvärinen, 2003). Intrinsic variability
in the nervous system originates at different levels, from ion
channels (Faisal et al., 2008) to synapses (Destexhe and Rudolph-
Lilith, 2012), single cells (Rabinovich et al., 2008; Litwin-Kumar
and Doiron, 2012) and population level (Boerlin et al., 2013).
As a result, in driving the system, instead of aiming for a pre-
determined response, the target should be to induce population
activity such that it could be interpreted as one stochastic
instance of the likely probability distribution. This supposed
probability distribution of set of responses should depend on
a multidimensional parameter space, where robustness and
flexibility are attained through overlapping redundant functions.
This form of redundancy is in stark contrast to engineered
systems where multiple instances of identical copies are used
to guarantee the robustness (Marder and Goaillard, 2006).
Instead, in the biological systems (and specifically in the nervous
system), the robustness is achieved through (a) variability at
fine scales, where single cell variability exists in parallel with a
robust representation at the population level (Rabinovich et al.,
2008; Litwin-Kumar and Doiron, 2012; Dehghani et al., 2016),
(b) networks with different configurations (of the underlying
parameters) manifest robust response to neuromodulators
(Prinz et al., 2004) and (c) structurally different circuits respond
reliably to external perturbation (Marder, 2011). The existence
of distinct stable basins of attraction despite the permissible
extensive variability at fine scales, is an essential characteristic

of complex systems. Such systems’ response to perturbation
depends on the scale and the extent of the stimuli. In a sense,
tolerance for small errors in complex systems comes at the price
of the intolerance to large errors (Laughlin, 2014; Dehghani et al.,
2016). As a result, when the intrinsic variability is reduced due to
excessively increased coupling, the abnormally greater ensemble
correlation dramatically reduces the plethora of macroscopic
states, a situation which is the hallmark of loss of complexity
in organs with networks of excitable cells. Heart arrhythmia
(Pincus and Goldberger, 1994; Pincus and Singer, 1996) or
seizures (Dehghani et al., 2016) are examples of such loss of
complexity.

6. ARE COMPLEX SYSTEMS WITH

FINE-SCALE VARIABILITY AND ROBUST

MACROSCOPIC FEATURES

PREDICTABLE?

In simple chaotic systems, the lack of predictability is due
to sensitivity to initial conditions. In contrast, in complex
adaptive systems, information exchange across the scales is
the main obstacle in the proper control of the system and
the lack of predictability is due to relevant interactions and
novel information created by these interactions. Ignoring the
multiscale levels of information processing, one may jump to the
conclusion that for proper control, we need to have a detailed
knowledge of the individual elements, the initial conditions and
their interaction among elements. Since we know that this is
impractical if not impossible, can we do better? To properly
control a system through stimulation, one has to have a proper
knowledge of the interaction in the subunits of the system.
However, only a controlled trajectory of the macroscopic states
is desirable and yet achievable. From a dynamical system’s point
of view, pushing the system at the right time and the right
scale is the key to fine control. Given the scale-dependent
interaction of the nervous system, we should ask: a) are complex
systems with many scales inherently unpredictable? and b) if
the answer is no, then how do we manipulate the system in a
predictable way? Surprisingly, the answer to the first question
is “no, complex systems are not unpredictable”. However the
predictability requires a few specific conditions and particulars.
The existence of nonlinear feedback creates either a fast or
slow “wait-time of divergence” and therefore, up to some point,
prediction holds and it rapidly deteriorates afterwards. This is
similar to the behavior of some bifurcation systems. In fact,
many systems that are considered to be periodic are inherently
chaotic. A prime example is the solar system where its very slow
divergence time (4 million years) leads to the observation of
chaotic behavior only when 100 million years of the entire solar
system are examined (Sussman and Wisdom, 1992). Therefore
to navigate the system in the aimed trajectory, we have to
constantly adjust and push the system such that it does not
deviate from the desired path after the implementation of the
last stimulus. This strategy can be effective only if the system
does not have low-dimensional chaotic behavior. Otherwise,
any simple perturbation could lead to unrecoverable massive
perturbation. In the case of the ensemble activity (such as cortical
processing with the involvement of a much larger set of neurons
in comparison to the simple nervous system of invertebrates such
as C Elegans), this notion becomes highly relevant since low
dimensional neural trajectories provide a surprisingly accurate
portrait of the circuit dynamics (Rabinovich et al., 2008) and
dimensionality reduction methods can be effectively used for
population decoding (Cunningham and Yu, 2014).

In non-chaotic system, our ability to modify the system
is limited (Shinbrot et al., 1993). If the system’s behavior is
periodic or multiply periodic (nested periodicity), we are stuck
with the system’s intrinsic periodicity dynamics. We can slightly
change the orbit by small perturbations or we can only induce
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perturbations that would switch the dominant periodicity from
one of the existent orbits to another existent one. This limitation
also means that the achieved effect is robust because of the
existent orbits, but it will not permit large alterations in the
system. In contrast, the existence of chaos could be helpful
in controlling a chaotic system. Since systems with a chaotic
attractor have an infinite number of unstable periodic orbits, one
can exploit this property and push the system toward one of
the already existing unstable periodic orbits (Ott et al., 1990).
However, if the system is high dimensional evolving chaotically
on a low dimensional attractor, this method no longer works.
The reason for the ineffectiveness of this method in this case
is that one would require an excessive amount of information
extracted from the data and a very long history of the dynamics
in order to be able to properly achieve control (Auerbach et al.,
1992). Though, interestingly, the situation is not hopeless, as
one can exploit the low-dimensionality of the system dynamics
and through a feedback control and repeated application of
tiny perturbations, control the system (Auerbach et al., 1992).
Here we advance the idea that recurrent feedback in the
neuronal networks might indeed be the evolutionary mechanism
developed to specifically deal with the low dimensional dynamics
of a high dimensional system for providing intrinsic control for
response reliability. This method has been extended to control
excitable biological systems in the past. It has been shown
that by irregular (based on the chaotic time) delivery of the
electrical stimulation, the cardiac arrhythmia can be pushed
back to a low-order periodic regime (Garfinkel et al., 1992).
In the hippocampal slice (CA3), the same method of entrained
spontaneous burst discharges proved to be much more effective
than periodic control (Schiff et al., 1994). Other methods, such as
periodic (Lima and Pettini, 1990; Azevedo and Rezende, 1991)
or stochastic (Fahy and Hamann, 1992) stimulation can affect
chaotic systems too but it is hard to predict their effect for
networks with many layers.

7. PRECISION AND RELIABILITY IN

CONTROL OF NEURONAL NETWORKS

Perturbation due to noise and the presence of variability are
the key challenging issues in the control of chaotic (recurrent)
neural networks. Recurrent networks operating at high gain, even
without any stimulation, show complex patterns and chaotic
dynamics that are very sensitive to noise (Sompolinsky et al.,
1988). In high-gain regime, small changes in synaptic strength
of recurrent networks can easily lead to chaotic instability, lack
of robust output and high sensitivity to noise (Sompolinsky
et al., 1988; van Vreeswijk and Sompolinsky, 1996; Banerjee
et al., 2008). This behavior is in contradiction to biological
networks which show robustness in the presence of high synaptic
plasticity (Chance and Abbott, 2000). As a result, while recurrent
networks are potentially computationally powerful systems,
their unreliable behavior, in the face of noise and synaptic
plasticity, renders them ineffective models of their true biological
counterparts. Despite these challenges, some solutions have been
proposed to tame the chaos in firing rate recurrent networks. By
tuning the weight of the recurrent connections, i.e., minimizing

the error between a desired and the current trajectory, robustness
can be achieved (Liu and Buonomano, 2009). This tuning leads
to a regime that exhibits chaotic dynamics and locally stable
non-periodic trajectories, allowing reproducible behavior (Laje
and Buonomano, 2013). The stable trajectories act as dynamic
attractors enabling the network to resist deviations in response
to perturbation. Unfortunately, this well-desired property of
robustness is very hard to achieve in spiking recurrent networks
where the irregular firing states manifest intense chaos. Both
experimental (rat barrel cortex under anesthesia) (London et al.,
2010) and theoretical (Monteforte and Wolf, 2010, 2012) studies
show that a single spike can rapidly decorrelate the microstate of
the network. Surprisingly, state perturbations decay very quickly
and single-spike perturbations only lead to minor changes in the
population firing rates (Monteforte and Wolf, 2012). Yet still,
these complex but unstable trajectories always lead to exponential
state separation and, as a result, these networks can not reliably
map the same input to nearby neighborhood in population
trajectory. In addition, in vivo non-anesthesized neurons have
higher conductance (Destexhe et al., 2003) in comparison to the
anesthesized state, where the spike-induced stability has been
observed experimentally (London et al., 2010). Therefore, it is
highly likely that the perturbation induced instability is much
more intense in the presence of higher intrinsic noise in non-
anesthesized cortex.

In the face of complex network topology and synaptic
plasticity, reliability of continuous nonlinear networks and
their controlled perturbation remains an unsolved challenge.
Sensitivity to the input, insensitivity to perturbations and
robustness despite changes in initial conditions are the
requirement of stable yet useful computation (Laje and
Buonomano, 2013). These attributes are much easier to achieve
in the idealized classical model of neural state space (Hopfield,
1982), where the stability of computation arises due to
convergence to steady-state patterns as fixed-point attractors.
Yet higher cognition requires “efficient computation”, “time
delay feedback”, the capacity to “retain information” and
“contextual” computation (Dehghani andWimmer, 2018). These
desired properties are more in tune with the characteristics
of reservoir computing (rather than static attractors), namely
“separation property”, “approximation property” and “fading
memory” (Dehghani andWimmer, 2018). However, the transient
dynamics of such liquid-state-like machines (Maass et al., 2002)
require a sequence of successive metastable (“saddle”) states,
i.e., stable heteroclinic channels (Rabinovich et al., 2008) to
manifest robust computation in the presence of noise and
perturbation. The necessary condition for transient stability in
a high-dimensional systems with asymmetric connections is to
form a heteroclinic sequence linking saddle points (Rabinovich
et al., 2001, 2008). The successive metastable states ensure
that all the trajectories in the neighborhood of these saddle
points tend to keep the flow of computation in the desired
channel. This property can be harnessed to ensure robustness
of controllability despite the inherent variability of transient
dynamics. To achieve proper control, instead of resorting to
manipulation of the target behavior at its end-point, it is
more efficient to apply minimal, yet repeated stimuli that can
minimize the deviation of trajectories between the metastable
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states. While it remains impossible to control continuous
nonlinear networks, targeted control at multiple scales seems to
be a good remedy and solution where neuroengineers should
focus.

The limitations for proper control of abstract and simple
neural network models may lead to the conclusion that
infinite precision is required to fully describe or control the
computation of analog neuronal networks with unbounded
precision. Given that infinite precision would turn to nontrivial
nonlinearity, one could infer that the proper control of natural
neuronal networks would be hard/impossible to achieve. Yet
the nervous system mysteriously manifests routine robust
macroscopic behavior. This puzzling dilemma hints on some
possible solutions. Surprisingly, it has been shown that linear
precision is sufficient to describe (up to some limits of) analog
computation (Siegelmann and Sontag, 1994; Ben-Hur et al.,
2002). This linearity would map to N bits of weights and N
bits of activation values of driver neurons for up to the Nth
step of the computation. Following this principle, “analog shift
map”, a dynamical system with unbounded (analog) precision
was designed and shown to portray computational equivalence
to the recurrent neural network; yet its tuning only required
linear precision (Siegelmann, 1995). Therefore it seems likely
that the nervous system reaches reliability by bounding its
analog precision to modular computation, i.e., computation at
scale. This multiscale property of neural computation means
that internal control is achieved by decomposition of tasks with
many needed cycles of computation to smaller modules in order
to keep the tuning linearity in place. Equivalently, to achieve
control during perturbation, one needs to pay attention to the
computational limits at each scale, where no computational
procedure of N steps could be mapped to more than N bits
of weights and N bits of activation. Any attempt to control
the system at higher precision will not change the result
and lesser precision will fail to achieve control. Perhaps this
computational principle is also among the reasons that the
primitive nervous systems are mostly formed as diffuse nerve
nets, while more advanced nervous systems harbor a multi-
scale structure to fully benefit context-dependent information
processing (Dehghani, 2017). In engineering neural control
systems, one has to pay close attention to the achievable precision
at each scale, its indifference to small values, yet the saturation
as measured as a function of the computation time within that
scale.

8. CONCLUDING REMARKS

In linking the structure and dynamics of the neuronal network,
mapping the space of possible interactions becomes important

and a matter of challenge. Since all the possible interactions
at a fine scale occupy a vast multidimensional space, in order
to have robust behavior, the system is likely to rely on a
more limited set of probable interactions between local densities
(i.e., ensemble activity). As the scale grows, the set of possible
interactions decreases yet the outcome of such interactions
better matches with the behavioral (macroscopic) outputs of
the system. Relevant parameters are those permissible sets of
interactions that have increased probability of occurrence as the
scale increases. Functional state transitions depend on the spatial
variation and interaction of the ensemble activity densities.
As a result, the complexity profile defined as the amount of
information necessary to represent a system as a function of
scale gives us the number of possible states of the system
at a particular scale (Bar-Yam, 1997). Therefore the finer the
computational scale of the system, the more information is
needed to describe it. It is through these mechanisms that the
system can maintain its intrinsic dynamical balance yet manifest
responsiveness across multiple time scales (Dehghani et al., 2016)
and provide stereotypical macroscopic spatiotemporal patterns
in the lights of microscopic variability (Le Van Quyen et al.,
2016). This viewpoint defies the blind big-data approach of
incorporating more details with the hope of yielding a better
model and more accurate prediction (Bar-Yam, 2016). Even with
the assumption that at some point in the future we can map the
connectivity and the activity of all the elements of the neuronal
network, we are still in need of a formalism that shows how the
output is sensitive to fine scale perturbations, and how the coarse-
scale reflects redundancy and synergy of the aggregate activity
of finer scales (Daniels et al., 2016). In order to enhance the
effectiveness of targeting multiscale neural systems, alterations of
biophysically-based features should match the level of the desired
computation. In targeting a stream of computation, the link
between the computation and the architecture is what defines the
optimal solution for maximizing the efficiency of the stimulation.
In summary, to better control the system, we have to focus
on the information transfer across multiple scales. Only with
this approach can engineering advancements in precise opto-
electric stimulation open ways to alter the system in the desired
way.
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