
REVIEW
published: 13 November 2018

doi: 10.3389/fncom.2018.00090

Frontiers in Computational Neuroscience | www.frontiersin.org 1 November 2018 | Volume 12 | Article 90

Edited by:

Yilei Zhang,

Nanyang Technological University,

Singapore

Reviewed by:

Jamie Sleigh,

University of Auckland, New Zealand

Gopikrishna Deshpande,

Auburn University, United States

Adam Ponzi,

Okinawa Institute of Science and

Technology Graduate University,

Japan

Jan Lauwereyns,

Kyushu University, Japan

*Correspondence:

Thomas Parr

thomas.parr.12@ucl.ac.uk

Received: 24 August 2018

Accepted: 25 October 2018

Published: 13 November 2018

Citation:

Parr T and Friston KJ (2018) The

Anatomy of Inference: Generative

Models and Brain Structure.

Front. Comput. Neurosci. 12:90.

doi: 10.3389/fncom.2018.00090

The Anatomy of Inference:
Generative Models and Brain
Structure
Thomas Parr* and Karl J. Friston

Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom

To infer the causes of its sensations, the brain must call on a generative (predictive) model.

This necessitates passing local messages between populations of neurons to update

beliefs about hidden variables in the world beyond its sensory samples. It also entails

inferences about how we will act. Active inference is a principled framework that frames

perception and action as approximate Bayesian inference. This has been successful in

accounting for a wide range of physiological and behavioral phenomena. Recently, a

process theory has emerged that attempts to relate inferences to their neurobiological

substrates. In this paper, we review and develop the anatomical aspects of this process

theory. We argue that the form of the generative models required for inference constrains

the way in which brain regions connect to one another. Specifically, neuronal populations

representing beliefs about a variable must receive input from populations representing

the Markov blanket of that variable. We illustrate this idea in four different domains:

perception, planning, attention, and movement. In doing so, we attempt to show how

appealing to generative models enables us to account for anatomical brain architectures.

Ultimately, committing to an anatomical theory of inference ensures we can form

empirical hypotheses that can be tested using neuroimaging, neuropsychological, and

electrophysiological experiments.

Keywords: Bayesian, neuroanatomy, active inference, generative model, message passing, predictive processing

INTRODUCTION

This paper is based upon the notion that brain function can be framed as Bayesian inference
(Kersten et al., 2004; Knill and Pouget, 2004). Under this view, our brains possess an internal
(generative) model of our environment that we use to predict sensory data, and to explain current
data in terms of their causes (Friston et al., 2006). Another way of putting this is that we have
prior beliefs about the state of the world, and beliefs about how this gives rise to sensations. On
encountering data, we update our beliefs to form a posterior belief about the world. This has
interesting implications for neuroanatomy. Specifically, for most generative models, it is possible
to specify belief updating, evidence accumulation or inference, in terms of the passing of local
messages between variables in the generative model (Wainwright and Jordan, 2008). In machine
learning, this gives rise to efficient inference schemes; including predictive coding (Rao and Ballard,
1999), variational message passing (Winn and Bishop, 2005; Dauwels, 2007), belief propagation
(Yedidia et al., 2005; Pearl, 2014), and expectation propagation (Minka, 2001). In neuroscience,
local message passing provides a useful way to interpret synaptic communication. This implies that
the dependencies between variables in a probabilistic generative model should be reflected in the
anatomy of the brain.
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The good regulator theorem (Conant and Ashby, 1970)
provides a useful perspective on the form generative models
must take. It states that any system capable of regulating its
environment must be a model of that environment. This means
the model used by the brain must be constrained by what it
tries to regulate; i.e., the body and its surroundings. By appealing
to the form of the real-world processes that generate sensory
data, we can attempt to construct generative models like those
that the brain uses, and to use the inferential message passing
those models imply to interpret known neuroanatomy. To do
so, we need to understand the relationship between models and
messages.

The key notion that underwrites this is the Markov
blanket (Pearl, 2014)—a statistical boundary that renders
one set of variables conditionally independent from another.
Importantly, if we know everything about a variable’s Markov
blanket, knowledge about things outside the blanket becomes
uninformative about things inside the blanket, and vice versa.
For example, if we know the state of the surface of an object,
the outside world offers no useful information about its interior.
If we knew everything about the present, the past would add
nothing to our predictions about the future. The concept of
a Markov blanket is central to recent formulations of self-
organization (Friston, 2013; Kirchhoff et al., 2018) and, in the
present context, for anatomy. Here, the conditional dependency
structure is important, as it means a population of neurons
representing a given variable only need receive connections from
those populations representing its Markov blanket.

Throughout, we will see that anatomy and generative
models offer constraints upon one another that limit the
space of plausible brain architectures. Ensuring mutual and
internal consistency in these domains represents the kind of
conceptual analysis necessary to form meaningful hypotheses
in neuroscience (Nachev and Hacker, 2014). This is supported
by the complete class theorems (Wald, 1947; Daunizeau et al.,
2010) that ensure the validity of treating neural computations
as Bayes optimal, and allow us to frame questions in terms
of the generative models used for inference, and the physical
(biological) substrates of these inferences.

This is not the first attempt to map inferential computations
to the anatomy of the brain, and builds upon several existing
accounts of neuroanatomy in terms of predictive coding
architectures (Bastos et al., 2012; Shipp, 2016). The novel aspects
of this article come from recent theoretical advances that address
categorical inferences (Friston et al., 2012b, 2015), planning
(Attias, 2003; Botvinick and Toussaint, 2012; Kaplan and Friston,
2018), and the inferences that underwrite the activity of the
ascending neuromodulatory systems (Yu and Dayan, 2005;
Friston et al., 2014; Parr and Friston, 2017c). In addition, our
focus is upon the form of generative models and their constituent
Markov blankets, while previous accounts have often focused
upon the anatomy implied by specific inferential procedures. The
ideas we present here transcend specific variational inference
schemes and, for this reason, we avoid committing to a particular
scheme in this paper. This is to emphasize that the conditional
independencies in the generative model are the key constraints
over anatomy.

The organization of this review is as follows. First, we
overview the notion of a generative model and introduce
some of the general principles that will be necessary for
understanding the rest of the paper. Following this, we try to
ground these abstract ideas by illustrating their implications in
the domains of perceptual inference, planning, neuromodulation,
and movement. We conclude by considering some specific and
testable hypotheses.

GENERATIVE MODELS AND MARKOV
BLANKETS

A generative model is a probabilistic description of how a given
type of data might have been generated. It expresses prior
beliefs about unobserved hidden states (or latent variables), the
probabilistic dependencies between these states, and a likelihood
that maps hidden states (i.e., causes) to sensory data (i.e.,
consequences). Such models can be used to predict new sensory
data, and to infer the hidden states that could have caused
observed data (Beal, 2003). While we rely upon several formal,
mathematical, concepts in this paper, most of these formalisms
can be expressed clearly through graphical models (Pearl,
1998). Inspired by recent papers that express electrical networks
(Vontobel and Loeliger, 2003), analytical physics (Vontobel,
2011), and Quantum mechanics (Loeliger and Vontobel, 2017)
using factor graphs, we adopt the same formalism to address
computational neuroanatomy. Specifically, we use Forney-style
factor graphs (Forney, 2001; Loeliger, 2004) as illustrated in
Figure 1. This graphical notation provides a way to visualize any
function that, like a probability distribution, may be decomposed
into a product of factors. We use this notation for the generative
models we will use in this paper. Each of these factors is plotted
as a square node, and these are connected by an “edge” (line)
if they are both functions of the same random variable. These
graphs have previously been applied in the life sciences; notably,
in theoretical neurobiology (de Vries and Friston, 2017; Friston
et al., 2017a), and in biomedical engineering (Laar and Vries,
2016). One of the key advantages of these graphs is that theymake
the Markov blankets of each variable visually obvious.

A common rhetoric for describing directed causal
relationships is that “parent” variables cause “child” variables.
Using these terms, a Markov blanket for a given variable may be
thought of as its parents, children, and the parents of its children
(Pearl, 2014). While this is a simple rule to follow, it becomes
even easier to identify blankets when adopting a factor graph
formalism. This is because the constituents of a Markov blanket
are the set of variables that share factors with those variables
insulated by the blanket. Figure 1 illustrates a procedure that
identifies all the components of the Markov blanket associated
with a random variable, simply by drawing a line around the
factors it participates in. Anatomically, these blanket components
should correspond to the neuronal populations that project to
that population housing representations of the original variable.

One further concept that will be useful in what follows is the
idea of “closing a box” (Loeliger, 2004) or finding the partition
function (Forney and Vontobel, 2011) of part of the graph. This

Frontiers in Computational Neuroscience | www.frontiersin.org 2 November 2018 | Volume 12 | Article 90

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Parr and Friston Anatomy and Inference

FIGURE 1 | Forney factor graphs. The graphical model in this figure represents the (arbitrary) probability distribution shown below. Crucially, this distribution can be

represented as the product of factors (φ) that represent prior and conditional distributions. By assigning each factor a square node, and connecting those factors that

share random variables, we construct a graphical representation of the joint probability distribution. The “=” node enforces equality on all edges (lines) that connect to

it. Small black squares represent observable data. This figure additionally illustrates a simple method for determining the Markov blanket of a variable (or set of

variables). By drawing a line around all of the factor nodes connected to a variable, we find that the edges we intersect represent all of the constituents of the Markov

blanket. For example, the green line shows that the blanket of w comprises x and v. The pink line shows the Markov blanket of v, which contains u, w, x, y, and z. The

blue line indicates that v and z make up the blanket of y.

simply means summing (or integrating) over all of the variables
represented by edges within a subgraph. Figure 2 demonstrates
this idea by taking the graph of Figure 1 and converting it
to a simpler graph by summing over all variables within a
dashed box. For some generative models, this summation (or
integration) may not be computationally or analytically feasible.
However, we can approximate partition functions using free
energy functionals (Dayan et al., 1995; Beal, 2003), as indicated in
Figure 2. This becomes very important in active inference, which
expresses brain function in terms of a principle of least action,
that tries to minimize free energy over time (Friston et al., 2010).
This is equivalent to pursuing behavior that gives rise to data
consistent with the partition function of the brain’s generative
model; a process sometimes referred to as “self-evidencing”
(Hohwy, 2016). This appeals to evidence in the technical sense
(the probability that data could have been generated by a given
model), which can be expressed as a partition function bounded
by a free energy. A self-evidencing system is then one that acts to
maximize the evidence for its model of its environment.

In the following sections, we will unpack the idea of a
generative model and its constituent Markov blankets in several
domains. Before doing so, it is worth emphasizing the domain
generality of this sort of approach. The ideas here have been
applied, explicitly or implicitly, across applications as diverse
as agency (Friston et al., 2012b), simple forms of pictographic
language (Friston et al., 2017c), and interpersonal interactions
(Moutoussis et al., 2014). Ultimately, all of these rely upon

the idea of the passing of local messages across graphs that
represent generative models. The differences in each domain
depend upon the specific form of the underlying generative
model—but, crucially, not the principles of message passing
and implicit functional architectures. In other words, the tenets
of belief updating covered in this review should, in principle,
apply to any perceptual or cognitive domain and their associated
neuronal systems. Furthermore, the generative models illustrated
below do not exist in isolation. Rather, it is the association
between each part of the brain’s generative model that facilitates
complex behaviors requiring interplay between perception and
action.

PERCEPTUAL INFERENCE

Dynamic Generative Models
To start, we consider some of the simplest generative models that
capture useful features of the environment. Broadly, there are two
important categories (Friston et al., 2017a): those that describe
the evolution of variables in discrete time (Mirza et al., 2016), and
those that describe continuous dynamics (Friston et al., 2011).
Trajectories in discrete time can be characterized by a sequence
of values over time. Assuming a Markovian system, the value at
any position in the sequence depends upon that at the previous
time. During each time step, the current state of the world gives
rise to a sensory observation. These probabilistic dependencies
are illustrated in the factor graph on the left of Figure 3. As the
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FIGURE 2 | Partition functions and free energy. This schematic illustrates a useful operation known as “closing the box” or taking a partition function of part of a

graph. By summing (or integrating) over all variables on edges within the dashed box, we can reduce this portion of the graph to a single factor that plays the part of a

(marginal) likelihood. While it is not always feasible to perform the summation explicitly, we can approximate the marginal likelihood with a negative free energy. This

affords an efficient method for evaluating subregions of the graph. Taking the partition function, or computing the free energy, for the whole graph allows us to evaluate

the evidence sensory data affords the generative model.

Markov blanket of the present state includes the proximal past,
future, and sensory observations, we only need messages derived
from these to infer the present (Beal, 2003).

It is also possible to represent trajectories in continuous
time using a sequence of numbers, but these no longer
express states at each time step. Instead, we can represent the
coefficients of a Taylor series expansion of the trajectory. These
are the current position, velocity, acceleration, and subsequent
temporal derivatives—sometimes referred to as “generalized
coordinates of motion” (Friston et al., 2010). This formalism is
a very general way to represent trajectories, and encompasses
similar formulations used for control systems (Baltieri and
Buckley, 2018). On the right of Figure 3, we illustrate that this
representation takes the same graphical form as the discrete
case. The Markov blanket of the velocity includes the position,
acceleration, and the rate of change of the data. Messages from
each of these, under certain assumptions (Friston et al., 2007),
take the form of squared precision-weighted prediction errors.
The gradients of these are the messages passed by predictive
coding schemes (Rao and Ballard, 1999; Friston and Kiebel,
2009).

Generative models that evolve continuous time or discrete
time likely coexist in the brain, mirroring the processes
generating sensory data. While, at the level of sensory receptors,
data arrive in continuous time, they may be generated in a
sequential, categorical manner at a deeper level of hierarchical
structure. For example, a continuous model may be necessary for
low level auditory processing, but language processing depends
upon being able to infer discrete sequences of words (which may
themselves make up discrete phrases or sentences).

Neuronal Architectures
Before detailing the neuronal network that could perform these
inferences, it is worth acknowledging the limitations of the

generative model alone in trying to understand neuroanatomy
at the microcircuit level. It may be that the brain makes use
of auxiliary variables that, while in the service of inference, are
not themselves sufficient statistics or messages. Probably the
simplest example of this kind of variable is a prediction error,
which quantifies the difference between the optimal solution
and the current estimate of a continuous state (e.g., luminance
contrast). In a biological setting, with inferences that play out
in continuous time, gradient descents using prediction errors
offer a plausible way to describe inferential dynamics (Rao and
Ballard, 1999; Friston and Kiebel, 2009; Friston et al., 2017d).
Figure 4 illustrates how we could represent the factor graph
for discrete systems in neuronal network form, relating the
messages highlighted in Figure 3 to axonal connections between
populations of neurons. This represents input to prediction
error cells in cortical layer IV that subtract current expectations,
encoded in superficial layers, from the three incoming messages
(which together represent the optimal expectation). These errors
then drive changes in the superficial cells to update expectations
(Miller, 2003; Shipp, 2016).

The move from the factor graph representation in Figure 3

to the neuronal network of Figure 4 proceeds as follows. First,
each state (connecting line) in the factor graph is represented
within a neuronal population in superficial levels of the network.
The three units represented in Figure 4 correspond to beliefs
about the state at three time-points. In the factor graph, these
are the lines connected to the left B-factor (past state), the right
B-factor (future state), and the line connecting the two (current
state). We additionally include prediction error units in layer IV
that relate to each of the belief states. As the prediction errors
drive belief updating, they must receive the messages indicated
in Figure 3, shown as connections from those populations from
which the messages are derived in Figure 4. So far, we have
accounted for layer IV and the superficial layers superimposed
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FIGURE 3 | Perception as inference. This figure shows two generative models that describe hidden state trajectories, and the data they generate. On the left, we

show evolution of discrete states (s), represented as the “edges” (lines) connecting the square nodes, with probabilistic transitions B from one state to the next. Each

of these states gives rise to a discrete observation (o), as determined by a likelihood mapping A. On the right, we show the analogous factor graph for continuous

dynamics, in which states are described in terms of their positions (x), velocities (x
′

), accelerations (x
′′

), etc., coupled by flows (f ) (rates of change) and give rise to

continuous observations (y) determined by a likelihood mapping (g). Numbered black circles indicate the messages that would need to be passed to infer the current

state (left) or velocity (right). The equations below show how these could be combined to form a belief about these variables using two different inference schemes

(variational message passing and belief propagation). That the same message passing architecture applies in both cases emphasizes the importance of the generative

model and its Markov blankets. The precise form of these message passing schemes is unimportant from the perspective of this paper, but for technical details on

variational message passing schemes, we refer readers to Winn and Bishop (2005), Dauwels (2007), and for belief propagation (Loeliger, 2004; Yedidia et al., 2005),

and to the Appendix, which provides a brief outline of these schemes. Table 1 provides a short glossary for some of the mathematical notation used in this and

subsequent figures.

upon the posterior sensory cortices. The additional cortical
column superimposed upon the frontal cortices replicates the
same structure, but treats the states at the lower level as if they
were sensory data.

Sensory input may come directly from sensory thalamic
nuclei, or may come via sensory cortical areas (Thomson
and Bannister, 2003). Both of these are shown in Figure 4,
introducing the idea that the models in Figure 3 can form a
repeating hierarchical pattern. This implies lower level hidden
states may be generated from higher level states, where higher
levels are defined as those that are further from sensory input.
A consequence of this is bidirectional message passing between
hierarchical levels (Friston et al., 2017c). This follows because
a model that allows lower level states to be generated by
higher level states mandates that each set of states sits in the
Markov blanket of the other. An important feature of hierarchies
in the brain is their temporal organization. As we ascend
a cortical hierarchy, the temporal scale represented by each

neuronal population generally increases (Hasson et al., 2008;
Kiebel et al., 2008; Murray et al., 2014; Vidaurre et al., 2017).
Those regions that sit near the top of these hierarchies are
those associated with “delay period” activity or working memory
(Funahashi et al., 1989; Goldman-Rakic, 1995); each defined
by the persistence of a representation over a timescale that
transcends that of stimulus presentation. To make the concept of
a temporal hierarchy—or deep temporal models—more intuitive,
consider the hierarchies inherent in reading: words are made
up of letters, perceived over a fast time scale. Words themselves
make up sentences, and paragraphs, each of which take longer
to construct. Given the separation of timescales in real-world
processes, like reading, the good regulator theorem (Conant and
Ashby, 1970) implies generative models in the brain should adopt
the same organization. As such, we could interpret a neuronal
population at a higher level as encoding a short trajectory at
the lower level, much as a sentence represents a short sequence
of words. To illustrate this in Figure 4, we have only shown
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FIGURE 4 | The anatomy of perceptual inference. The neuronal network illustrated in this figure could be used to perform inferences about the model of Figure 3.

Neurons in cortical layer IV represent the spiny stellate cells that receive input from relay nuclei of the thalamus, and from lower cortical areas. The appropriate thalamic

relay depends upon the system in question. In the context of the visual system, it is the lateral geniculate nucleus (LGN). In the somatosensory or auditory systems, it

is the ventral posterior nucleus or the medial geniculate nucleus, respectively. Layer IV cells in this network signal prediction errors, computed by comparing the

optimal estimate (obtained by combining the messages from its Markov blanket) with the current belief, represented in superficial cortical layers. Assuming a

logarithmic code (as in Figure 3), this involves subtracting (blue connection) the current estimates of the sufficient statistics from the sum (red connections) of the

incoming messages. The numbered circles indicate the same messages as in Figure 3. We could also represent messages 4, 5, and 6 in exactly the same way.

connections between the higher level cortical column and the
first neuron in the sequence at the lower level. This is consistent
with the generative models used to simulate reading (Friston
et al., 2017c) and classic workingmemory tasks (Parr and Friston,
2017d) using active inference.

Empirical Constraints
This neuronal network illustrates a very important point. The
architectures suggested by theoretical considerations must be
constrained by our knowledge of real neuroanatomy (Douglas
and Martin, 2004; Shipp, 2007). For example, sensory thalamic
projections to the cortex, including those from the lateral
geniculate nucleus, target the spiny stellate cells in (granular)
layer IV of the cortex (Zeki and Shipp, 1988; Felleman and
Van Essen, 1991; Callaway and Wiser, 2009). These cells project
to more superficial layers, which themselves project to higher
cortical regions. Connections from higher to lower regions of
cortex (Bai et al., 2004), or from cortex to sensory thalamus
(Olsen et al., 2012), arise from deep layers; notably layer VI
(Thomson, 2010). To conform to this anatomy, the most obvious
(but perhaps not only) solution is to assume that cells encoding
the expectations are duplicated in the deep layers, illustrating
the importance of mutual constraints between theory and known
anatomy.

A similar constraint comes from neuropsychological research
(Heinke and Humphreys, 2003; Testolin and Zorzi, 2016; Parr
et al., 2018b). Not only should the networks we propose be
internally consistent in both anatomical and theoretical domains,

but they should give rise to similar deficits when disrupted; i.e.,
when the associated structures are lesioned. For example, if we
were to remove message 3 (Figure 4) through a disconnection,
or damage to the associated sensory organ, our prediction
would be that internally generated influences (messages 1 and
2) would dominate perception. This is entirely consistent with
conditions such as Charles Bonnet syndrome (Teunisse et al.,
1996; Menon et al., 2003; Reichert et al., 2013), in which people
with retinal damage experience complex visual hallucinations;
something also associated with hypometabolism of early visual
areas as observed with Lewy body dementia (Motohiro et al.,
1987; Khundakar et al., 2016). Similarly, people with loss of
proprioceptive or somatosensory input from an amputated limb
can continue to experience percepts relating to absent body
parts (Frith et al., 2000; De Ridder et al., 2014). These phantom
phenomena are highly consistent with the theoretically derived
architecture of Figure 4 (De Ridder et al., 2014). We will appeal
to similar examples throughout, to illustrate the face validity of
this anatomical process theory.

While the anatomy of Figure 4 might be suitable for
describing trilaminar archicortical regions (Wesson and Wilson,
2011), such as the olfactory cortex and hippocampus, isocortical
regions subdivide into six, histologically distinct, layers. To
understand the need for additional inferential machinery, we
note that perceptual inference is not a passive process. Sensory
data depends to a large extent upon the orientation and position
of mobile receptive epithelia (Parr and Friston, 2017a). This
emphasizes the fact that an important class of latent variable
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is the set of hidden states over which we have control. These
include the positions of body parts, and give rise to multiple data
modalities (notably, visual, and proprioceptive). This provides
an interesting perspective on the connections between frontal
and posterior cortices, as the former houses representations
of controllable variables, while the latter receives data about
their sensory consequences (Shulman et al., 2009; Szczepanski
et al., 2013; Limanowski and Blankenburg, 2018). Descending
connections from frontal to parietal areas can then be thought
of as predictions about the sensory input expected contingent
upon a given action (Zimmermann and Lappe, 2016), endorsing
an enactive perspective (Bruineberg et al., 2016; Kiverstein, 2018)
on perceptual inference. In the context of the visual system, this
implies visual space might be represented in terms of saccadic
sensorimotor contingencies [i.e., “what I would see if I were to
look there” (Parr and Friston, 2017a)]. The brain’s ability to select
future sensory data implies beliefs about the future, and about
how it will choose to sample these data; i.e., planning.

PLANNING

Partition Functions and (Expected) Free
Energy
One way to think about planning is that it represents the selection
from several possible behavioral trajectories, or models of future

action (Kaplan and Friston, 2018). This implies a set of models
or policies that differ only in the state transitions they imply.
We can represent this graphically by augmenting Figure 3 with
a “policy” variable that represents which trajectory is in play. The
edge related to this variable connects to the B factors, encoding
transitions, and to an E factor, that represents a prior belief about
which policy to engage in. To infer the appropriate behavioral
policy, we can appeal to the idea of “closing the box” as in
Figure 2, taking the partition function of the sequence of states,
conditioned upon a policy, and their outcomes. As discussed in
the section Generative models and Markov blankets partition
functions are a way of summarizing part of a graphical model and
may be approximated by a free energy functional. This suggests
we can perform inference by passing messages in the subgraph
within the dashed lines in Figure 5, computing posterior beliefs
about the constituent variables conditioned upon a behavioral
policy. These posteriors can then be used to calculate the free
energy of each policy, providing evidence for or against each
hypothesized trajectory. This treats planning as an inferential
(Attias, 2003; Botvinick and Toussaint, 2012) model selection
process.

Once we acknowledge the need for beliefs about the future,
we run into a problem. By definition, sensory data from the
future have not yet been collected, and we cannot compute
their associated free energy. We can resolve this by using beliefs

FIGURE 5 | Planning as inference. This figure illustrates the use of partition functions to evaluate regions of the graph (see also Figure 2). Crucially, while we can

approximate a partition functions based upon past data using a free energy functional, we do not yet have data from the future. This means we instead need an

expected free energy, to approximate the partition function under posterior predictive beliefs. The panel below the graph illustrates how we can re-express the

expected free energy such that we can represent this portion of the graph in terms of two new factors: a marginal belief about future outcomes and a likelihood that

becomes an expected entropy after taking the expectation. As G depends upon beliefs about outcomes, but not upon the outcomes themselves, we can compute

this prior to observing data. In some accounts of active inference, this is made explicit by treating C as a prior that connects to a factor G (that acts as if it were a

likelihood generating policies from outcomes). The circled numbers and letters here are consistent with those in Figure 6. For technical accounts of these equations,

please see Friston et al. (2017d), Parr and Friston (2018c).
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FIGURE 6 | The basal ganglia. In the upper part of this figure, we show the same network as in Figure 4, but augmented such that it includes layer V cells encoding

the gradients of the expected free energy and posterior predictive beliefs. These project to direct pathway medium spiny neurons and combine to give the expected

free energy. This has a net inhibitory influence over the output nuclei (the globus pallidus internus and the substantia nigra pars reticulata), while the indirect pathway

has a net excitatory effect. These are consistent with messages 2 and 3, respectively (the numbering is consistent with Figures 5, 7). Once the direct and indirect

messages are combined at the globus pallidus internus, this projects via the thalamic fasciculus to the ventrolateral (VL) and ventral anterior nuclei of the thalamus.

These modulate signals in the cortex, consistent with averaging beliefs about states under different policies, to compute average beliefs about the states (red

neurons). Once we consider the hierarchical organization of this system (Figure 7), we need beliefs about preferences, derived from states at the higher level

(message 3) combined with a posterior predictive belief (a) and an expected entropy term (b) to compute the gradient of the expected free energy. We additionally

require a cortical input to the indirect pathway neurons, representing an empirical prior belief about policies (message 4—see Figure 7 for details). The coronal view of

the basal ganglia, in the lower part of the figure, shows the connectivity of the direct (right) and indirect (left) pathways, to illustrate their consistency with the network

above, but including the additional synapses that are not accounted for in the message passing. The substantia nigra pars compacta is included, and this modulates

the weighting of messages 2 and 3. Please see the section below on Neuromodulation for details as to the emergence of dopaminergic phenomena from a generative

model. In summary, the layers of the cortical microcircuit shown here represent beliefs about states under a given policy (I/II), beliefs about states averaged over

policies (III), state prediction errors (IV), expected free energy gradients and predicted outcomes (V), and beliefs about states averaged over policies (VI).

about the future to compute predictions about the sort of data
expected under each policy. Averaging with respect to this
“posterior predictive” density (probability distribution) allows us

to compute an expected free energy (Figure 5) that approximates
the partition function for future states and observations (Friston
et al., 2015). This takes an interesting form when we use
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FIGURE 7 | Hierarchical models. This figure illustrates the extension of

Figure 5 to two hierarchical levels; although this pattern could be recursively

extended to an arbitrary number of levels. There are three points at which the

levels interact. The first is a mapping from the outcomes of the higher level to

the initial states at the lower level (A to “=” to B). An example of this might be a

mapping from a sentence level representation to the first word of that

sentence. The second associates higher level outcomes with low level

empirical priors over policies (A to “=” to E). Finally, we allow the low-level

preferences to depend upon higher level states (“=” to C).

Bayes rule to re-express the generative model within the dashed
box (gray arrow). Here, we have used the fact that the joint
distribution over states and outcomes can be expressed either
as the product of a prior and a likelihood, or as a posterior
and a marginal distribution over the data (C). If we assume
that the latter does not depend upon the policy, this acquires
an important interpretation. As plans depend upon the negative
expected free energy, those policies that give rise to data
consistent with C become more likely to be selected. This allows

us to think of this marginal distribution as encoding preferences
or goals. Figure 5 illustrates this with a decomposition of the
expected free energy (Friston et al., 2015) into a goal directed
(message 3) and an uncertainty resolving (information gain)
term (“a” and “b”). The consequence of this is that the best
behavioral policies are those that balance exploitative (goal-
directed) imperatives with explorative (information seeking)
drives (Parr and Friston, 2017c).

Free energy approximations to model evidence (or
expected model evidence) depend upon how closely beliefs
(Q) approximate posterior distributions. This means that we
must perform the message passing of Figures 3, 4 to ensure
good approximations before using the free energy to adjudicate
between policies that select new data as in Figure 5. We have
previously argued (Friston et al., 2017d; Parr and Friston, 2018b)
that these scheduling constraints may form the basis for theta
rhythms in the brain, as this is the frequency at which we
tend to sample the world around us (e.g., through saccadic eye
movements). This implies that between actions we optimize
posterior beliefs so that they can be used to compute free energy
functionals to evaluate the next action.

The Basal Ganglia
The basal ganglia are a complex network of subcortical structures
(Lanciego et al., 2012). They are engaged in a set of hierarchically
organized cortico-subcortical loops, thought to underwrite
planning and behavioral policy selection (Haber, 2003; Yin and
Knowlton, 2006; Graybiel and Grafton, 2015; Jahanshahi et al.,
2015). The anatomy of cortico-basal ganglia communication
depends upon two distinct circuits, referred to as the direct
and indirect pathways. Each has an opposing influence upon
behavior, with the direct pathway facilitating, and the indirect
suppressing, voluntary behaviors (Freeze et al., 2013). It is
tempting to associate the two different messages (Figure 5)
required to compute beliefs about policies with each of these
pathways, as in Figure 6.

The striatum, consisting of the caudate and putamen, is
the main input nucleus of the basal ganglia (Shipp, 2017). It
is the origin of the direct and indirect pathways, associated
with the initiation and inhibition of behavioral policies,
respectively. Each pathway is associated with phenotypically
distinct striatal medium spiny neurons. They are often
characterized pharmacologically, with facilitatory D1-dopamine
receptors predominating in direct pathway neurons, and
suppressive D2-dopamine receptors on indirect pathway neurons
(Smith et al., 1998); allowing dopamine to modulate the
balance between these two pathways. However, the phenotypic
differences extend beyond pharmacology to include anatomical
connectivity, morphology, and electrophysiological properties
(Gertler et al., 2008).

The differences between direct and indirect pathway medium
spiny neurons are consistent with the form of the messages
required to compute posterior beliefs about policies. While
the direct pathway neurons have an inhibitory effect on the
output nuclei of the basal ganglia, the indirect pathway has
a net excitatory effect. The latter depends upon an additional
GABAergic (inhibitory) synapse from the globus pallidus
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externus to the subthalamic nucleus (Jahanshahi et al., 2015),
which has (excitatory) glutamatergic projections to the globus
pallidus internus, converging with the direct pathway (Figure 6).
Morphologically, D1-expressing neurons are well suited to
combining input from many cortical areas to compute a free
energy (or expected free energy) functional (Gertler et al., 2008).
Compared to their D2-expressing counterparts, they have an
extensive dendritic arbor, accompanied by a relatively high action
potential threshold, suggesting their firing is highly context
dependent, drawing from a wide range of cortical areas. Given
the representation of posterior beliefs in the cortex (Figure 4),
this suggests direct pathway medium spiny neurons are very well
placed to compute the free energy expected under a given policy
(i.e., message 2 in Figure 5).

In contrast, indirect pathway striatal neurons have a smaller
dendritic arbor (Gertler et al., 2008). This is consistent with
message 1 in Figure 5, that does not depend upon cortically
held beliefs (Parr and Friston, 2017b). The idea that the message
from these neurons is independent of the cortex is clearly a step
too far, as these cells do receive some cortical input. One way
to resolve this is to note that the factor E, while playing the
role of a prior, becomes an empirical prior1 once we move to
a hierarchical network (Figure 7). This is because we can treat
prior beliefs about policies as conditioned upon the outcomes at
a higher level. In other words, habitual behaviors are dependent
upon a slowly changing context. Interpreting cortical input to
the indirect pathway as a descending signal from higher cortical
regions is consistent with the difference in the distribution of
cortical input to the direct vs. indirect pathways (Wall et al.,
2013). The latter tends to receivemore input from frontal regions,
often thought to sit higher in cortical hierarchies (Felleman and
Van Essen, 1991) than the sensory regions projecting to the
direct pathway neurons. Endorsing a hierarchical aspect to basal
ganglia function, the striatum reflects the hierarchical structure
of the cortex in the connections it receives, its interactions with
the midbrain, and the behaviors it modulates. For example,
dorsolateral parts of the striatum receive dopaminergic input
from the substantia nigra pars compacta and cortical input from
sensorimotor cortices (Haber, 2003). In contrast, the ventral
striatum receives dopaminergic input from the ventral tegmental
area, and cortical input from limbic cortices.

Cortico-Subcortical Networks
In addition to providing a computational hypothesis for basal
ganglia function that formalizes the notion that they are engaged
in planning (i.e., policy evaluation), we can now refine the cortical
anatomy of Figure 4 to include the signals required to compute
the expected free energy in the striatum (Friston et al., 2017c).
In Figure 6, we show the addition of two cell populations in
layer V. These represent posterior predictive beliefs about the
sensory outcomes of a given policy, and the gradient of the
expected free energy with respect to these beliefs. The latter is

1An empirical prior arises in hierarchical models, when a higher level provides
constraints on a lower-level. It is called an empirical prior because the reciprocal
message passing means that the prior is informed by the (empirical) data at
hand. In other words, hierarchical models endow (empirical) priors with context-
sensitivity.

an auxiliary variable, like the prediction errors of Figure 4. It is
computed based upon the C factor, the entropy2 of the likelihood
(a) (weighted by beliefs about states), and posterior predictive
beliefs about outcomes (b) (Friston et al., 2017a). Weighting
the expected free energy gradients by these predicted outcomes
allows us to compute the expected free energy associated with
a given policy. The reason for restricting these cell populations
to cortical layer V is that the cortical input to striatal medium
spiny neurons arises almost exclusively from this layer (Shipp,
2007; Wall et al., 2013). There are several types of layer V
pyramidal cell, two of which project to the striatum (Kim et al.,
2015). One of these additionally projects to subcortical regions,
including the superior colliculus, and we will return to this in
the section onMovement. A further modification of the anatomy
of Figure 4 is that we have included beliefs about states under a
given policy (layers I and II), and beliefs about states averaged
over all policies (layers III and VI) (FitzGerald et al., 2014). The
latter are the sources of ascending and descending messages, and
are computed by weighting conditional beliefs from superficial
layers by beliefs about policies from the output nuclei of the basal
ganglia (via the ventrolateral nucleus of the thalamus McFarland
and Haber, 2002).

While the computational anatomy appears to be consistent
with known basal ganglia circuitry, there are several outstanding
questions that need resolution. The first of these is the number of
synapses between the indirect pathway neurons and the output
nuclei. The upper and lower parts of Figure 6 emphasize this,
with the inclusion of intermediate synapses in the lower part.
While the direct pathway involves a single synapse between the
striatum and globus pallidus internus (or substantia nigra pars
reticulata), the indirect pathway is trisynaptic. A single additional
inhibitory synapse makes intuitive sense, as this converts a
net inhibition to an excitation (consistent with message 2 in
Figure 6). However, the additional excitatory synapse appears
redundant. A plausible theory—that accounts for this—relies
upon the timing of messages in each pathway (Nambu, 2004).
This suggests that a short latency signal from the direct pathway
disinhibits a select set of policies, based upon the highly specific
contextual signals it receives from the cortex. This is followed by
a much broader inhibition of a priori implausible policies by the
slower indirect pathway. The timing of these signals is thought to
contribute to a center-surround pattern of activity in the basal
ganglia outputs which ensures precise posterior beliefs about
policies.We could also argue that, if the indirect pathway receives
slowly changing contextual input from higher cortical areas, it
makes sense that its signals should play out over a longer time-
span. The presence of recurrent connectivity within the indirect
pathway, including arkypallidal neurons (Mallet et al., 2012) from
the external globus pallidus to the striatum, reinforces this idea,
as this could sustain these representations over a longer time.

A second question concerns the role of the hyperdirect
pathway (Nambu et al., 2002), which provides a subthalamic
input, and why it is necessary to have an additional cortical

2The (Shannon) entropy is the dispersion of a probability distribution, and may
be thought of as quantifying uncertainty about the variable described by the
distribution.
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input. A plausible, if speculative, role for this pathway is in
signaling when to implement each new policy, as these cortico-
subthalamic axons arise frommotor neuron collaterals (Giuffrida
et al., 1985). Given the highly non-specific terminations of the
hyperdirect pathway in the basal ganglia outputs, it seems more
likely that this signals when an action has taken place, as opposed
to contributing directly to policy selection. This is consistent with
the theta cycle at which new actions (e.g., saccades) are performed
(although the components of these actions may be much faster),
and its correlates in the subthalamic nucleus during sensorimotor
tasks (Zavala et al., 2017). The hyperdirect pathway may then
use motor signals to entrain the pacemaker circuits associated
with this nucleus (e.g., subthalamopallidal networks) that include
neurons oscillating at a theta frequencies (Plenz and Kital, 1999).
Speculatively, this could be an important part of the scheduling
of themessage passing involved in planning, compared to that for
state inferences. Failures of scheduling may underwrite aspects of
conditions like Parkinson’s disease (Cagnan et al., 2015).

Pathologies of the Basal Ganglia
Disorders of basal ganglia nuclei are well characterized. It is
a useful test of the validity of the proposed anatomy to see
whether deficits in these computational units are consistent
with behaviors observed in neurological practice. Parkinson’s
disease is a common disorder in which degeneration of neurons
in the substantia nigra pars compacta lead to dopamine
deficits in the striatum (Albin et al., 1989). This leads to an
akinetic rigid syndrome, characterized by a difficulty initiating
movements (Clarke, 2007). If we interpret dopamine as weighting
the balance of messages derived from expected free energy
compared to empirical priors (Friston et al., 2014; FitzGerald
et al., 2015; Schwartenbeck et al., 2015), the loss of dopamine
could lead to excessive reliance on these slowly changing
priors that do not take account of changes in context over
the timescale necessary for movement. We have previously
demonstrated behaviors that become increasingly random as
the contribution from the expected free energy is down-
weighted in the presence of flat priors (Parr and Friston,
2017d). Under the more realistic priors required for (for
example) maintenance of postural stability (Dokka et al., 2010),
it is easy to see how an excessive reliance upon these might
lead to akinesia and rigidity. This suggests Parkinson’s disease
could be thought of as a syndrome of excessive reliance upon
slowly changing beliefs at higher hierarchical levels to direct
behavior (Jávor-Duray et al., 2017). Reliance upon higher levels
might account for the bradykinesia and bradyphrenia of this
disorder (Mayeux, 1987), as faster processes lose their influence
over (motor and mental) behavior. In contrast, increasing
dopamine levels might decrease the influence of higher levels,
leading to shorter term planning and impulsive behaviors
of the sort associated with pro-dopaminergic Parkinson’s
medications (Cools et al., 2003; Michele and Anna Rita,
2012).

An intriguing feature of Parkinson’s disease is that, in certain
contexts, patients can perform complex fluent motor behavior;
e.g., cycling (Snijders and Bloem, 2010). This phenomenon,
known as kinesia paradoxa (Banou, 2015), typically relies

upon some form of cueing (Glickstein and Stein, 1991),
signaling a behavioral context. The hierarchy of Figure 7 offers
a framework in which we can try to understand this effect.
While dopaminergic deficits limit the influence of message 2
on policy selection, there is another route by which sensory
data can influence behavior. Although somewhat circuitous,
messages may be passed up to the higher level, allowing inference
about slowly changing hidden states. These then influence lower
level policies via message 4. This indicates that understanding
the structure of message passing architectures might afford
opportunities for the design of rehabilitative therapies or medical
devices (Ferrarin et al., 2004) that make use of alternative routes
through the set of Markov blankets comprising a generative
model.

While Parkinson’s disease represents reduced direct pathway
influences, there are other syndromes that occur if the indirect
pathway is damaged. These provide support for the idea
that the indirect pathway uses prior beliefs to prevent the
performance of implausible behavioral policies. One such
syndrome is hemiballismus, resulting from damage to the
subthalamic nucleus (Hawley andWeiner, 2012). This syndrome
is characterized by involuntary ballistic movements that the
indirect pathway fails to suppress. This is consistent with a policy
that has a relatively low expected free energy, despite being
implausible according to healthy prior beliefs. Crucially, while
disconnections in the indirect pathway lead to fast involuntary
movements, reduced direct pathway influences lead to slowing of
movements. The difference in time scales adds further weight to
the hypothesis that indirect pathway signals derive from slower
hierarchical levels.

Other Subcortical Networks
The ideas in this sectionmay be generalizable to other subcortical
structures. Specifically, some nuclei of the amygdala resemble
those of the basal ganglia, but appear to have a role in
regulating autonomic, as opposed to skeletomotor, policies
(Swanson and Petrovich, 1998; Kimmerly et al., 2005). The
central and medial nuclei appear to be extensions of the striatum
and may send and receive analogous messages, suggesting
these nuclei compute the expected free energy of alternative
autonomic policies. The output of these amygdala regions
target the periaqueductal gray matter (Hopkins and Holstege,
1978; Bandler and Shipley, 1994) and hypothalamic regions
(Petrovich et al., 2001) that regulate the balance between the
sympathetic and parasympathetic nervous systems. This view
of these structures is highly consistent with inferential accounts
of autonomic regulation (Owens et al., 2018). That the same
computational role associated with the basal ganglia generalizes
to provide a hypothesis for the function of some amygdala
nuclei suggests that similar explanations might hold for other
subcortical structures. The generative model we have considered
so far leads us to anticipate that any planning or decision-making
process, whether in the domain of skeletomotor, autonomic, or
mental (Metzinger, 2017; Limanowski and Friston, 2018) action,
implies an anatomical network for the evaluation of expected
partition functions, or free energies, for alternative courses of
action.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 November 2018 | Volume 12 | Article 90

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Parr and Friston Anatomy and Inference

NEUROMODULATION

Precision and Attention
In addition to knowing which variables are causally related to
which others, our brains must be able to infer how reliable these
relationships are. In the previous section, we discussed the role
of dopamine in modulating the indirect and direct pathways,
but without specifying its role in the generative model. We have
suggested that dopamine increases the influence of message 2
relative to message 1 (Figure 7); i.e., changes the weighting of
priors and likelihoods. This implies it plays the role of a precision
parameter. Precision quantifies the confidence, associated with
a given probabilistic distribution. Associating a high precision
with prior beliefs means that these are the dominant influence
in forming a posterior belief. Lower precisions of prior beliefs
favor other messages, including those derived from sensory data.
We could then think of dopamine as encoding the imprecision of
prior beliefs about policies or, as the precision of the partition
functions used to evaluate the evidence for different policies.
While the latter is the more common formulation in papers
on active inference (Friston et al., 2014), we adopt the former
here for (graphical) notational convenience. Either would lead to
increased direct pathway activation with increased dopamine.

We can generalize the idea that dopamine modulates the
balance between prior and posterior influences over policies
by considering the confidence ascribed to other factors in the
generative model. Figure 8 illustrates this idea explicitly by
assigning precision parameters to each factor. Prior beliefs about
these parameters are expressed in factors Ŵ, �, and Z, with
precisions (γ , ω, ζ ) on the edges connecting to these factors E,
B, and A (Parr and Friston, 2017c). The capacity to estimate
the precision of these conditional distributions is thought to
underwrite attentional processing (Feldman and Friston, 2010).
The reason for this is that assigning a high precision (or
confidence) to a given probabilistic mapping implies that one
variable is highly informative about the other. For example, if
we were to hold very precise beliefs about transitions (i.e., a
minimally volatile world), the past would be very informative
about the present. Similarly, precise beliefs about the likelihood
of observing data affords those data the potential to drive belief
updating about causative states. In short, increasing precision
increases the influence that the messages passed across a factor
have on beliefs about variables either side of it. Biologically,
this is consistent with modulation of the gain of the synapses
carrying these messages. We will use attention, synaptic gain, and
precision synonymously in this paper.

Neuromodulators
It is likely that there is a range of mechanisms that give rise
to attentional gain-control in the brain, from neuromodulators
acting via NMDA receptor pathways (Law-Tho et al., 1993)
to communication through coherence (Fries, 2015). While
acknowledging that they are only part of the story, we will
focus upon the role of ascending neuromodulators (Table 2)
in controlling synaptic gain. Figure 9 illustrates the neuronal
network implied by the message passing of Figure 8, combined
with the network of Figure 6. The additions to this are the

FIGURE 8 | Precision and uncertainty. This figure shows the graph of

Figure 5, but supplemented with precision parameters and prior factors over

these precisions. These encode confidence in policies (γ ), transitions (ω), and

likelihoods (ζ ). The priors for these are the factors Ŵ, �, and Z, respectively.

Note that the messages required to update beliefs about the hidden states are

almost identical to those of Figure 3, but are now averaged over beliefs about

the precision. Messages from the past (1) and future (2) are contextualized by

the transition precision, while those from sensory input (3) are modulated by

the likelihood precision. As in Figure 3, we provide the form of the variational

and belief propagation messages implied by this model to illustrate the

commonalities between their forms. Again, this is due to the structure of the

Markov blankets of each state, which now includes precision parameters.

subcortical nodes projecting to the cortex. We have associated
projections from the locus coeruleus with beliefs about the
precision of transitions, consistent with previous theoretical
work (Dayan and Yu, 2006; Parr and Friston, 2017c), and with
empirical studies (Marshall et al., 2016). The locus coeruleus is
the primary source of noradrenaline to the cortex (Aston-Jones
and Cohen, 2005), and much of its phenomenology has been
reproduced in simulations that associate it with error signals
when predicting state transitions (Sales et al., 2018). Error signals
of this sort can be interpreted as encoding an increase in the
estimated volatility (imprecision) of state transitions.

The cholinergic system appears a good candidate for the
encoding of likelihood precision, given its known role in
regulating the gain of sensory evoked responses (Gil et al.,
1997; Disney et al., 2007). This implies there should be
acetylcholine receptors in those cortical layers receiving messages
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computed from the likelihood, as in Figure 9. Consistent with
this, nicotinic acetylcholine receptors are found presynaptically
on thalamocortical terminals targeting layer IV (Sahin et al.,
1992; Lavine et al., 1997). Although omitted in Figure 9, the
connections labeled “a” and “b” in Figures 5, 6 also depend upon
likelihood distributions, and so should be subject to cholinergic
input. As the message passing would predict, cholinergic
influences are also found in the deeper layers housing these
connections (Eckenstein et al., 1988; Arroyo et al., 2014). Both
pharmacological (Vossel et al., 2014; Marshall et al., 2016)
and neuroimaging (Moran et al., 2013) studies in humans
support the hypothesis that the cholinergic system is engaged in
precision estimation. This idea additionally lends itself to further
testable predictions. A pharmacologically induced decrease in
cholinergic activity (e.g., using hyoscine) might then reduce the
amplitude of measured electrophysiological responses to sensory
stimuli, consistent with increased reliance upon prior beliefs
compared to sensory evidence. An attenuated sensory drive
toward belief updating might also impair the performance of

TABLE 1 | Glossary of mathematical notation.

Notation Name Description

P( ) Generative model A set of probability distributions that

make up a generative model

Q( ) Posterior beliefs An approximation to the probability of

a variable given observed data

H[ ] Shannon entropy Uncertainty (or dispersion) of a

probability distribution

E[ ] Expectation Expected (or average) value of a

variable

DKL [ || ] KL-Divergence Difference between two probability

distributions

sensory discrimination tasks (e.g., dot-motion tasks). A further
prediction is that a noradrenergic blockade could rescue this
performance, as reducing the precision of transition probabilities
could restore the relative balance between (empirical) prior and
likelihood beliefs.

Neurobiological theories based upon active inference
frequently implicate dopamine in the encoding of the precision
of beliefs about policies (Friston et al., 2014; FitzGerald et al.,
2015). The anatomy of projections originating from the
midbrain, compared to the cortex, supports this interpretation.
Dopaminergic neurons from the substantia nigra pars compacta
and the ventral tegmental area preferentially target the necks of
dendritic spines (but also the cell body and axons) of medium
spiny neurons (Freund et al., 1984; Yager et al., 2015), while
cortical input targets the heads of these, consistent with the
notion that dopaminergic signals modulate the gain of these
signals rather than providing a driving input. Neuroimaging
provides evidence in favor of dopaminergic encoding of precision
of beliefs about policies (Schwartenbeck et al., 2015).

While we have focused upon three modulatory transmitters,
there are clearly many more to be accounted for in this
computational framework (Iglesias et al., 2016; Avery and
Krichmar, 2017). One notable omission is serotonin. This
transmitter has been linked to various psychiatric conditions,
and forms the basis for a range of pharmacological interventions
(Andrews et al., 2015). As an illustration of the constraints
enforced by the computational anatomy so far, we can use
existing knowledge about laminar expressions of serotonin to
speculate upon a plausible role. Serotonergic activity is heavily
implicated in modulation of layer V pyramidal cells (Aghajanian
and Marek, 1999; Lambe et al., 2000; Elliott et al., 2018);
especially in the medial prefrontal cortex. Notably, the amygdala
receives extensive input from this cell layer (Cho et al., 2013),
and cortical region (Marek et al., 2013; Mukherjee et al.,
2016).

TABLE 2 | Putative roles of neurotransmitters in active inference.

Neurotransmitter Precision Evidence

Acetylcholine Likelihood • Presence of presynaptic receptors on thalamocortical afferents (Sahin et al., 1992; Lavine et al., 1997)

• Modulation of gain of visually evoked responses (Gil et al., 1997; Disney et al., 2007)

• Changes in effective connectivity with pharmacological manipulations (Moran et al., 2013)

• Modeling of behavioral responses under pharmacological manipulation (Vossel et al., 2014; Marshall

et al., 2016)

Noradrenaline Transitions • Maintenance of persistent prefrontal (delay-period) activity (requiring precise transition probabilities)

depends upon noradrenaline (Arnsten and Li, 2005; Zhang et al., 2013)

• Pupillary responses to surprising (i.e., imprecise) sequences (Lavín et al., 2013; Liao et al., 2016; Vincent

et al., under review)

• Modeling of behavioral responses under pharmacological manipulation (Marshall et al., 2016)

Dopamine Policies • Expressed post-synaptically on striatal medium spiny neurons (Freund et al., 1984; Yager et al., 2015)

• Computational fMRI reveals midbrain activity with changes in precision (Schwartenbeck et al., 2015)

• Modeling of behavioral responses under pharmacological manipulation (Marshall et al., 2016)

Serotonin Preferences or interoceptive likelihood • Receptors expressed on layer V pyramidal cells (Aghajanian and Marek, 1999; Lambe et al., 2000; Elliott

et al., 2018) in medial prefrontal cortex

• Medial prefrontal cortical regions heavily implicated in interoceptive processing and autonomic

regulation (Marek et al., 2013; Mukherjee et al., 2016)
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FIGURE 9 | The anatomy of uncertainty. This schematic extends the network

of Figure 6 to include modulatory variables, consistent with the factor graph of

Figure 8. Specifically, we have now included subcortical regions that give rise

to ascending neuromodulatory projections. This includes the locus coeruleus

in the pons, which gives rise to noradrenergic signals. Axons from this

structure travel through the dorsal noradrenergic bundle to reach the

cingulum, a white matter bundle that allows dissemination of signals to much

of the cortex. Here, we show these axons modulating messages 2 and 3,

representing the past and future, respectively. The nucleus basalis of Meynert

is the source of cholinergic signals to the cortex (again, via the cingulum).

These modulatory connections target thalamocortical inputs to layer IV (i.e.,

message 1). Finally, the substantia nigra pars compacta (and the ventral

tegmental area) projects via the medial forebrain bundle to the striatum,

supplying it with dopaminergic terminals. This modulates the balance between

prior and marginal likelihood influences over policy evaluation that we

hypothesize correspond to indirect and direct pathway activity, respectively. As

before, the layers of the cortical microcircuit shown here represent beliefs

about states under a given policy (I/II), beliefs about states averaged over

policies (III), state prediction errors (IV), expected free energy gradients and

predicted outcomes (V), and beliefs about states averaged over policies (VI).

Drawing from the idea that some nuclei of the amygdala
could be an autonomic analog of the basal ganglia (Swanson
and Petrovich, 1998) (see the section Planning for details),
we can hypothesize that serotonin is somehow involved in
modulating policy selection in response to interoceptive signals.
The involvement of layer V suggests two mechanisms by
which this might occur. The inputs to this layer in Figure 6

include those that depend upon the likelihood (labeled “a”
and “b”) and descending messages representing the top-down
influence via the C factor (i.e., context sensitive preferences);
i.e., message 3 in Figure 6. Notably, both of these are
functions of predicted outcomes, which in this case would
be interoceptive modalities. This suggests two alternative
hypotheses for the computational role of serotonin. Either it
plays an analogous role to ζ , the likelihood precision (i.e., an
interoceptive version of acetylcholine), or it could modulate
an equivalent precision parameter encoding the fidelity of
the mapping from high level states (context) to interoceptive
preferences. Either of these hypotheses complement the recent

trend toward embodied psychiatry (Seth, 2013; Barrett et al.,
2016; Petzschner et al., 2017; Khalsa et al., 2018), and
longstanding theories concerning the connection between mood
and interoceptive sensations (James, 1884; Ondobaka et al.,
2017).

Inferring Uncertainty
For simplicity, we have only included the unidirectional
connections from neuromodulatory systems to the cortex and
basal ganglia in Figure 9. The form of Figure 8 demonstrates
that the Markov blankets of these precision parameters
include the variables encoded by the pre and postsynaptic
neurons of the synapses they modulate. For the two cortically-
projecting systems, this implicates axons signaling in the reverse
direction in the cingulum, perhaps targeting the prefrontal
cortex (which projects to both the nucleus basalis and the
locus coeruleus). For the mesostriatal system, this suggests
reciprocal interactions between the dopaminergic midbrain
and the striatum, consistent with known anatomical loops
between these structures (Haber, 2003), and the striosome
compartments of the striatum that seem specialized in
relaying signals to the dopaminergic midbrain (Fujiyama
et al., 2011).

Pathologies of Synaptic Gain
There are many disorders thought to be due to abnormalities
of precision estimation (Friston, 2017; Friston et al., 2017b; Parr
et al., 2018b) and synaptic gain, including but not limited to Lewy
body dementia, Autism, and Parkinson’s disease. Theoretical
accounts of the first of these typically implicate abnormalities
in estimating likelihood precision (Collerton et al., 2005; Parr
et al., 2018a). Recent accounts of autism suggest a failure to
properly estimate the precision of transitions (Lawson et al.,
2014, 2017). As discussed in the section Planning, Parkinson’s
disease reflects degeneration of the dopaminergic system, leading
to failure to represent the precision of beliefs about policies.
The above conditions show changes in neurotransmitter function
consistent with the computational anatomy of Figure 9. In Lewy
body dementia, there is a dramatic decrease in cholinergic activity
in the cortex (Perry et al., 1994; Graff-Radford et al., 2012),
effectively releasing the cortex from the constraints imposed
by sensory input (message 1). This could account for the
complex visual hallucinations associated with this condition.
Pupillary analysis in autism indicates attenuated responses to
(normally) surprising stimuli (Lawson et al., 2017). Given the
relationship between pupillary dilatation and the activity of
the locus coeruleus (Koss, 1986), this implies abnormalities in
noradrenergic signaling, limiting the influence that beliefs about
the past (message 2) and the future (message 3). This could lead
to an excessive reliance upon message 1, and a failure to use
prior beliefs to contextualize this sensory evidence. Theoretical
accounts of this sort (Palmer et al., 2015, 2017) have been
used to account for the resistance to visual illusions (Happé,
1996) and the superior visual search performance observed
in autistic individuals (Shah and Frith, 1983; Simmons et al.,
2009).
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MOVEMENT

Predictions and Motor Commands
The graphs and neuronal networks of the preceding sections
have all focused upon the discrete dynamics outlined on the left
of Figure 3. While this is appropriate for planning sequences
of actions, these models are not suited to implementing
these actions as movements. The reason for this is that
movement necessarily involves continuous variables (muscle
length, velocity) that evolve in continuous time, as indicated on
the right of Figure 3 (Parr and Friston, 2018b). The same is
true of low-level sensory processes, as data arrives in continuous
time. Fortunately, the structure of the message passing is
almost identical in the two cases (Friston et al., 2017a). Again,
they correspond to reciprocal connections between neurons
representing prediction errors (free energy gradients) and
posterior expectations [for more details on this, please see (Bastos
et al., 2012; Shipp, 2016)]. This means we can use the same
sorts of architectures to make predictions about the continuous
signals from muscle proprioceptors. Active inference takes this
one step further. Once we have a prediction as to the sensory data
coming from a muscle, this generates a prediction error. There
are two ways in which this prediction errormay be resolved. First,
we could update expectations to be more consistent with this.
Second, we could use the error to drive a movement that renders
proprioceptive data consistent with the prediction (Adams et al.,
2013). Under this view, motor commands and proprioceptive
predictions become synonymous. Brainstem and spinal cord
reflexes can then be seen as mechanisms to resolve prediction
errors. An interesting consequence of this is that, given errors are
resolved at this level, there should be no residual error at the level
of the motor cortex, as all of its expectations are fulfilled at spinal
levels. As such, cells in the motor cortex representing prediction
error may be redundant. This reasoning has been used to account
for the impoverished (granular) layer IV in primary motor cortex
(Shipp et al., 2013), sometimes referred to as “agranular” cortex
for this reason. However, it seems that some prediction error
must still be unresolved, as there is evidence for some granular
cells in motor cortex (García-Cabezas and Barbas, 2014; Barbas
and García-Cabezas, 2015).

In addition to accounting for anatomical findings, models
based upon this form of active inference have reproduced a
range of complex motor phenomena, including handwriting
(Friston et al., 2011), limb movements (Friston et al., 2010),
smooth pursuit (Adams et al., 2012), and saccadic eyemovements
(Friston et al., 2012a). They are capable of reproducing
plausible electrophysiological and pathological behaviors that are
consistent with (clinical) neuroanatomy. For example, we have
previously reproduced the activity of collicular “build-up” cells
(Ma et al., 1991; Munoz and Wurtz, 1995) and pathological
phenomena, including internuclear ophthalmoplegia (Virgo and
Plant, 2017), using the same generative model (Parr and Friston,
2018a).

Translating Policies Into Movements
The success of continuous state space generative models in
accounting for motor behavior appears to imply a disconnect
between movement and planning, with the latter more easily

accounted for using discrete time models. This suggests there
must be some interface between the two, where decisions,
selected from a discrete repertoire, are translated into beliefs
about continuous variables. Figure 10 illustrates this idea, with a
discrete model that gives rise to empirical priors for a continuous
model, via a η factor. This corresponds to a Bayesian model
average, where several hypothetical continuous variables are

FIGURE 10 | Decisions and movement. This graph illustrates how beliefs

about categorical variables may influence those about continuous variables

(message 1) and vice versa (message 2). The upper part of the graph is the

same as that from Figure 5, while the lower part is that from the right of

Figure 2. The additional η factor represents the empirical prior for a hidden

cause, v, that determines the dynamics of x, much as the policies at the higher

level determine the dynamics of state transitions. The equations below show

that we can treat the descending message as a Bayesian model average,

incorporating posterior predictive beliefs about outcomes under policies,

averaged over policies. The ascending message is the free energy integrated

over time for each outcome. This effectively treats each outcome as an

alternative hypothesis for the continuous dynamics at the lower level.
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weighted by the probabilities of their associated categorical
outcomes (Friston et al., 2017a). By computing the approximate
partition function (negative free energy) for the continuous
region, we can approximate the evidence for each categorical
outcome. As the continuous dynamics play out over time, the
log evidence must be integrated over that duration. The idea
that complex motor behavior may be constructed from short
sequences of simpler dynamics resonates with ideas implemented
in control systems and robotics (Schaal, 2006).

Discretized Encoding of Continuous Space
Translating from discrete to continuous variables implies that
there must be an interface at which a discretized encoding of
space is mapped to a continuous encoding. In the oculomotor
system, the superior colliculus may represent an interface of
this sort (Parr and Friston, 2018b). It contains a population of
cells that are retinotopically mapped to regions of visual space
(Sparks, 1986), but the brainstem oculomotor regions it projects
to appear to encode continuous variables. It is ideally placed to
map empirical priors, derived from cortical beliefs, to predictions
about eye position and the status of oculomotor muscles. Its
cortical input is derived from cells in layer V (Fries, 1985;
Kim et al., 2015), possibly those encoding posterior predictive
beliefs about discrete outcomes under each policy (Figure 6).
The superior colliculus additionally receives input from the
substantia nigra pars reticulata (Hikosaka and Wurtz, 1983),
which could encode posterior beliefs about policies in line with
Figure 6. This means the superior colliculus receives the inputs

required to perform a Bayesian model average over policies to
derive empirical priors over outcomes, and over the causes of
continuous dynamics (message 1 in Figures 10, 11).

While the superior colliculus may play the role of discrete-
continuous interface in the oculomotor system, other structures
must play analogous roles for different motor outputs. These
are likely to share features of anatomy and physiology with
the colliculus. Following the pattern above, these structures
should receive input from cortical layer V, and from the output
nuclei of the basal ganglia. Furthermore, they should encode
continuous variables in a discretized fashion, with different
neurons representing discrete elements of a continuous scale. A
network that includes the ventrolateral (motor) thalamus and
the primary motor cortex represent a candidate that meets these
criteria (Bosch-Bouju et al., 2013). The motor thalamus receives
cortical layer V and basal ganglia input, and projects to motor
cortical regions. This suggests the combined cortico-subcortical
input to these thalamic nuclei could represent message 1 in
Figure 10. Thalamic projections to primary motor cortex might
then be the axonal substrate of the η factor. The motor cortex
is known to contain discretized maps of space (Georgopoulos
et al., 1986), while the spinal motor neurons it projects to elicit
continuous changes in muscle length, depending upon their
firing rates (Connelly et al., 1999; Conwit et al., 1999; Kirk and
Rice, 2017). This implies the motor thalamus and motor cortex
might together play the same role for limb and trunk movements
as the subpopulations within the superior colliculus do for eye
movements.

FIGURE 11 | An anatomy of inference. This schematic summarizes the networks we have discussed so far, but adds in the messages of Figure 10, with empirical

priors propagated by message 1. These are subtracted from expectation neurons to give error signals, then used to update expectations. Expectations are used to

derive predictions about sensory data. These are subtracted from the incoming data to calculate sensory errors, used to update current expectations, but also to drive

brainstem reflexes through action (black arrow) to change sensory data (e.g., by moving the eyes). Message 2 derives from the expectations, which are used to

compute the integral of the free energy over time. The relative evidence for each outcome is then propagated to layer IV cells in the cortex, acting as if it were sensory

data. As before, the layers of the cortical microcircuit shown here represent beliefs about states under a given policy (I/II), beliefs about states averaged over policies

(III), state prediction errors (IV), expected free energy gradients and predicted outcomes (V), and beliefs about states averaged over policies (VI).
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Figure 11 places these ideas in the context of the neuronal
networks from previous sections, showing a hierarchy of three
cortical areas, one of which gives rise to projections to the
superior colliculus. This would be consistent with a hierarchy
implicating occipito-parietal areas at the lowest level (left
column) that project to, and receive projections from, frontal
oculomotor areas (middle) known to project to the superior
colliculus (Künzle and Akert, 1977). These then share reciprocal
connections with dorsolateral parts of the prefrontal cortex,
involved in the longer-term planning of eye movements required
for delayed oculomotor responses (Fuster et al., 1982; Funahashi
et al., 1989). The laminar specific terminations in Figure 11

conform to those required for message passing in the generative
models we have described, and are highly consistent with those
observed in the cerebral cortex and associated structures (Shipp,
2007).

DISCUSSION

The preceding sections have reviewed recent attempts to
understand the anatomy of the brain in terms of the inferential
computations it must perform. We have argued that the key
determinant for anatomical connectivity is the structure of
the generative model the brain uses to make these inferences.
This allows us to express hypotheses about computational
neuroanatomy in a graphical notation that can be built up from
relatively few simple building blocks, as described above. This
framework is sufficiently general that we can use it to understand
perceptual inference, planning, attentional gain, and movement.
These can all be combined within the same factor graph, enabling
the expression of systems-level hypotheses about brain-wide
networks.

This article has focused on some very specific but ubiquitous
features of computational anatomy that emerge under a
factor graph treatment—with special attention to known
neuroanatomy, neurophysiology, and neuropsychology. There
are clear and obvious architectural features that are predicted
under a graphical treatment of neuronal message passing;
for example, the very existence of sparse neuronal (axonal)
connections and the hierarchical organization of cortical and
subcortical structures. The very existence of the brain as a
network or graph that possesses hierarchically nested Markov
blankets—and engages in sparse message passing [unlike the
liver or blood (Friston and Buzsaki, 2016)]—could be understood
as a prediction of the process theories that arise under active
inference and Bayesian brain. Crucially, the formal approach
offered by these process theories forces us to ensure consistency
in theories about different aspects of brain function. For example,
the assignment of posterior predictive beliefs and expected free
energy gradients to cortical layer V in the section on Planning
had to be consistent with the kinds of signals propagated to
the superior colliculus, and the motor thalamus, from this same
cortical layer in the section on Movement. This represents one
of many constraints that can be simply articulated using the
graphical formalisms described here.

Not only do these ideas have to be internally consistent
(minimally complex in relation to one another), they must
accurately account for a range of observed phenomena,

including the consequences of anatomical lesions. We have
outlined a few examples throughout that illustrate this, including
abnormalities of perception resulting from disconnections (e.g.,
Charles Bonnet syndrome), disorders of policy evaluation (e.g.,
Parkinson’s disease), and failures of attentional gain (e.g., Lewy
body disease). It is also important to realize that, as messages
are propagated across the graph, deficits in one part of the
graph have implications for all other parts. A disorder that offers
a clear example of this kind of diaschisis (Price et al., 2001;
Carrera and Tononi, 2014) is visual neglect (Parr and Friston,
2017a). This neuropsychological syndrome is associated with
right hemispheric lesions (Halligan and Marshall, 1998), which
can occur at various anatomical sites, and results in a failure
to perform exploratory saccades to the left side of visual space
(Husain et al., 2001; Fruhmann Berger et al., 2008; Karnath and
Rorden, 2012).

The heterogeneity of anatomical lesions giving rise to neglect
illustrates that the same processes of policy (i.e., saccadic)
selection can be disrupted by multiple distant lesions. We have
previously shown through simulation (Parr and Friston, 2017b)
that disruption of policy priors (E), proprioceptive preferences
(C), or the likelihood mapping fixation locations to predicted
visual data (A) can all bias saccadic policy selection. This is
unsurprising when we consider the factor graph of Figure 5, as
messages across each of these factors either directly or indirectly
influences beliefs about policies. Lesions in the proposed
neurobiological substrates (Parr et al., 2018b) of each of these
factors have been associated with visual neglect (Karnath et al.,
2002; Bartolomeo, 2012). Although not commonly observed in
clinical practice, experimental manipulation of almost every part
of the anatomy presented here can induce or alleviate neglect-
like saccadic behavior, including unilateral collicular inactivation
(Schiller et al., 1980, 1987), chemical ablation of the substantia
nigra pars compacta (Kato et al., 1995; Kori et al., 1995), and
noradrenergic modulation (Malhotra et al., 2006).

The above represent criteria for the face validity of anatomical
process theories. To go further, it is necessary to make empirical
predictions based upon these theories. We have highlighted three
novel ideas that have arisen from the form of the generative
models used here, which could be interrogated in empirical
studies. First, if we interpret the direct and indirect pathways of
the basal ganglia in terms of partition functions and empirical
priors, respectively, this has important consequences for learned
behaviors. While it is possible to optimize the parameters
of a conditional probability (E), the same cannot be done
for the partition function; although it is possible to optimize
those distributions that make up that function. This suggests
that learned automatic behaviors depend upon plastic changes
involving the indirect, more than the direct, pathway. Selective
ablation or optogenetic suppression (Freeze et al., 2013) of the
direct pathway would, under this hypothesis, preserve certain
context dependent automatic behaviors. In other words, it should
be possible to reproduce the phenomenon of kinesia paradoxa
by facilitating the indirect at the expense of the direct pathway,
perhaps while presenting slowly changing exteroceptive cues with
a learned behavioral association.

Second, we touched upon hypothetical computational roles
for serotonin that would be consistent with its anatomical and
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laminar distribution in the cortex under the computational
anatomy discussed above. This scheme offers the potential to
frame these, anatomically derived, computational hypotheses
in terms of simulated behavior. To test whether serotonergic
modulations are best explained as manipulations of interoceptive
sensory precision, or the precision of preferences, we would
need to design a task in which simulating manipulations of
each of these parameters would give rise to different behavioral
outputs. Fitting these parameters to behavior under different
levels of pharmacological manipulation would allow us to
evaluate the relative evidence for each of these hypotheses.
For a recent example of this sort of approach, inferring
computational parameters (including precision of preferences)
for visual exploration, see Mirza et al. (2018).

Finally, we considered the role of the motor thalamocortical
networks, and suggested that these might represent the sort of
discrete-continuous interface that we have previously associated
with the superior colliculus. This predicts that there should be
a very different sort of deficit resulting from the pathway into
the ventrolateral thalamus compared to that following lesions
to motor cortical outputs. The former might involve deficits
in choice of movement, or difficulty initiating movements.
The latter are more likely to give rise to impairments in the
motor trajectories themselves. Of course, it is important to
emphasize again that lesions to any neuroanatomical structure,
or equivalently, to any part of a generative model, will have
wide-reaching consequences due to the propagation of inferential
messages.

The above represent theoretically motivated hypotheses that
may be evaluated in relation to empirical evidence. These
are potentially falsifiable (in a frequentist statistical sense), or
could be shown to be relatively poor hypotheses compared
to an alternative explanation (in a Bayesian sense). It is
worth emphasizing that the inferential framework described
here is not subject to these same tests. This (active) inference
formulation simply provides a formal language and notation in
which hypotheses about neuronal processes can be articulated
and evaluated. The formulation of the brain’s inferential
computations as graphs and Markov blankets is therefore not
in competition with, or an endorsement of, other approaches
to understanding brain function. It accommodates those
approaches that appeal to chaotic dynamical systems (Korn and
Faure, 2003), as these may be written in to the flows of Figures 3,
10 (Friston and Ao, 2012), and is predicated upon probabilistic
dynamics of the sort that motivate the use of mathematical tools
developed in stochastic (and quantum) physics (Seifert, 2012;
Korf, 2014) for understanding brain function.

Clearly the account given in this paper is far from complete.
We have omitted important structures from this, including the
cerebellum and second order thalamic nuclei, like the pulvinar.
These have not escaped treatment under the framework of active
inference. The pulvinar, have been associated with generative
models that treat prior beliefs over precisions as empirical priors,
conditioned upon hidden states (Kanai et al., 2015). This sort of
state-dependent precision is vital in accounting for phenomena
such as figure-ground segregation. The cerebellum has been
associated with inferences and learning in the continuous domain
(Friston and Herreros, 2016), enabling Pavlovian conditioning of

eye-blink responses. For an account of the cerebellum consistent
with our computational anatomy, it is worth noting that the
cerebellum projects to both the ventrolateral nucleus of the
thalamus, and to the superior colliculus. These are the regions
we have associated with discrete-continuous interfaces, and
therefore with the η factor of Figure 10. This raises the possibility
that one of the roles of the cerebellum is to optimize the mapping
between discrete motor sequences, and the trajectories at each
point in the sequence. This resonates with features of cerebellar
disease, including “past-pointing,” where patients are able to
recognize a target and initiate a limbmovement toward it, but fail
tomap the location of the target effectively into continuous space,
and miss when trying to point to it. Future work developing the
anatomical process theory of active inference must rise to the
challenge of synthesizing these phenomena within this broader
theory.

CONCLUSION

In this paper, we have emphasized the idea that generative
models, and their constituent Markov blankets, represent a
useful way to express hypotheses about brain connectivity. We
have reviewed recent attempts to apply this framework to a
range of anatomical networks, illustrating their face validity and
internal consistency. There may be other plausible mappings
between the connectivity implied by the Markov blankets of a
generative model and the anatomy of the brain, which could
make use of different auxiliary variables to the free energy
gradients (prediction errors) we have assumed. Similarly, there
are other plausible generative models that the brain may use, and
these may involve different Markov blankets. For this reason,
we emphasize not only current anatomical theories, but also a
theoretically rigorous graphical framework in which questions
about computational anatomy can be clearly posed. Under this
framework, there are two broad lines of enquiry. First, what
are the generative models the brain employs to make inferences
about the world? Second, what is the mapping between the
network implied by a given generativemodel and the connections
of the brain? These questions constrain one another, as a good
hypothesis for a computational neuroanatomy will imply a
plausible generative model that contains Markov blankets
consistent with brain connectivity.
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