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Analog Signaling With the “Digital”
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Stephen E. Clarke*

Department of Bioengineering, Department of Neurosurgery, Stanford University, Stanford, CA, United States

Molecular switches, such as the protein kinase CaMKII, play a fundamental role in

cell signaling by decoding inputs into either high or low states of activity; because

the high activation state can be turned on and persist after the input ceases, these

switches have earned a reputation as “digital.” Although this on/off, binary perspective

has been valuable for understanding long timescale synaptic plasticity, accumulating

experimental evidence suggests that the CaMKII switch can also control plasticity

on short timescales. To investigate this idea further, a non-autonomous, nonlinear

ordinary differential equation, representative of a general bistable molecular switch, is

analyzed. The results suggest that switch activity in regions surrounding either the

high- or low-stable states of activation could act as a reliable analog signal, whose short

timescale fluctuations relative to equilibrium track instantaneous input frequency. The

model makes intriguing predictions and is validated against previous work demonstrating

its suitability as a minimal representation of switch dynamics; in combination with existing

experimental evidence, the theory suggests a multiplexed encoding of instantaneous

frequency information over short timescales, with integration of total activity over longer

timescales.

Keywords: molecular switches, frequency coding, stochastic resonance, cellular computation, CaMKII, synaptic

plasticity, burst detection, hill function

INTRODUCTION

Many cellular inputs lead to transient changes in cytosolic calcium (Ca2+) levels, generating
temporally complex signals that reflect a wealth of information (Berridge et al., 2003). As such,
cells express highly conserved molecular decoders capable of translating Ca2+ oscillations into
downstream signaling events that affect diverse processes such as gene transcription, development
and aging, neural network homeostasis and the synaptic plasticity that underlies learning and
memory (Lisman et al., 2002; Thomas andHuganir, 2004;Wen et al., 2004; Clapham, 2007; O’Leary
et al., 2013; Tao et al., 2013; de Jong and Fioravante, 2014; Smedler and Uhlen, 2014). A celebrated
example of a Ca2+ decoder is the protein kinase Ca2+/calmodulin (CaM)-dependent protein kinase
II (CaMKII;Box 1), which can be driven by transient levels of cytosolic Ca2+ into either high or low
states of switch-like activity. When stabilized through negative regulation by protein phosphatases,
self-exciting (autophosphorylating) kinases such as CaMKII are an ideal component of signal
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BOX 1 | The bistable molecular switch CaMKII and synaptic plasticity.

Accounting for approximately 1–2% of all brain protein, CaMKII is a central hub of cell signaling networks and can exert both pre- and post-synaptic control

over information transmission in the central nervous system (Lisman et al., 2002). Once bound to the Ca2+-CaM complex, the kinase’s ability to cooperatively

autophosphorylate can produce two distinct stable states: either high or low levels of enzymatic activation. Postsynaptically, after repetitive stimulation, the high

activation state may persist after the Ca2+ signal subsides and can strengthen the connection between neurons, for example, the hippocampal CA3-CA1 synapses

that support learning and memory (Lisman et al., 2012). However, it should be noted that the role of CaMKII autophosphorylation and constitutive activation is not fully

understood or accepted (Michalski, 2013) and we are just beginning to gain better insight into the problem (Chang et al., 2017). This paper proposes that CaMKII’s

principal role is to meaningfully transmit information via its short term dynamics rather than store it permanently within levels of autonomously activated switch.

Presynaptically, CaMKII also modifies connection strength (Wang and Maler, 1998; Ninan and Arancio, 2004; Pang et al., 2010). In weakly electric fish, the αCaMKII

isoform produces presynaptic potentiation in a motion sensitive, excitatory sensory feedback pathway (Wang and Maler, 1998; Clarke and Maler, 2017). The kinase

also potentiates hippocampal CA3-CA1 synapses, as evidenced by knocking-out αCaMKII, which leads to reduced synaptic potentiation under paired pulse facilitation

protocols when compared to the wild-type (Chapman et al., 1995). Through enzymatic phosphorylation of voltage gated Ca2+ channels and ryanodine receptors,

αCaMKII can enhance Ca2+ entry and Ca2+-induced Ca2+ release in response to high frequency signals, potentially supporting hysteresis (Figure 1) and driving

synaptic release (Catterall and Few, 2008). However, at the same CA3-CA1 synapses, post-tetanic potentiation protocols generate enhanced levels of potentiation in

the same knock-out mice, illustrating that αCaMKII may also depress synaptic strength depending on the frequency and duration of the input (Chapman et al., 1995).

Furthermore, αCaMKII has been shown to serve as a negative, activity-dependent regulator of neurotransmitter release probability at CA3-CA1 synapses (Hinds et al.,

2003). This effect may be partially explained by the fact that CaMKII phosphorylates Ca2+-activated potassium channels that hyperpolarize the presynaptic terminal

(Wang, 2008), decreasing the likelihood of Ca2+ entry and evoked neurotransmitter release. Intriguingly, αCaMKII also plays a non-enzymatic role in presynaptic

CA3-CA1 plasticity by regulating the number of docked synaptic vesicles containing neurotransmitter (Hojjati et al., 2007). In this case, decreased transmitter release

could be explained by the fact that αCaMKII is acting as a sink for intracellular Ca2+, lowering the cytosolic levels that drive the machinery of synaptic vesicle fusion

and influencing the size of the readily releasable vesicle pool (Thanawala and Regehr, 2013; Jackman et al., 2016). The size of the readily releasable pool is directly

correlated with release probability at hippocampal synapses (Dobrunz and Stevens, 1997), supporting a putative role for αCaMKII in control of presynaptic plasticity

parameters via Ca2+ and CaM buffering (Hinds et al., 2003).

One of the most influential discoveries about CaMKII is its ability to decode the frequency of periodic Ca2+ pulses into distinct amounts of long lasting, autonomously

activated kinase (De Koninck and Schulman, 1998). However, the interpretation of CaMKII as a frequency decoder has been criticized based on the fact that mean

values of activity, evoked by different combinations of Ca2+ pulse size, duration and frequency, are ambiguously mapped into the same level of autonomously

activated switch (Pinto et al., 2012), which suggests that the switch is actually integrating the Ca2+ input over longer timescales. Alternatively, this article focuses on

whether the concentration of activated switch acts as a reliable (analog) signal that reliably encodes frequency information over short timescales (sub-seconds), where

Ca2+ pulse size and duration are far more stable (Tank et al., 1995). The experimental evidence discussed above suggests that frequency coding by these “digital”

molecular switches is more sophisticated than previously thought and that fast fluctuations in presynaptic αCaMKII around either the stable high- or low-activation

state can better represent instantaneous frequency information, and, hypothetically, translate it into bidirectional control of synaptic strength in real-time.

amplification and have been previously likened to transistors on
a computer chip, in that they may be turned on or off, presenting
an ideal substrate for computation in cellular systems (Hunter,
1987; Ferrell and Ha, 2014).

The classic CaMKII experiments of De Koninck and
Schulman provided the first demonstration that a molecular
switch can decode the frequency of periodic Ca2+ pulses
into distinct, persistent levels of high enzymatic activation
(De Koninck and Schulman, 1998). Although experimental
evidence still largely lacks for whether this persistent activation
occurs within functioning cells (Michalski, 2013), there are
recent indications that it does occur to some extent (Michalski,
2014; Urakubo et al., 2014; Rossetti et al., 2017) and that
autophosphorylation is key to this process (Chang et al., 2017;
Rossetti et al., 2017). Many modeling studies of CaMKII
autophosphorylation dynamics capture the ability of the high
activation state to persist beyond the original Ca2+ signal
(known as hysteresis), which could potentially act over long
timescales (seconds, minutes, and longer) (Zhabotinsky, 2000;
Dupont et al., 2003; Graupner and Brunel, 2007). In these
studies, the relationship between Ca2+ concentration and the
state of the molecular switch are determined from simulations
of detailed, parameterized systems of differential equations
that are not readily amenable to deeper mathematical analysis;
furthermore, these studies are restricted to periodic inputs
and concerned with long timescale activation. In order to

better understand frequency coding over short timescales
(milliseconds to seconds) and its putative effect on synaptic
plasticity (Box 1), this article analyzes a reduced description
of molecular switch behavior when subject to noisy, aperiodic
forcing, while further demonstrating the model’s compatibility
with existing experimental and modeling results on CaMKII
activation (De Koninck and Schulman, 1998; Dupont et al.,
2003; Chang et al., 2017). As the study of cellular information
processing shifts from individual transduction pathways, toward
the emergent properties of complex signaling networks, simple
mathematical models are becoming indispensable tools for both
experimentalist and theoreticians alike by providing a trade-off
between detailed performance and a reduced description that
facilitates system-level studies (Bornholdt, 2005; Kotaleski and
Blackwell, 2010). Much in the way that the leaky-integrate and
fire model has benefited the study of spiking neurons (Jolivet
et al., 2004; Burkitt, 2006), the minimal switch model discussed
in this paper will hopefully facilitate further study of complex
kinase-phosphatase networks.

RESULTS

A Bistable Switch Model
The following differential equation is an abstraction of a bistable
molecular switch and was originally proposed as a model of
genetic development by Lewis et al. (1977). This relatively
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FIGURE 1 | Activation states of the bistable molecular switch model. (A) The model’s potential function, U(x), visually describes the tendency for solutions to settle

around one of two equilibrium points (x∗), where the rate of change of switch activation, f (x), is 0 (parameters, r = 0.52 and c = 0.04). To the left of the stable equilibria

(black circles), f (x) > 0 (green), and to the right, f (x) < 0 (blue), which forces perturbations to settle back into those states. Conversely, the sign of f (x) is reversed on

both sides of the unstable equilibrium (red circle), such that tiny perturbations push the switch away, toward either stable state. (B) As r or c change, f (x) changes and

can result in the loss of bistability. (i) To illustrate, r is fixed as the input c is varied: small values only support low activation, but, as c grows, bistability emerges and

eventually disappears as only the high activation state is supported when c > cc (rightmost). A defining feature of bistability is the hysteresis effect, where the same

value of a parameter may evoke different states depending on the history of activity. For example, the high activation state still exists for c less than the rightmost cc
and can only be lost when c falls below the leftmost cc value. (ii) c is fixed while the negative regulation parameter r is varied. For small r, only the high activation state

exists. As r grows larger, the system becomes bistable and, eventually, only the low state exists after crossing rc. Panel (iii) shows a parametric plot of the critical

values cc(x) and rc(x), that partition the parameter space, and the bifurcation surface summarize the analysis completely (iv).

simple model is a useful analytical tool to understand the
general properties of bistable kinetic systems and captures
the qualitative dynamics of more complicated models of
CaMKII (Zhabotinsky, 2000) (Figure 1). Although the model
interpretation and results presented here are centered on
CaMKII and synaptic plasticity, the reader is encouraged to
consider the broader implications for instantaneous frequency
coding with other molecular switches, such as mitogen-activated
protein kinases (Xiong and Ferrell, 2003; Thomas and Huganir,
2004).

dy

dt
= k0s− k1y+

k2y
n

k3
n + yn

In this formulation, the level of activated CaMKII (y) is
stimulated by the presence of Ca2+ bound to CaM, s, which will
be studied as a function of time. For simplicity, it’s assumed that
pulses of Ca2+ are bound upon cell entry, which is reasonable
since CaM is found in large concentrations surrounding Ca2+

channels and has a strong affinity for Ca2+ (Chin and Means,
2000). Switch deactivation is directly proportional to the active
CaMKII concentration at a rate k1, representing the activity of
protein phosphatases. Finally, once activated, CaMKII has the
ability to cooperatively bind Ca2+- CaM and autophosphorylate
its own subunits, which motivates the nonlinear, positive
feedback term captured by the Hill equation, where k2 and

k3 are the association and dissociation constants, respectively.
In addition to phosphorylation among the twelve subunits
of a single CaMKII molecule, the ability to exchange active
subunits between distinct CaMKII enzymes may connect this
simple interpretation to a total, large pool of activated subunits
distributed over multiple molecules (Stratton et al., 2014). Due to
physiological constraints, y,s,k0,k1,k2,k3 ≥ 0. In the following,
this specific equation will be referred to as the full kinetic model.

The full kinetic model of Lewis et al. has been previously
applied to bistable genetic networks (Lewis et al., 1977; Smolen
et al., 1998; Zheng et al., 2011), transcriptional regulation
(Heltberg et al., 2016; Kang et al., 2017), mitogen-activated
protein kinases (Xiong and Ferrell, 2003), and incorporated into a
larger phenomenological model of presynaptic plasticity (Oswald
et al., 2002). Although insightful for their specific systems, these
studies retain a large numbers of parameters that clutter analysis
and obscure the generality of the results. Therefore, it is desirable
to reduce the number of parameters and facilitate the following
analysis by performing routine nondimensionalization. Let y =
x · k3, r = k1k3

k2
, s = k2

k0
c and t = k3

k2
τ , which, when substituted

into the original equation and simplifying gives the reduced but
dynamically equivalent form:

dx

dτ
= c− rx+

xn

1+ xn
(1)
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This article is interested in a time varying c ≡ c0 + cl(τ ),
where c0 reflects residual cytosolic Ca2+, whose slow dynamics
are treated as fixed on the fast timescales over which the
local Ca2+ signal cl(τ ) fluctuates (Regehr, 2012). A timescale

factor T = k3
k2
, the quotient of the switch deactivation and

activation parameters, will be reintroduced later in order to
connect the switch dynamics to time in seconds and stimulation
frequency in Hz. The parameter r represents the kinetics of
CaMKII subunit dephosphorylation by protein phosphatases
and scales with the factor T. Finally, for highly cooperative
reactions, n = 2 is a reasonable approximation of the Hill
function exponent (Edelstein-Keshet, 2005) and a convention
maintained by all of the studies listed above. The following
bifurcation analysis is illustrated for n= 2, which allows for exact
analytical solutions (Figure 1 and Methods); however, the main
results are then generalized to arbitrary n ∈ R

+, which is much
more realistic and has important consequences for frequency
coding.

Stability and Bifurcation Analysis
Although interested in frequency-driven fluctuations over short
timescales (Box 1), we must first examine the bistable, long
timescale equilibrium behavior of the model that defines the
switch’s low and high activation states (Equation 1; Figure 1). An
important reason for reducing the number of model parameters
above is to simplify the analysis of all the possible system
behaviors as a function of only a few parameter values. Having
selected n= 2, we now only need to consider the effect of varying
r and c; depending on their values, we may have one, two or
three equilibrium points (x∗), where the rate of change of the

switch f (x) = c − rx + x2

1+x2
is equal to zero. For example,

consider the values r = 0.52 and c = 0.04 that support
bistability: there are three fixed points, two of which are stable, as
illustrated by the switch’s potential function U(x) = −

∫

f (x)dx
(Figure 1A). As r and c change, saddle node bifurcations
can occur, resulting in the presence of only the high or low
activation state. The corresponding bifurcation diagrams are
displayed in Figure 1B; their derivation is found in the Methods
section.

A key feature of bistability is the hysteresis effect, where the
same value of a parameter may evoke different states depending
on the history of activity. For example, as the Ca2+ signal c
increases, x∗ grows larger until crossing the rightmost cc, where a
saddle node bifurcation occurs and the switch jumps up to the
high activation state, as the low state disappears (Figure 1Bi).
Now, as c decreases back into the bistable range, the high
activation state is preserved, and only lost when c crosses below
the leftmost value of cc. This history dependent behavior is
presumably central to sustained CaMKII activity on the order of
seconds (Wang andMaler, 1998) (Box 1). A similar phenomenon
occurs for the negative regulation parameter r (Figure 1Bii).
The values of rc and cc are plotted parametrically as a function
of the active switch in the bifurcation curves (Figure 1Biii).
The bifurcation surface summarizes this information completely
(Figure 1Biv).

Existence of Solutions Around Stable
Equilibria
To date, studies of Lewis et al.’s full kinetic model have
been restricted to static input and periodic forcing. It is
of principal interest to characterize the model behavior in
response to aperiodic forcing, in order to gain a more general,
physiologically realistic understanding of frequency coding
with molecular switches. In addition to potentially encoding
frequency information into stable levels of activated switch
for many seconds presynaptically (Wang and Maler, 1998),
or minutes postsynaptically (Lisman et al., 2012), what about
frequency coding on the order of milliseconds to seconds,
which is associated with brief sequences of action potential-
evoked Ca2+ inputs? In a neighborhood surrounding a stable
activation state (a sub-state region), is there a unique solution
for a given time varying input signal? This question is
not trivial, since small changes in the initial conditions of
a nonlinear system (i.e., past switch activity) may generate
drastically different behavior. Understanding the relationship
that determines whether solutions converge or diverge around
a given steady state could provide valuable insight into the
properties of bistable molecular switches.

In the following section, we now reintroduce the scale factor
T, since we are interested in studying frequency in Hz and time
(t) in seconds. As such, Equation 1 becomes

T
dx

dt
= c(t)− rx+

xn

1+ xn
(2)

First, to establish the existence of solutions around the high
and low switch states, consider Equation 2 and note that f
explicitly depends on the time-varying forcing term, c(t) ≡
c0 + cl(t). The phosphatase activity r that can counteract the
switch phosphorylation is treated as fixed. The function f (t, x(t))
is assumed to be Lipschitz continuous and well-defined within
intervals of state space, y− ≤ x(t) ≤ y+ satisfying the conditions
f (t, y−) > 0 and f (t, y+) < 0 for all t ∈ R

+ (recall Figure 1A),
which traps solutions within these boundaries. For any given
point in time, there exist boundaries (y−, y+) determined by the
parameters r, c0, and the input cl(t); we refer to values of the
activated switch falling within these trapping regions as sub-state
solutions, that is, fast timescale fluctuations that occur around
either the high or low stable activation states (Lisman et al.,
2012).

For (c, r) corresponding to the bistable region of parameter
space (Figure 1Biii), there exist two intervals, x(t) ∈ (yl−, yl+)
and x(t) ∈ (yh−, yh+), each surrounding one of the stable
equilibrium points (x∗). Now, we wish to locate values for the
low state (yl−, yl+) and high state (yh−, yh+), where the existence
of local time-varying solutions can be established. This problem
is intimately linked to bifurcation, since yl+ and yh−depend on
the values of c and r. The choice of a lower bound for the interval
that exists around the low activation state is yl−=0, since the
physiological restriction c(t) ≥ 0 implies f (t, 0) > 0 for all
t ∈ R

+, ignoring the boring degenerate case of c(t) = x(t) = 0.
The upper bound of the lower strip, yl+, can be chosen as a value
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x∗u − 1x, left of the unstable equilibrium x∗u where f (t, x∗u) = 0,
such that 1c+ f (t, x∗u−1x) < 0; this condition ensures that the
system is not trivially displaced into the high activation state by a
single Ca2+ pulse with amplitude 1c. For the high concentration
strip (yh−, yh+), the lower bound yh− is chosen as a value of x
infinitesimally greater than x∗u, that is, yh− = x∗u + ε for ε → 0.
Since we have restricted r and c > cc (leftmost; Figure 1B) to
the bistable range, we know that f (t, yh−) > 0 . For the upper
bound of the high activation strip, it is enough to note that for
x > x∗

h
, f (t, x(t)) < 0 and, since we wish to maximize the

width of the strip, we take x arbitrarily large, denoting this value
by yh+ = x∞. During stimulation, if (c, r) drifts out of the bistable
region of parameter space, a saddle node bifurcation occurs and
only one interval exists; in this case, the bounds simply span the
state space, y− = 0 and y+ = x∞.

By invoking the Cauchy-Peano theorem, we guarantee the
existence of at least one sub-state solution for every initial
condition found within the interval regions defined above, since
the conditions on the sign of the derivative f (t, x(t)) define
trapping regions. However, this theorem says nothing about

d

dt
z(t) = lim

h→0

z(t + h)− z(t)

h

= lim
h→0

∣

∣u(t + h)− x(t + h)
∣

∣ −
∣

∣u(t)− x(t)
∣

∣

h

≤ lim
h→0

∣

∣(u(t + h)− x(t + h))− (u(t)− x(t))
∣

∣

h

= lim
h→0

∣

∣(u(t + h)− u(t))− (x(t + h)− x(t))
∣

∣

h

= sgn[u(t)− x(t)] ·
d

dt
(u(t)− x(t))

= T−1sgn[u(t)− x(t)]

(

c(t)− r · u(t)+
un(t)

1+ un(t)
−

(

c(t)− r · x(t)+
xn(t)

1+ xn(t)

))

= T−1sgn[u(t)− x(t)] ·
(

−r · (u(t)− x(t))+
un(t)− xn(t)

(1+ un(t))(1+ xn(t))

)

= T−1sgn[u(t)− x(t)] · (u(t)− x(t)) ·
(

−r +
un(t)− xn(t)

(u(t)− x(t))(1+ un(t))(1+ xn(t))

)

= T−1
∣

∣u(t)− x(t)
∣

∣ ·









−r +

n
∑

i=1
ui−1(t) · xn−i(t)

(1+ un(t))(1+ xn(t))









forn ∈ Z+

= T−1z(t) ·
(

−r + p(u, x, n)
)

whether solutions starting at different initial conditions will
converge to a unique, stimulus-driven response that tracks
changes in the Ca2+ signal.

Uniqueness of Sub-State Solutions
As motivation for the following results, Figure 2A shows an
example switch response to an 8Hz Poisson pulse sequence,
which is convolved with an alpha function filter (30ms,
Methods), then normalized to the signal’s maximum and scaled
by 1c = 0.5 to create an example input signal, which the switch
tracks closely. Note, in this simulation, the alpha-function kernel
was specifically chosen to be 30ms based on literature values
for the time course of local synaptic Ca2+ signals (Sinha et al.,
1997; Sabatini et al., 2002; Graupner and Brunel, 2012). Due to

our interest in the fast timescales associated with short sequences
of input pulses (100s of milliseconds), we assume that the Ca2+

pulse size is fixed on this timescale, which is a reasonable
approximation for hippocampal spiking frequencies less than
15Hz (Tank et al., 1995). This distinction between short and long
timescales provides a hypothetical means for the system to be less
sensitive to variations in the Ca2+ pulse size and the resulting
frequency-intensity coding ambiguity [(Zhabotinsky, 2000; Pinto
et al., 2012); see Box 1]. This could allow for more accurate
representations of instantaneous frequency over short time
periods, compared to long timescale frequency coding where
input history, as well as additional adaptive and homeostatic
processes may substantially adjust Ca2+ signaling.

We now establish the stability and uniqueness of solutions for
distinct initial conditions within a given interval of state space.
Consider a general interval (y−, y+), where x(t) is a solution to
Equation 2 with initial condition x0 ∈ (y−, y+). Assume there
is another solution, u(t), with a different initial condition u0 ∈
(y−, y+). Writing z(t)=|u(t) − x(t)| and first assuming n is a
positive integer, we see that

The expression p(u, x, n) achieves maximal values at intermediate
switch levels that separate the low and high states of activation.
Now, consider p(u, x, n) for the special case of n = 2 used in
the bifurcation analysis; in this case, p(u, x, 2) = u+x

(1+u2)(1+x2)
,

which is plotted in Figure 2B. Setting the partial derivatives of
the function to zero and solving for u and x, yields a critical

point: (u, x) =
(√

3
3 ,

√
3
3

)

. Substituting this into p gives a global

maximum of 3
√
3

8 . Since d
dt
z(t) ≤ T−1

(

−r + 3
√
3

8

)

z(t) for all t,

we can apply Grönwall’s inequality, which gives us the following:

z(t) ≤ eT
−1

t
∫

0

(−r +
3
√
3

8
)ds
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FIGURE 2 | Switch activity fluctuates with instantaneous input frequency. (A)

Motivating example: switch response to an 8Hz Poisson sequence of input

pulses, convolved with an alpha function kernel to create a signal,

c(t) = c0 + cl (t). The switch’s fluctuations track changes in the input frequency

(n = 1.6, r = 0.61, c0 = 0.04, and T = 0.01). (B) The example function

p(u, x, 2) from the uniqueness proof achieves a maximum of 0.65; r must

exceed this value to guarantee absolute convergence of the switch to a unique

frequency-driven solution. (C) Initial conditions: u(0) = 1.7 and x(0) = 0.1. The

value of T affects time-to-convergence between solutions and frequency

filtering. From empirical studies, T ≤ 0.01 (Coultrap and Bayer, 2012). (D) (i)

For r = 0.54 < rc, sufficiently high frequency Ca2+ pulses (bursts) cause

transitions from the low to high state (illustrated for n = 2). By adjusting c0 to

take advantage of hysteresis, the cell can control whether or not it is sensitive

to these burst-induced up states. The first two pulses (<10Hz), where c0 = 0,

do not result in hysteresis, whereas the high frequency 10Hz inter-pulse

interval (right panel black arrow) with c0 augmented to 0.04 does; note that

neither static value can generate the upstate alone without sufficient input

(e.g., 5Hz, left panel black arrow). The switch response differs during the

transition between low and high states, but once settled around a given state

gives good agreement (gray shading; the two example curves are compared

by choosing an offset of 0.92 that minimizes the Euclidean distance between

them). (ii) Top Simulation for r = 0.59 and n = 2, where x(t) has c0 = 0.02 and

thus cannot support bistability, vs. u(t) with c0 = 0.04, which, when driven by

input, traps the solutions around the high activation state through hysteresis.

Under these conditions, convergence cannot occur. Bottom The absolute

value of the difference between the relative changes in u(t) and x(t) induced

respectively by the common input frequencies (1, see Results for details)

plotted as a function of r; the maximum discrepancy of 0.046 is found at

r = 0.59 and represents a small fraction of the total activated switch

(Continued)

FIGURE 2 | concentration. (E) In general, the exponent n 6= 2 in real biological

systems. Interestingly, n = 1.55 is a minimum for the maximum value of the

class of functions p(u, x, n) in the uniqueness proof. This is remarkably close to

the empirical best-fit value of 1.6 their ± SEM or SD reported by De Koninck

and Schulman for presynaptic α CaMKII (De Koninck and Schulman, 1998).

Substituting the expression for z(t) and solving this integral
exponent yields,

|u(t)− x(t)| ≤ e−T−1(r− 3
√
3

8 )t

and, as t → ∞ , we have

0 ≤ lim
t→∞

|u(t)− x(t)| ≤ lim
t→∞

e−T−1(r− 3
√
3

8 )t

For r > 3
√
3

8 (≈ 0.65), we obtain

0 ≤ lim
t→∞

|u(t)− x(t)| ≤ 0

By the squeeze theorem we conclude that |u(t) − x(t)| → 0
as t → ∞ . Therefore, a unique frequency-driven solution
exists and is independent of the initial conditions within the
bounded interval. The time taken to converge to the unique

solution is inversely proportional to T = k3
k2

(Figure 2C).

The parameter value T = 0.01 s was chosen here for our
specific example switch, CaMKII, whose dissociation constant
(k3) has been experimentally determined to be at least 100-
fold smaller than the activation constant (k2) that governs
the rate of autophosphorylation (Coultrap and Bayer, 2012).
Unlike the larger value of T = 0.1 s, T = 0.01 permits
quick convergence and reliable encoding for the action potential
frequencies characteristic of hippocampal CA3-CA1 synaptic
input (approximately 1–15Hz) (Mizuseki et al., 2012). Smaller
values of T permit rapid convergence and more accurate
frequency coding, but may become overly sensitive to temporary
lulls in activity when c briefly drops below the leftmost critical
value cc (recall Figure 1Bi).

It should be noted that r > 0.65 is an absolute guarantee
of convergence to a unique frequency driven solution; but,
from the bifurcation analysis (Figure 1Biii; Methods), we know
that bistability does not exist for this value of r. However,
in general, only −r + p(u, x, 2) < 0 is required, which, for
low and high concentrations of activated switch, is obtained at
smaller values of r that do support bistability. In fact, p(u, x, n)
only exceeds the r value briefly during state transitions as it
moves through the unstable equilibrium. Although a unique
encoding of sub-state solutions can still exist for smaller r values
around either the high or low state, convergence about the
low activation state is now vulnerable to perturbation by short
Ca2+ inter-pulse intervals, thus acting as a high frequency event
(burst) detector through induction of high switch activation. For
example, experiments show that high frequency hippocampal
activity (>15Hz) causes successive Ca2+ pulses to accumulate
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(Tank et al., 1995), which could effectively boost c0 and serve
to promote burst detection by transiently maintaining the
high activation state via hysteresis (Figure 2Di). In theory, this
dynamic burst threshold (the separatrix) is sensitive to recent
levels of activation, and could be purposefully modulated by
the cell through dynamic regulation of the parameters r and
c0 (Li et al., 2012). To restore the low state, the cell simply
needs to adjust c0 to fall below the leftmost critical value cc.
The bottom panel of Figure 2Di illustrates that fluctuations
around the high- and the low-stable states still yield nice
agreement in their response to a given input frequency. Of course,
during the state transition itself, the switch response can differ
largely but once solutions are settled around their respective
stable states the model appears to give good agreement (gray
shading; the two example curves are compared by choosing an
offset of 0.92 that minimizes the Euclidean distance between
them).

When bistability is supported, the model response cannot
always converge to an absolute level of activated switch,
as illustrated in the top panel of Figure 2Dii; however, the
fluctuations about the distinct stable states appear to be similar,
as in Figure 2Di. To examine this idea further, repeated
simulations of the model were performed, where x(t) has an
associated residual Ca2+ level of c0 = 0.02 and thus does
not support bistability, vs. u(t) with c0 = 0.04, which can
trap the solution around the high activation state through
hysteresis (Figure 2Dii, top). As was the case in Figure 2C,
the same random spike sequences are used for x(t) and u(t)
on each trial. For each inter-pulse interval of the repeated
simulations, the change in the level of activated switch was
computed as the difference between the switch activity sampled
at the time of an input pulse and the subsequent maximum
switch response that occurred before the next pulse. For each
successive, shared inter-pulse interval, these differences, 1x
and 1u, were determined separately for x(t) and u(t), then
subtracted from each other for each 100 s trial, containing
an average of 797 pulse intervals (8Hz Poisson process).
This was repeated 10 times for each parameter set and the
composite mean of the absolute value of the difference between
the change in the two solutions, 1 = |1u− 1x|, was
determined as a function of r (Figure 2Dii, bottom). The
maximum discrepancy between 1x and 1u, 0.046, occurs at
r = 0.59 (used for Figure 2Dii, top) and is at least an order
of magnitude less than typical values achieved in the low
activation state. These results suggest that the relative change
in switch activation about a stable state is generally quite
consistent.

Realistically, the Hill function exponent n need not be
restricted to integer values, which is unlikely in real biological
systems. Thus, in the above proof, the expression p(u, x, n) is now
left as un−xn

(u−x)(1+un)(1+xn)
for n ∈ R

+, since there is no longer a

closed form expression for the factorization of the numerator
by the term u − x. The function p(u, x, n) has critical points at
u = x, which occur at an apparent discontinuity due to the factor
u − x in the denominator. However, assessing the limit as the
difference between x and u becomes infinitesimally small, making
the change of variable u = x + h as h → 0, and recognizing

the limit definition of the power rule for differentiation, yields an
expression for the maximum of p(u, x, n) for all u, x, n ∈ R

+:

max[p(u, x, n)] = lim
u→x

p(u, x, n)

= lim
u→x

[

un − xn

(u− x)(1+ un)(1+ xn)

]

= lim
h→0

[

(x+ h)n − xn

(x+ h− x)

]

· lim
h→0

1

(1+ (x+ h)n)(1+ xn)

=
d

dx

(

xn
)

·
1

(1+ xn)2

=
nxn−1

(1+ xn)2

For each value of the exponent n, the global maximum of this
expression is determined for all x ∈ R

+, and plotted (Figure 2E).
Ignoring the highly uncooperative reaction exponents of n <

0.012, the global minimum of the class of functions p(u, x, n)
is found at n = 1.55. Fascinatingly, the empirical αCaMKII
data reported by De Koninck and Schulman was fit by a Hill
function with an exponent of 1.6 (De Koninck and Schulman,
1998; Dupont et al., 2003). This intriguing match between their
experiment and the model’s theory suggests that αCaMKII’s
activation function may operate with this particular exponent as
it provides the minimum level of negative regulation r required
to maintain absolute convergence of unique input driven switch
activity in the low activation state, even for intermediate levels of
the switch response occurring just left of the unstable equilibrium
(Figure 1A), where rmust be much stronger to guarantee unique
solutions (Figure 2B). As we will see in the following section,
the value of n = 1.6 has additional benefits for amplifying the
frequency response of weak calcium fluctuations in the presence
of noise.

Molecular Switches and Stochastic
Resonance
If Equation 2 is to capture actual molecular switch behavior in
vivo, then we must understand frequency coding in the presence
of biological noise. Given our interest in synaptic information
transfer, it is natural to ask whether noise can improve the switch’s
frequency coding ability through stochastic resonance and how
different combinations of our main parameters (for example the
value of n) could potentially affect this phenomena. In particular,
does the value n = 1.6 confer benefits for frequency coding?
The results presented in this section are generated by Equation
2 with additive Ornstein-Uhlenbeck noise, η(t), which evolves
according to the stochastic differential equation

dη

dt
= −

η

τη

+ ξ (t)

where ξ (t) is bounded Gaussian noise, N(0, 1), whose amplitude
is scaled by a parameter σ . The simplest interpretation is that

Frontiers in Computational Neuroscience | www.frontiersin.org 7 November 2018 | Volume 12 | Article 92

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Clarke Analog Molecular Switches

there is some weak noise in the Ca2+ signal amplitude, which
might arise from stochastic channel dynamics. The choice of
the time constant τn is based on previous studies of noisy
microdomain Ca2+ fluctuations, where an upper bound for
the autocorrelation time was determined to be approximately
10ms (von Wegner et al., 2014; Weinberg and Smith, 2014).
This choice has the added benefit of matching our switch time
constant T, should we instead assume the noise is inherent
to switch activation, as well as matching a typical value for
the membrane time constant of spiking neurons, whose noisy
membrane potential fluctuations might influence the activity
timescales of voltage-gated Ca2+ channels.

Figure 3A shows the power spectrum (Pc) of a weak sinusoidal
Ca2+ oscillation, c = c0 + α sin(2πϕt), where c0= 0.04, α =
0.02 and ϕ = 2Hz, which was selected based on the mean action
potential frequency associated with the CA3 and CA1 regions
of the hippocampus (Csicsvari et al., 2000). As expected, the
noisy switch oscillates at the frequency ϕ , reflected in its power
spectrum (Px). Very recently, the full kinetic model of Lewis
et al., studied under the context of genetic regulation with n =
2, has been shown to produce the stochastic resonance effect
(Kang et al., 2017), which is confirmed here for the dimensionally
reduced model (Equation 2; Figure 3B). As σ increases from 0,
frequency transfer, measured as the ratio of the switch power to
signal power at ϕ , dips slightly and then improves dramatically,
achieving a maximum at 0.29, followed by a quick decrease as
the noise becomes dominant. When changing the exponent from
n = 2 to n = 1.6, this spectral amplification becomes significantly
larger, further suggesting that presynaptic α CaMKII functions
as an important frequency decoder and that the exponent n =
1.6 may have evolved to fulfill this purpose. The reader should
note that, for fair comparisons sake, r = 0.65 and r = 0.61 were
selected respectively for n = 2 and n = 1.6 based on values
obtained from Figure 2E, but this effect is qualitatively robust
to changes in r and ϕ . Setting n = 1.6 also shifts the optimal
noise strength to a substantially lower value, 0.09, which has the
putative benefit of harnessing stochastic resonance and enhanced
frequency representations for low intensity Ca2+ signal noise.

The model results of Kang et al. (2017) depend on a full
complement of parameters, which begs the question of whether
stochastic resonance is a generic feature of the model switch
or whether the effect is only significant for a certain range of
the parameters. The dimensional reduction of the switch model
performed here allows this question to be easily addressed as a
function of the parameters c0, r and n. Figure 3C shows that
the parameter r has significant influence over the value of σ

that produces optimal spectral amplification and that, for some
combinations of c0, r and n, the stochastic resonance effect
disappears completely. The presence or absence of stochastic
resonance may prove useful for deducing parameter ranges of
molecular switches in vitro and in vivo. Furthermore, these
noise fluctuations may generate unimodal (e.g., σ = 0.035)
or bimodal (e.g., σ = 0.01) distributions of switch activation
(Figure 3D, n = 1.6), which provides another experimentally
testable prediction for αCaMKII, given that the switch state could
control neurotransmitter release (see Box 1) and thus explain

FIGURE 3 | Frequency coding with noisy switches. (A) The switch model

driven by a weak sinusoidal signal, c(t) = c0 + α sin(2πϕt), with c0 = 0.04,

α = 0.02, ϕ = 2Hz, and additive noise, η(t), whose intensity is scaled by the

parameter σ and evolves according to τη = 0.01. The switch amplifies the

frequency content of the input, as shown by its power spectrum Px relative to

the signal’s, Pc. (B) Top: For n = 2, the ratio of switch power to signal power

at ϕ is plotted as a function of the noise intensity σ , achieving a maximum at

0.29, that is, the switch displays stochastic resonance (SR). The value of σ

that promotes optimal frequency transfer is denoted by σp. Bottom: For n =
1.6, there is substantially larger gain in the SR effect, and σp shifts to 0.09.

(C) σp is plotted as a function of (n, r) and (c0, r), illustrating the presence or

absence of SR. (D) For n = 1.6, stochastic switch simulations produce

bimodal (e.g., σ = 0.01) or unimodal (e.g., σ = 0.035) activation around the

low state (left column; r = 0.61, c0 = 0.04) and the high state (right column; r

= 0.54, c0 = 0.04) (Box 1). Within each sub-state region, the input is uniquely

encoded. (E) As model validation, the pulse duration (ms) and frequency

experiments of De Koninck and Schulman were simulated (n = 1.6, r = 0.61,

and T = 0.4), qualitatively capturing their results, as well as the results of a

follow-up model (Dupont et al., 2003). The reader should note the ambiguity in

autonomously activated (long timescale) switch activity, based on input

duration and frequency (Pinto et al., 2012). (F) To validate the model against

short timescale CaMKII data, a 1Hz pulse train generates a calcium signal that

drives the switch model: the top plot shows the entire period of stimulation

and the decay of the switch after cessation of the stimulus (n = 1.6 and

T = 0.1). These simulations qualitatively capture the exciting new experimental

data of Chang et al. (2017). Note that, instead of a fixed value of negative

regulation, r now linearly increases from 0.58 to 0.67 over the course of the

stimulus, providing a potential explanation of the slow decay in the plateau

switch concentration seen in the data but not in the model for a fixed value of

r. The bottom plot zooms in on the first 15 s and also plots the model

prediction for a T286A mutant form of CaMKII, which prevents the nonlinear

switch activation. Naturally, this results in a much weaker response compared

to the wild-type (WT), as seen in the data (Chang et al., 2017).
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multimodal distributions of excitatory postsynaptic potential
amplitudes (Larkman et al., 1992). The occupation of the low
state (Figure 3D, left) vs. the high state (Figure 3D, right)
depends on the level of negative regulation r and whether c0 can
support hysteresis: the parameter choices for the left column of
Figure 3D do not support bistability (r = 0.61, c0 = 0.04) and
the switch fluctuates around the low activation state. The right
column of Figure 3D does support bistability (r= 0.54, c0 = 0.04)
and input activity quickly drives high switch activation, while
hysteresis ensures the switch stays within this state. Stochastic
simulations for Figure 3D were performed by including additive
Ornstein-Uhlenbeck noise, as described above. Further detail can
be found in the Methods section.

Bridging Short Term Dynamics With Long
Timescale Switch Activation
A potential caveat of the bistable switch model is that, even in
the high activation state, the population of phosphorylated units
(x) are still subject to the phosphatase activity (r). Equation 2
places difficult constraints on cells for long-timescale activation:
if c0 and r are not controlled carefully, the high activation state
can be lost. Although high activation levels may only be short
lived in vivo, it is important to establish a potential connection
between the current model and existing theories of long
timescale activation (Box 1; Introduction). Equation 2 effectively
represents all of the phosphorylated subunits in a population of
CaMKII molecules (each having twelve phosphorylation sites).
When one of these dodecamers becomes fully phosphorylated,
it could effectively become impervious to negative regulation by
the phosphatases, since any cleaved subunit could immediately be
re-phosphorylated by its neighboring subunits and the enzyme
can be shielded by its interactions with downstream targets
(e.g., an NMDA receptor subunit) (Lisman et al., 2012; Urakubo
et al., 2014). Until now, the work presented here has ignored
this potentially important feature of CaMKII, since the actual
biological relevance of autonomous activation is still in question
(Box 1). Therefore, to connect the short term dynamics to long
timescales, we introduce a new variable (X) to represent the level
of autonomously activated switch that might persist after the
stimulus has been removed, even when Ca2+ levels drop below
the leftmost critical value cc that supports hysteresis (Figure 1Bi).
X is calculated from Equation 2 by using Equation 3, explained
below.

Motivated by the work of Pinto et al. (2012) (Box 1), let us
assume that the total amount of autonomously activated switch
(X) is simply proportional to the average amount of Ca2+ input,
which is determined by pulse amplitude, duration and frequency.
As seen in Figure 2, this value is reflected by the amount of
activated switch x(t) over the duration of the stimulus, 1t.
Therefore, let X be the temporal average of x(t)

X =
〈

ωx(t)
〉

=
ω

1t

1t
∫

0

x(t)dt (3)

The biological interpretation is as follows: at a given moment
in time there is some likelihood for individual dodecamers to
transition to the fully autonomous, phosphorylated switch state
or bind to a downstream target. These autonomous elements
accumulate over time. For simplicity, a fixed basal rate of
transition of a given molecule to the fully autonomous state, ω,
is assumed.

As a validation of the model’s ability to produce CaMKII-
like behavior over long timescales, the essence of De Koninck
and Schulman’s experimental results (De Koninck and Schulman,
1998) and the model of (Dupont et al., 2003) are both captured
qualitatively by Equations 2 and 3 (Figure 3E). Note that this
result was generated using Equation 2 and 3, but does not include
Ornstein-Uhlenbeck noise given the synthetic and controlled
nature of the original experiment (De Koninck and Schulman,
1998). The timescale factor T was set on the order of 10−1 s,
which may reflect altered kinetics under the artificial conditions
of the experiment, or the need for further refinement of the
model presented here. For instance, the proportion ω is expected
to grow larger as more of the subunit population becomes
phosphorylated and cooperative activation grows stronger
(Meyer et al., 1992; Chao et al., 2010), leading to an increased
likelihood for individual dodecamers to transition to the fully
autonomous state. This is expected to improve the reproduction
of De Koninck and Schulman’s results by flattening the curves
at lower frequencies and steepening them at higher frequencies
(De Koninck and Schulman, 1998). Future work should seek
to determine ω(x), with the hopes of identifying reduced
representations of strongly nonlinear CaMKII activation. In
general, ω could also depend on the interaction of activated
CaMKII with downstream targets; for example, in vitro evidence
suggests constitutive CaMKII activation (hysteresis) requires
interaction with an NMDA receptor peptide (Urakubo et al.,
2014).

Given our interest in the short timescale behavior of the
CaMKII switch, Equation 2 was further validated against recent
experiments that used fluorescent life-time imaging microscopy
to measure CaMKII activity with millisecond precision in
neurons responding to glutamate uncaging (Chang et al.,
2017). Figure 3F shows 1Hz stimulation (30 pulses) that drives
a dynamic calcium concentration, modeled as a first-order
exponential decay with a time constant of 200 milliseconds.
This signal (c; not shown) is used to drive the switch model
with exponent n = 1.6. The value of T was set to 0.1 for
this simulation; as an aside, T may be impacted by the mean
frequencies experienced at the synapse over long timescales and
can be modified according to the specifics of the system (e.g., pre-
vs. post-synaptic), as well as further influenced by experimental
conditions. These factors might explain the difference used to
fit the Chang et al. (2017) from the value of T = 0.01 inferred
from Coultrap and Bayer (2012). To account for the slow
decay of plateaued switch activity (Chang et al., 2017), r was
made to linearly increase for a small range over the course of
stimulation. The justification for this is as follows: the protein
phosphatase calcineurin has a much higher affinity for Ca2+

ions than calmodulin, and will slowly strip Ca2+ away from
calmodulin that has yet to bind to CaMKII. Thus, it seems
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possible that the accumulation of activated calcineurin over the
course of prolonged stimulation may exert a growing, adaptive
effect on the switch. Although the linear change in r was chosen
for simplicity, it’s likely more complicated and may account for
minor discrepancies between the model and the actual data of
Chang et al. (2017). Finally, despite the fact that constitutively
active CaMKII is unlikely to occur in vivo, the bistable-associated
nonlinearity that governs its dynamics is still essential to its
function. By repeating their experiment with a mutated form of
CaMKII that cannot autophosphorylate (T286A), Chang et al.
provide evidence that T286 phosphorylation is essential for the
optimal integration of Ca2+ signals by boosting the activation of
the switch and slowing its decay. The bistable model nonlinearity
in Equation 2 reflects this cooperative autophosphorylation –
removing it results in a much weaker response (Figure 3F), as
seen in the data (Chang et al., 2017). In addition to enabling
the induction of long term plasticity postsynaptically, it is
hypothesized that this nonlinearity is also essential for the switch
to sequester cytosolic calcium and thus regulate neurotransmitter
release at the presynaptic terminal.

DISCUSSION

A main goal of this study was to extend the frequency coding
idea of De Koninck and Schulman (1998) in a generic switch
model that captures the qualitative behavior of CaMKII, but
focuses on fast timescale dynamics instead of slow timescales
(Box 1). The model presented here may help to reconcile
contradictory perspectives of CaMKII function (De Koninck and
Schulman, 1998; Pinto et al., 2012) and suggests dual streams
of information transfer that are temporally multiplexed: over
short timescales, where the size and duration of the Ca2+ pulse
are more stable (Tank et al., 1995), the molecular switch can
act as an encoder of instantaneous frequency information (e.g.
Figure 2A) and function to bidirectionally regulate transmitter
release at synapses through a combination of enzymatic and
non-enzymatic activity (summarized in Box 1). Over longer
timescales, the model switch integrates overall signal intensity,
which could dictate long term changes in synaptic strength and is
dependent on multiple factors such as slow Ca2+-induced Ca2+

release (affecting c0) (Sharma andVijayaraghavan, 2003; Catterall
and Few, 2008), the size of the Ca2+ pulse, its duration and the
mean frequency of stimulation (Figure 3E).

Although the present work is a very preliminary investigation
of the role of molecular switches in the processing of information
in the brain, it provides some testable predictions for synaptic
physiologists: establishing the presence of both bimodal and
unimodal synaptic release that depends on αCaMKII and noise,
as well as characterizing the hypothesized real-time modulation
of release probability at central synapses by αCaMKII in response
to natural, aperiodic stimulation patterns (specifically detection
of bursting events). Finally, of particular interest, is the putative
role of αCaMKII in the regulation of synchronous discharge
probability and duration, as well as the propagation of CA3
oscillations into the CA1 area (Hinds et al., 2003). A more
complete study including a coupling of the subcellular switch

dynamics with those of the neuron and synapse will be published
in the future.

Fascinatingly, the Hill function exponent of approximately 1.6
is not unique to CaMKII; calcium sensors within hippocampal
basket cells display cooperative binding that also reflects the
value 1.6, inferred from measurements of post-synaptic currents
(Debanne et al., 2013). The mitogen-activated protein kinase
(MEK1) is reported to have a Hill function exponent of
approximately 1.7 (Ferrell and Ha, 2014), further hinting at the
generality of the switch model. In general, bistable molecular
switches such as CaMKII, are a conserved feature of cell signaling
networks and generate combinatorial power in their collective
action (Ferrell, 1997; Bhalla and Iyengar, 1999; Brandman et al.,
2005). As previously described, stacking kinase pathways leads
to an increase in the effective cooperative binding (described
by the Hill function exponent) (Ferrell, 1997); for example,
the extracellular signal-regulated kinase 2 (ERK2), which lies
downstream of MEK1 is reported to have an approximately
three-fold larger Hill coefficient of 4.9 (Ferrell and Ha, 2014),
which is also associated with the famous Calyx of Held synapse
(Debanne et al., 2013).

Due to their complex kinetics and network interactions,
switch models are typically formulated by parameterized
systems of differential equations that are not ideal for deeper
mathematical analysis. It is proposed that the simple model
described by Equation 2 can capture the core essence of
molecular switches, much in the way that the leaky-integrate
and fire model has been a successful abstraction of neuronal
spiking activity, providing a trade-off between performance and
a reduced description that facilitates network studies (Burkitt,
2006; Jolivet et al., 2008). This idea is supported by the
inclusion of Equation 2 in an existing phenomenological model
of feedback-driven synaptic plasticity, using the conventional
exponent of n = 2 (Oswald et al., 2002). The relative simplicity
of the switch model and its application to diverse signaling
pathways make it a useful framework for further theoretical
and experimental investigations into signaling networks, synaptic
plasticity and cellular computation.

METHODS

Bifurcation Analysis
The first step of the bifurcation analysis is to find the equilibrium
points. Setting n= 2, we rewrite Equation 1 as,

dx

dt
= g(x)− h(x)

where g(x) = x2

1+x2
and h(x) = rx − c. The fixed points occur

when g(x) − h(x) = 0, which amounts to finding the solutions
of the polynomial −rx3 + (c + 1)x2 − rx + c = 0. First, fix c
and examine the effects of varying r. When c = 0, x = 0 is a
fixed point, and, for a particular range of r, there exists two other
positive valued fixed points, given by the roots of−rx2+x−r = 0.
The critical value of the parameter r, denoted by rc is found by
setting g(x) = h(x) and g′(x) = h′(x), which, when solved, gives
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rc = x
1+x2

= 2x

(1+x2)
2 . Three values of x satisfy this equality:−1, 0,

and 1. Since we are not considering negative values of x, we have
two critical points, rc = 0 and rc = 1

2 . Therefore, when c = 0, the

system is bistable for 0 < r < 1
2 . For c > 0, r can be larger

than 1
2 while still preserving bistability (as in Figure 1A). We

know rc occurs when h(x) = g(x) and h′(x) = g′(x); therefore,
when h(x) > g(x) we lose a fixed point through a saddle node

bifurcation. Forx > 0, the maximum of g(x) is found at x =
√

1
3

which gives maxx[g(x)] = 3
√
3

8 . Therefore, when r > rc = 3
√
3

8 ,
only one fixed point exists.

Now, we are interested in fixing r and examining the effects
of varying c. To find cc we set g(x) = h(x) and g′(x) = h′(x),

which gives r = 2x

(1+x2)
2 and cc = rx − x2

1+x2
. Substituting

the first expression into the second, we get cc = x2(1−x2)

(1+x2)
2 . We

differentiate with respect to x in order to locate the maximum

value for cc; 0 = 2x(1−3x2)

(1+x2)
3 . This gives x = 0 and x =

√

1
3 ,

which corresponds to cc = 0 and cc = 1
8 . When c > cc, only

one fixed point exists for all values of r. For a fixed value of
r that supports bistability, as c increases from 0 and crosses a
critical value (cc), the fixed point x∗ will jump up to the high
amplitude branch. If c is now decreased, the fixed point remains
on the high amplitude branch even as c becomes smaller than the
corresponding cc. This hysteresis effect permits switch activation
to remain as the transient Ca2+ signal subsides, consistent with
the findings from synaptic plasticity experiments (Box 1). Using
the expressions derived for the critical values of rc and cc, we plot
them parametrically as functions of x (Figure 1Biii). Saddle node
bifurcations occur all along the boundary of these curves, it is
here we find the values of r and c for which only two fixed points
occur. Crossing each branch results in a pairwise collision and
disappearance of two fixed points. Note where the bifurcation

curves meet tangentially, (c, r) →
(

1
8 ,

3
√
3

8

)

, here we observe a

co-dimension two bifurcation; beyond this point there is only one
fixed point and the distinction between low and high activation
states is blurred (Figure 1Biii).

Computational Specifications and
Miscellaneous Details
Simulations were solved using the 4th order Runge-Kutta
method, with the exception of the Ornstein-Uhlenbeck noise,
which was solved using the stochastic Euler method (time step of
1ms in all cases). All simulations were performed using custom

code, available upon request to the author, and were implemented
on a Linux machine running Ubuntu 16.04 with an Intel core
i7-6700 CPU, 3.4 GHz processing speed, and 62 GB of RAM.

Pulse train sequences {ti} were convolved with the filter
t · e−(t−ti)/τc , whose decay constant τc was set to 30ms, reflecting
an accommodation of both pre- and post-synaptic calcium decay
values from the literature that range from 15 to 43ms (Sinha
et al., 1997; Sabatini et al., 2002; Graupner and Brunel, 2012).
The resulting input signal was normalized to the maximum value
and then scaled by 1c. The decay value is closely related to the
input frequencies typical of a given synapse and the definition
of what constitutes a high frequency event in the system, since
for events occurring faster than the decay, Ca2+ accumulates
quickly, driving the switch into the upstate. The putative burst
detector will work for different τc, but may require a different
set of corresponding switch parameters, range of stimulation
frequencies and pulse amplitudes.

Histogram bin sizes for Figure 3D were set using the
Freedman-Diaconis method (Freedman and Diaconis, 1981).

AUTHOR’S NOTE

Bistable molecular switches can decode cellular inputs into
distinct high- or low-states of persistent enzymatic activity.
Although this on-off, “digital” perspective is valuable for long
timescales, I suggest that short timescale fluctuations of switch
activity around either stable state acts as an analog signal
that reliably encodes instantaneous input frequency. A minimal
model and theory make predictions about the molecular switch
CaMKII, synaptic plasticity and burst detection.
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