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Despite substantial efforts, it remains difficult to identify reliable neuroanatomic

biomarkers of autism spectrum disorder (ASD) based on magnetic resonance imaging

(MRI) and diffusion tensor imaging (DTI). Studies which use standard statistical methods

to approach this task have been hampered by numerous challenges, many of which are

innate to the mathematical formulation and assumptions of general linear models (GLM).

Although the potential of alternative approaches such as machine learning (ML) to identify

robust neuroanatomic correlates of psychiatric disease has long been acknowledged,

few studies have attempted to evaluate the abilities of ML to identify structural brain

abnormalities associated with ASD. Here we use a sample of 110 ASD patients and

83 typically developing (TD) volunteers (95 females) to assess the suitability of support

vector machines (SVMs, a robust type of ML) as an alternative to standard statistical

inference for identifying structural brain features which can reliably distinguish ASD

patients from TD subjects of either sex, thereby facilitating the study of the interaction

between ASD diagnosis and sex. We find that SVMs can perform these tasks with high

accuracy and that the neuroanatomic correlates of ASD identified using SVMs overlap

substantially with those found using conventional statistical methods. Our results confirm

and establish SVMs as powerful ML tools for the study of ASD-related structural brain

abnormalities. Additionally, they provide novel insights into the volumetric, morphometric,

and connectomic correlates of this epidemiologically significant disorder.
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INTRODUCTION

Autism spectrum disorder (ASD) is a common (1 in 68 children),
strongly-genetic neurodevelopmental disorder which is defined
by social communication deficits as well as by the presence of

repetitive behaviors and thoughts. ASD is four to five times more
prevalent in males (Bloss and Courchesne, 2007; Schumann et al.,
2009; Lai et al., 2013; Schaer et al., 2015). Though it is generally
acknowledged that structural brain differences exist between

ASD patients and typically developing (TD) individuals, the
specific nature of these differences has been the subject of intense
investigation for at least 20 years (Carper and Courchesne,
2005; Mcalonan et al., 2005). Many brain areas exhibit ASD-
related abnormal development; it currently seems unlikely that
the behavioral abnormalities associated with this syndrome

are due to the typical development of a single brain region
(Mcalonan et al., 2005). Instead, studies suggest that spatially-
distinct neuroanatomic structures distributed across the entire
brain and involved in social information processing tasks may
exhibit both structural and functional abnormalities in ASD
(Fletcher et al., 1995; Calarge et al., 2003; Schultz et al., 2003). This
set of “social brain” regions includes the prefrontal cortex, the
medial and ventral portions of the temporal lobe, amygdala, and
the cerebellum. Though these and other brain structures are often

highlighted as featuring neuroanatomic abnormalities in ASD,
the heterogeneity of this patient population greatly complicate
the task of evaluating the manner and extent to which this
condition affects brain structure.

Despite substantial progress in the use of neuroimaging
to characterize and to quantify brain abnormalities in ASD,
it remains challenging to establish structural biomarkers of
ASD whose sensitivity and specificity are sufficiently high for
early clinical diagnosis. This is partly due to methodological
limitations which have contributed to contradictory findings
across studies and to frequent replication failures. Such
limitations include (A) the appreciable heterogeneity of the ASD
phenotype (Schaer et al., 2015), (B) the challenges associated
with formulating a precise and universally-accepted operational
definition of ASD (Volkmar et al., 2009), and (C) many studies’
lack of adequate statistical power to characterize structural brain
differences between ASD and TD (Bloss and Courchesne, 2007;
Schumann et al., 2009; Lai et al., 2013; Schaer et al., 2015).

Many neuroimaging studies of brain structure in ASD
have been confronted with limitations which stem from the
use of inadequate sample sizes to make statistical inferences.
The multiple comparisons problem, for example, involves the
increase in the probability of making statistical errors of type
I or II as the number of statistical hypotheses being tested on
a given sample increases. When making scientific inferences,
this problem can be exacerbated if the population being
studied exhibits substantial and poorly understood heterogeneity,
as in the case of ASD. For reasons such as these, the
use of standard statistical approaches—including the general
linear model (GLM)—can pose substantial difficulties in ASD
neuroimaging research. Such difficulties can manifest themselves
in ways which make GLMs particularly unattractive; for example,
it is well known that a GLM with more predictor variables

than sampling units is underdetermined, which is to say that
there are an insufficient number of degrees of freedom (d.
f.) to solve its underlying system of linear equations. Because
modern neuroimage analysis techniques can provide hundreds
and even thousands of quantitative neuroanatomic descriptors,
ASD studies may require very large sample sizes if the role of all
such descriptors in ASD is to be examined. Because there is often
substantial co-linearity between many of the neuroanatomic
metrics (cortical thickness, volume, area, etc.) which can be
computed frommagnetic resonance and diffusion tensor imaging
(MRI and DTI, respectively) data, there is potential co-linearity
between many such variables, leading to the violation of GLM
assumptions. Additionally, the task of alleviating this problem
by identifying a subset of statistically independent neuroimaging
descriptors can involve a prohibitively large number of statistical
tests to ascertain their independence, which is again problematic
due to the multiple comparisons problem, to its associated high
rate of type I and II errors and to the subsequent loss of
statistical power. To escape this vicious circle, novel analytic, and
inferential approaches may be required.

It was only in the past decade that relatively large
neuroimaging datasets became available to the ASD research
community (Pelphrey et al., 2011; Di Martino et al., 2014).
Notably, recent studies based on the Autism Brain Imaging Data
Exchange (ABIDE) repository (http://fcon_1000.projects.nitrc.
org/indi/abide) have substantially advanced our understanding
of the interaction between ASD and sex (Riddle et al., 2017;
Traut et al., 2018; Zhang et al., 2018). Nevertheless, even with the
advent of the ABIDE dataset and of the National Database for
Autism Research (NDAR, http://ndar.nih.gov), concerns remain
that the heterogeneity of ASD may require neuroscientists and
clinical researchers to utilize novel and/or alternative analysis
methods for understanding the relationship between ASD and its
associated structural brain abnormalities.

Machine learning (ML) has achieved considerable
prominence as a powerful approach to the identification of
robust, early biomarkers of neuropsychiatric disease (Sun et al.,
2009; Dyrba et al., 2013). Nevertheless, ML approaches to
pattern recognition and classification may not be as intuitive and
transparent as those of standard statistical approaches (Duch
et al., 2004). Partly for this reason, ML should be evaluated,
validated, and compared to standard statistical methods so
as to accept it as a valid framework for neuroimaging-based,
inferential studies of ASD brain structure abnormalities. In
this study, MRI and DTI volumes acquired from a relatively
large sample of 110 ASD patients and 83 TD volunteers (95
females) are used to assess the suitability of support vector
(SV) machines (SVMs, one of the most popular types of ML)
as an alternative to classical inferential statistics for identifying
structural brain features which can reliably distinguish ASD
patients from TD subjects. More specifically, our purpose is
to evaluate the ability of SVMs to distinguish the two samples
based on widely-used neuroanatomic descriptors, including the
thickness, area, curvature, and volume of gray matter (GM)
regions, as well as white matter (WM) connectivity density (CD).
To compare and validate our findings against those of standard
inferential methods, we implement a post hoc statistical analysis
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to confirm that the structural brain features used for the SVM
differ significantly— in a statistical sense—between ASD and
TD subjects, and additionally within and between these groups
according to sex. Our results confirm and establish SVMs as
powerful ML tools for the study of structural brain abnormalities
related to ASD; additionally, they provide novel insights into the
structural correlates of this clinically significant disorder.

MATERIALS AND METHODS

Participants
This study was carried out as part of the Autism Center of
Excellence (ACE) Program funded by the National Institute of
Mental Health (NIMH). Psychometric and neuroimaging data
were acquired at four sites: (1) the Center for Translational
Developmental Neuroscience, Yale University, New Haven, CT
(73 volunteers); (2) the Laboratory of Cognitive Neuroscience,
Boston Children’s Hospital, Harvard Medical School, Boston,
MA (49 volunteers); (3) the Center on Human Development and
Disability, Seattle Children’s Hospital, University of Washington
School of Medicine, Seattle, WA (92 volunteers); (4) the
Staglin IMHRO Center for Cognitive Neuroscience, David
Geffen School of Medicine, University of California, Los
Angeles, CA (73 volunteers). All research was performed in
accordance with US federal law (45C.F.R. 46) and with the
approval of the Institutional Review Boards (IRBs) of both
the University of Southern California (USC) and the four
institutions where the neuroimaging and psychometric data
had been acquired. Recruited subjects included N1 = 110
ASD patients (55 males) and N2 = 83 TD subjects (43
males), for a total of N = N1 + N2 = 193 volunteers. All
subjects and their legally authorized representatives provided
informed written consent. The Differential Ability Scales (DAS-
II)—including the Verbal (V), Non-Verbal (NV), Spatial (S),
General Conceptual Ability (GCA), and Spatial Non-Verbal
Composite (SNC) scales—were used to assess the cognitive
abilities of the participants. SNC scores were unavailable for 9
subjects and one additional subject did not have DAS scores
available. Welch’s t-test for samples with unequal variances
was used to evaluate the significance of differences in age and
DAS scores between the two cohorts. To test the statistical
significance of the difference in sex composition between the two
groups, sex was coded as a binary variable and a χ

2 test was
used.

Inclusion Criteria
ASD patients were included based upon the results of an
evaluation by an experienced clinician, together with the Autism
Diagnostic Observation Schedule (ADOS-2) and of the Autism
Diagnostic Interview (ADI). The ADOS inclusion criterion was a
comparison score above 3; the ADI inclusion criteria were: (i) a
communication total (R) score above 8; (ii) a behavioral (S) total
score above 6; (iii) a social affect (T) total score above 1; (iv) a
sum of the previous three above 18, i.e., R + S + T > 18. A
volunteer had to satisfy both ADI and ADOS criteria and had to
meet clinical (DSM-5) criteria to qualify for inclusion.

Exclusion Criteria
For the TD group, exclusion criteria included suspected, referred
or diagnosed ASD, learning/intellectual disability, schizophrenia,
the presence of any other psychiatric or developmental disorders,
as well as the existence of a first- or second-degree relative
who had ASD. Exclusion criteria for the ASD group included
any psychiatric, neurological or genetic comorbidity (including—
but not limited to—the use of any barbiturate, benzodiazepine
or anti-epileptic medication, pregnancy, active tic disorders,
fragile X syndrome, spasms, epilepsy, pre-/peri-natal birth injury,
brain damage, severe psychological or nutritional deprivation,
auditory or visual impairment after correction, as well as
sensorimotor difficulties which precluded the valid use of
diagnostic instruments).

Recruitment Protocol
Research-reliable clinicians screened potential enrollees either in
person or by telephone to ensure that all inclusion and exclusion
criteria were satisfied. Prior to enrollee visits, phone interviews
with parents were carried out. During in-person visits, examiners
with research levels of ADOS and/or ADI reliability collected
medical history information and also acquired ADOS and ADI
measures by direct observation.

MRI Acquisition
MRI data were collected using Siemens scanners (TrioTim or
Prismafit) with magnetic field strengths of 3 T. Subject head
movements in theMR scanner coil were restricted through ample
padding as well as by using headphones and video goggles. A
magnetization-prepared rapid acquisition gradient echo (MP-
RAGE) sequence was used to acquire T1-weighted volumes;
the parameters of the sequence were: 256 interleaved, single-
shot, sagittally-oriented, slices; 256mm field of view (FOV);
1mm slice thickness; 256 × 256 acquisition matrix; a repetition
time (TR) of 2,530ms; an echo time (TE) of 3.31ms (TrioTim
scanners) or 3.34ms (Prisma scanners); an inversion time (TI)
of 1,100ms; a flip angle of 7-degrees; phase and slice resolutions
of 100%; a bandwidth of 200 Hz/pixel (Px) and an echo spacing
of 7.6ms. To acquire 64-direction DTI volumes, the following
acquisition parameters were used: 96 × 96 acquisition matrix;
190mm FOV; 60 transversally-oriented, interleaved slices with
a thickness of 2mm; a TR of 9,000ms (TrioTim scanners) or
7,300ms (Prisma scanners); a TE of 93ms (TrioTim scanners)
or 74ms (Prisma scanners); a flip angle of 90 degrees; a phase
resolution of 100%; B0 values of 0 s/mm2 and 1,000 s/mm2;
a bandwidth of 2,264 Hz/Px bandwidth (TrioTim scanners) or
1,680 Hz/Px (Prisma scanners); and an echo spacing of 0.69ms.
All the neuroimaging data were de-identified, encrypted, and
transferred to the Data Coordinating Center (DCC) residing at
the Laboratory of Neuro Imaging (LONI) in the USC Mark and
Mary Stevens Neuroimaging and Informatics Institute. Quality
control (QC) and protocol compliance were undertaken via the
LONI QC System (http://qc.loni.usc.edu) and data were also
stored in the NDAR database (http://ndar.nih.gov). Instances of
head motion during the scan were noted by site investigators;
whenever this appeared to degrade image quality appreciably, the
subjects in question were excluded from an original dataset prior
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to compilation and detailed quantitative analysis of the dataset
used in this study.

Image Processing
Image processing was performed using the LONI Pipeline
environment (http://pipeline.loni.usc.edu). Detailed descriptions
and visual representations of the workflow and processing
environment are available elsewhere (Dinov et al., 2009, 2010).
For each subject, affine co-registration of DTI and MRI volumes
was performed. Subsequently, each DTI volume was corrected
for eddy currents and then processed using TrackVis (http://
trackvis.org) to recreate WM fiber streamlines via deterministic
tractography. If a streamline exhibited a turning angle below
60 degrees, it was discarded. A triangular tessellation with
∼300,000 vertices (average inter-vertex distance: ∼1mm) was
used to reconstruct the cortical surface of the brain and to
produce an anatomically-faithful, smooth representation of the
GM/ WM interface (Fischl et al., 1999). At each tessellation
vertex vi, FreeSurfer 6.0 software was used to measure the cortical
thickness as the distance between the GM/WMboundary and the
cortical surface. As described elsewhere (Destrieux et al., 2010),
a probabilistic atlas was used to identify and parcel a total of
74 cortical structures (gyri and sulci) in each hemisphere of the
brain. After also segmenting the brain stem, this resulted in a
total of 165 segmented parcels over the entire brain. Probabilistic
information estimated from a manually labeled training set was
used to assign neuroanatomical labels to voxels using a method
whose accuracy is comparable to that of manual labeling (Fischl
et al., 2004). After the parcellation of each structure, its surface
area, volume, and mean curvature were calculated. To avoid
the confounding effect of head size, every measure was also
normalized by total intracranial volume (TICV) prior to further
analysis.

Connectivity Calculation
Cortical inter-connectivity values were calculated as detailed
elsewhere (Irimia et al., 2012). Briefly, the mean fractional
anisotropy (FA) of each WM streamline bundle was calculated
as the average FA over all DTI voxels traversed by the fiber
bundle along its path.Mean FAmaps for connections innervating
each point on the cortex were smoothed across using a circularly
symmetric Gaussian kernel with a full width at half maximum
of 5mm and averaged across subjects using a non-rigid, high-
dimensional spherical averaging method to align cortical folding
patterns (Fischl et al., 1999). After cortical parcellation and
streamline tractography, the WM connectivity matrix of each
subject was calculated as follows. Let vi and vj be cortical mesh
vertices linked by some WM connection cij. For each such
connection, the three-dimensional coordinates associated with
the extremities of cij (i.e., with vi and vj) were identified. The
corresponding entry indexed by i and j in the connectivity matrix
C of each subject was assigned an appropriate value to reflect
the presence of a connection between vi and vj. This process was
repeated for each connection. The mean FA of cij was computed
as the average of FA values over all DTI voxels traversed by cij
from one end of each connection to the other end. Similarly, at
each vertex vi on the cortical mesh, the mean FA of connections

FIGURE 1 | Percentage variance (σ2) explained by the PCs of the study

dataset. The first ∼63 PCs were found to explain ∼95% of the total variance

and are highlighted by a red rectangle. All PCs are sorted in descending order

of the percentage σ
2 explained. The log-log plot obviates how components

beyond the ∼63rd PC contribute to σ
2 negligibly.

linking vi to the rest of the brain was computed. The CD at each
vertex was calculated as the sum of all streamlines linking it to the
rest of the brain, divided by the area of the vertex neighborhood
in question and by the total number of brain connections. Here,
the neighborhood of vertex vi denotes the portion of the mesh
surface containing points which are closest to vi, i.e., points
whose geodesic distance from vi does not exceed 5mm.

Statistical Feature Extraction
For each subject in the study, the image processing steps detailed
previously provide us with values for the GM thickness, volume,
cortical area, mean curvature, and CD of 165 brain regions,
amounting to a total of 825 metrics available for 193 subjects.
The dimensionality of this dataset was reduced via principal
component analysis (PCA) by first sorting the eigenvalues of
the covariance matrix in descending order according to the
percentage of the variance in the data which they explained. The
number of PCs selected for subsequent analysis was selected so
that the sum of their percentage of variance explained exceeded
95%. This threshold was selected after (A) examining the plot
of the percentage of variance explained by each eigenvalue
and then (B) identifying the sharp cutoff point beyond which
additional eigenvalues contributed to the total variance explained
by a relatively negligible amount (Figure 1). This approach to
dimensionality reduction is standard in a variety of scientific
applications (Rencher, 2002). The MATLAB function princomp
was used to implement the PCA.
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SVM Classification
Subsets of each population sample were used to train an
SVM classifier to distinguish (A) between ASD and TD and
(B) between ASD males, ASD females, TD males, and TD
females based on their brain features as selected using PCA.
Three separate analyses were implemented. In the first of these,
the ability of the SVM to separate the groups using both
structural (area, volume, thickness, curvature) and connectomic
(CD) variables was investigated. In the second analysis, only
structural features (area, volume, thickness, curvature) were
used; in the third analysis, only connectomic (CD) features
were used. In all analyses, before training, data points were
automatically centered at their mean and then scaled to have
unit standard deviation. To take into account the unbalanced
group design, box constraint values of N/(2N1) and N/(2N2)
were used for the TD group and ASD group, respectively.
When additionally investigating within- and between-group
differences predicated on sex, box constraint values were adjusted
accordingly. All the variables were constrained to satisfy the
Karush-Kuhn-Tucker (KKT) conditions for training (Cristianini
and Shawe-Taylor, 2000), which use the auxiliary Lagrangian
function

L (x, λ) = f (x) +
∑

i
λg,igi (x) +

∑

i
λh,ihi (x) (1)

Above, f (x) is the objective function of the classifier whereas
g (x) and h (x) are vectors of constraint functions subject to
g (x) ≤ 0, and h (x) = 0. The vector λ = [λg λh] is
the Lagrange multiplier vector. Additional KKT conditions are:
∇xL (x, λ) = 0, λg,igi (x) = 0 and λg,i ≥ 0. These constraints
are analogous to the condition that the gradient must be zero at
a minimum subject to the constraints. Tolerance values of 0.001
(for two-group classification) and 2−0.77 ≈0.58 (for four-group
classification) were used for checking that these were satisfied.
The latter value was obtained by identifying a suitable value of
the optimization parameter k such that a tolerance threshold of
2k could yield an optimal solution to the optimization problem
of separating hyperplanes using sequential minimal optimization
(SMO). For two-group classification, a scaling factor of 1 was
used in the radial basis function kernel and a linear kernel
function was used to map the training data into kernel space.
For four-group classification, a second-degree polynomial kernel
and a one-vs.-one (OVO) function were used for space mapping.
After this step, a binary classifier was built to distinguish between
each pair of classes from the original training set; this resulted
in six binary classifiers for four-group classification. The full
classifier was used to assign a class membership to each subject
based on the highest vote among all binary classifiers. A penalty
parameter with a value of 2−16 was used to specify the threshold
for misclassification during four-group classification and a grid
search for an optimal solution to the optimization problem was
implemented with γ = 0.25, where γ specifies the threshold
for the variance of the corresponding Gaussian distributions
around support vectors. For all classifiers, computed quantities
included the SVs, their weights, the intercept of the hyperplane
separating the groups in normalized data space and the kernel
function. In the following stage, the data x were classified

using the trained SVM classifier according to the following
equation:

c =
∑

i
aik (si, x) + b, (2)

where si are the SVs, ai are the weights, k
(

.,.
)

is the
kernel function and b is the bias. If c ≥ 0, then
x is classified as member of the first group, otherwise
it is classified as a member of the second group. The
SVM algorithm was implemented in MATLAB for this
specific study. Disjoint, random data partitions for 10-
fold cross-validation were created and the classifier was
cross-validated using these partitions. The SVM classification
process was repeated 500 times and the descriptive statistics
(mean, standard deviation) of the classification accuracy were
calculated.

A Posteriori Statistical Analysis
To confirm the ability of the SVM to separate the two cohorts, an
a posteriori statistical analysis was implemented. First, age- and
site-related effects were regressed out and Welch’s two-sample t-
test for samples with unequal variances was subsequently used
to test the null hypothesis that the mean of each feature variable
did not differ significantly between the ASD group and the TD
group. In the case of four-group classification, after regressing
out age- and site-related effects, an analysis of variance (ANOVA)
for samples with unequal variances was used to test the null
hypothesis that the mean of each feature variable did not differ
significantly among ASD males, ASD females, TD males, and
TD females. Hypotheses were rejected at a significance level α

≤ 0.05. Corrections for multiple comparisons were implemented
using the false discovery rate (FDR) approach of Benjamini and
Hochberg (1995).

Multidimensional Scaling and Visualization
To understand and visualize how near or far subjects are
from each other in the multidimensional space defined by
their structural brain feature variables, multidimensional scaling
(MDS) was undertaken using the Euclidian distance as its
dissimilarity measure. The data configuration matrix Y was
computed, as were the eigenvalues of YYT . The corresponding
eigenvectors were arranged in descending order of their
explained variance, and data points were projected along
the first three eigenvectors to generate a three-dimensional
(3D) representation which conveyed the extent to which the
SVM was successful in separating the two cohorts based on
their structural brain variables. The INVIZIAN visualization
environment (Bowman et al., 2012) was used to represent
the cortical surface of each subject at 3D coordinate locations
specified by the MDS eigenvectors.

RESULTS

Participant demographics and their scores are summarized in
Tables 1 and 2. No statistically significant difference between the
ASD group and the TD group was found either in age (t191
= −0.86, p > 0.39) or DAS scores (DAS-V: t191 = 1.07, p >
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0.28; DAS-NV: t191 = 0.72, p > 0.48; DAS-S: t191 = −0.44, p >

0.66; DAS-GCA: t191 = 0.92, p > 0.36; DAS-SRC: t191 = 0.51,
p > 0.61). Similarly, no significant difference in either the sex
composition of the two samples (χ2 = 0.13, d. f. = 1, p > 0.72)
or in their TICVs (Welch’s t = 1.14, d. f. = 187.54, p > 0.13) was
found.

Because the SVM classification process was implemented 500
times, the results reported below pertain to the most frequent
classification scenario; furthermore, the means and standard
deviations reported below for various results and metrics were
also calculated over all 500 scenarios. The mean and standard
deviation of the PC number obtained upon dimensionality
reduction and then used for SVM input was 63.21 ± 1.43.
In the first analysis, in the classification scenario encountered
most frequently among the 500 considered, we identified an
average of 11.12 ± 0.71 brain structures (see Table 3) whose
associated neuroanatomic descriptors allowed the subjects in
the two cohorts to be classified with an accuracy of 93.26%
based on 10-fold cross-validation. The standard deviation of
this two-group classification accuracy over 500 scenarios was
4.21%. Moreover, the same descriptors allowed the subjects in
the four cohorts to be classified with an accuracy of 94.82% based
on 10-fold cross-validation; the standard deviation of this four-
group classification accuracy over 500 scenarios was 5.56%. In
the second and third analyses, TD and ASD subjects—regardless
of sex—could be classified with accuracies of 74.09 ± 7.52%
and 55.96 ± 9.15%, respectively; by contrast, the four cohorts of
male TD, female TD, male ASD, and female ASD subjects could
be classified with accuracies of 61.14% ± 10.75% and 49.22%
± 12.34%, respectively. These results clearly indicate that the
accuracy of the SVM classification was superior when structural
and connectomic features were used together. For this reason,
only the results of the first analysis are discussed in what follows
and all subsequently-reported results should be understood to be
associated with the first analysis.

Confusion matrix elements are reported below for the most
frequent classification scenario. In what follows, a positive (P)
refers to a subject being classified as having ASD; a negative (N)
refers to a subject being classified as TD. When attempting to
distinguish between ASD and TD subjects using both structural
and connectomic features, the number of true positives (TP,
i.e., ASD subjects correctly classified as such) was found to be
103 (53.37%) and the number of true negatives (TN, i.e., TD
subjects correctly classified as such) was found to be 77 (39.90%).
The number of false negatives (FN, i.e., TD subjects incorrectly
classified as ASD subjects) was 7 (3.62%) and the number of
false positives (FP, i.e., TD subjects incorrectly classified as ASD
subjects) was 3 (1.55%). These results translate into a sensitivity
of 97.17% and a specificity of 91.67%.

When attempting to distinguish between ASD males (P♂),
ASD females (P♀), TD males (N♂), and TD females (N♀) at
once, the confusion matrix is replaced by a confusion tensor of
third rank, whose entries were found to be TP♀ = 52 (26.94%),
TN♂ = 39 (20.21%), TP♀ = 54 (27.98%), TN♀ = 38 (19.69%),
FP♂ = 3 (1.55%), FN♂ = 4 (2.07%), FP♀ = 1 (0.52%), and FN♀

= 2 (1.04%). These results yield a sensitivity of 96.36% and a
specificity of 92.77%.

In the most frequent classification scenario, the properties
of several structures in the ventral aspect of the frontal lobe
were found to differ significantly and bilaterally, with cortical
thickness, volume, and CD being implicated in these differences.
The properties of the temporal pole, parahippocampal, and
superior temporal gyri were also found to differ; in particular,
parahippocampal volume was found to be significantly smaller
in the ASD group than in the TD group. The areas and volumes
of some limbic structure—such as the cingulate gyrus and
pericallosal sulcus—were also found to differ, with larger areas
and volumes in the ASD group. The cuneus, occipital poles as
well as the superior and transverse occipital sulci were found
to have larger areas and CDs in the ASD group compared
to the TD group. The ability of structural brain variables to
discriminate between ASD and TD children is confirmed by the
3DMDS representation in Figure 2, which confirms the excellent
separation between groups and captures the ability of the SVM to
distinguish ASD from TD based on neuroanatomic descriptors.

The results of our findings are illustrated in Figure 3 and
summarized in Table 3. As both of these indicate, only some of
the brain features which can distinguish ASD subjects from TD
volunteers play a significant role in predicating the diagnosis-
by-sex interaction. For example, the left temporal pole of ASD
females was found to have higher curvature (Welch’s t =−2.174,
d. f.= 102.026, p < 0.032) than in ASDmales; no such difference
was found to exist between TD females and TD males (Welch’s
t = −0.768, d. f. = 76.873, p > 0.445), consistent with previous
observations (Hartley and Sikora, 2009). The volume of the right
parahippocampal gyrus was found to be larger (Welch’s t =

−2.402, d. f. = 102.776, p < 0.018) in ASD females compared
to ASDmales, and the curvature of superior temporal gyruswas
greater (Welch’s t =-2.088, d. f. = 104.453, p < 0.039) in ASD
females than in ASD males, in agreement with previous findings
on differential memory processing abilities between sexes in ASD
(Baron-Cohen et al., 2005). The surface area of the occipital poles
(left hemisphere: Welch’s t = −2.112, d. f. = 101.984, p < 0.037;
right hemisphere: Welch’s t = −2.533, d. f. = 99.729, p < 0.013)
and right cuneus (Welch’s t = −2.235, d. f. = 99.089, p < 0.028)
were found to be larger in ASD females than in ASD males;
no such sex-related differences were found in TD volunteers.
When interpreted together, our results appear to indicate that
sex-related differences in ASD incidence are associated with
brain features which are not only ASD-specific but also sex-
specific. Furthermore, only a subset of ASD-related structural
brain features are involved in predicating the interaction between
ASD diagnosis and sex.

DISCUSSION

To assess the suitability of SVM classifiers for the study
of ASD-related neuroanatomical abnormalities, it is
useful to evaluate the extent to which their results are
consistent with those of previous studies, and particularly
with findings obtained using very different inferential
approaches. To this end, in what follows, the SVM findings
summarized in Table 3 are discussed in relation to the existing
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FIGURE 2 | MDS representation which illustrates the ability of structural brain variables to distinguish ASD patients from TD subjects. The cortical surface of each

participant is shown, with the brains of participants belonging to each group being surrounded by a circle whose color indicates cohort membership (ASD in yellow,

TD in blue). The spatial coordinates of each brain are specified by the MDS projection of each volunteer’s brain structure descriptors from a hyperspace containing all

descriptive variables to 3D space. Each coordinate axis in this 3D representation corresponds to each of the first three MDS eigenvectors of the matrix YYT (see

Methods), accounting for the largest amount of variance in the data. In this representation, any pair of subjects whose brains are located farther apart from each other

differ more in their structural features than pairs of subjects whose brains are closer. The excellent separation between the two cohorts is apparent due to the

clustering of ASD patients away from the cluster of TD subjects. The visualization was produced within the INVIZIAN software package (Bowman et al., 2012).

FIGURE 3 | Visual depiction of SVM-identified brain regions whose volumetric, morphometric, and/or connectomic features can together distinguish among patients

based on the interaction between sex and diagnosis. First, a posteriori two-way ANOVA (factors: ASD diagnosis, sex) revealed brain locations whose features, in

addition to being able to distinguish ASD from TD subjects, can also distinguish these subjects based on their sex (see Table 1 and text). Then, the ANOVA test

statistic (F3, 189) was plotted on the cortical surface of an average brain, with color shades at each cortical location encoding the F statistic, which ranges from 0

(white) to a maximum of 4.618 (bright green).

TABLE 1 | ASD and HC cohort demographics and DAS scores by domain.

DAS

Cohort Age [years] Sex ratio V NV S GCA SNC

ASD 12.74 (2.79) 1.01:1 102.56 (20.23) 101.17 (17.81) 99.79 (17.17) 101.65 (19.44) 100.78 (18.15)

HC 13.04 (2.95) 1.08:1 109.95 (15.64) 107.13 (14.82) 105.13 (13.26) 108.86 (14.78) 107.20 (13.73)

V, verbal; NV, non-verbal; S, spatial; GCA, general conceptual ability; SNC, spatial non-verbal composite.

The sex ratio is reported as the number of males for every female in each sample. Averages are reported, and the standard deviation is shown in parentheses.
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TABLE 2 | ASD volunteers’ mean scores for each ADOS domain.

ADOS ADI

AB AD AB + AD C T R S

9.30 (3.57) 2.58 (1.76) 11.88 (4.25) 6.78 (2.04) 19.13 (5.41) 16.06 (4.25) 5.90 (2.45)

AB, social affect; AD, behavior; AB + AD, overall total score; C, comparison score and for each ADI domain T, social affect; R, communication; S, behavior, with standard deviations in

parentheses.

body of literature on the neuroanatomical correlates of
ASD.

The present study identifies medial, ventromedial, and
dorsolateral regions of the frontal lobe as being associated with
ASD-related neuroanatomical abnormalities. The right medial

orbital sulcus, for example, has been implicated in ASD-
related social impairment (Amaral et al., 2008), in repetitive
or stereotyped behaviors, in the abnormal actions of obsessive-
compulsive disorder (Whiteside et al., 2004; Atmaca et al., 2007),
in decision making and in expectation rewarding (Kringelbach,
2005), all of which are affected in ASD. Here, the cortical
thickness of this structure is found to be greater in ASD than
in TD, which confirms the findings of Carper and Courchesne
(2005); in addition, asTable 3 suggests, this brain feature partially
mediates the ASD diagnosis-by-sex interaction. The straight

gyrus (gyrus rectus) is involved in attentional control and its
functions are tightly integrated with those of orbital cortex
(Nestor et al., 2015); we find this structure to exhibit bilateral
structural abnormalities in ASD, and the left straight gyrus is
found to mediate the statistical interaction of ASD diagnosis and
sex. The inferior frontal gyrus, which overlaps with Broca’s area
(Brodmann’s areas 44 and 45) is heavily involved in expressive
language function, which is negatively impacted by ASD (Redcay,
2008). The shape of this structure was previously found to be
abnormal in autism (Levitt et al., 2003; Nordahl et al., 2007);
and the findings of the present study indicate that, in the left
hemisphere, the CD of this gyrus is significantly lower in ASD
than in TD. This parallels, to some extent, the communication-
related deficits observed in ASD patients (Redcay, 2008). Because
Jiao et al. (2010) reported the inferior frontal gyrus as exhibiting
significantly thinner GM in ASD than in TD, our findings and
those of Jiao et al. together suggest that ASD-related structural
abnormalities in this region may be modulated simultaneously
by both WM connectivity and GM structure. This hypothesis
is supported by the results of Pardini et al. (2009), who
found differences in the mean FA of WM tractography bundles
connecting the inferior dorsolateral and orbitofrontal cortices of
ASD patients to the rest of the brain. It should be noted that this
region was previously identified by Ecker et al. (2010) as being
particularly important for distinguishing between ASD and TD
volunteers when using SVMs.

Concerning temporal lobe structures, it has been proposed
that the temporal pole is involved in social cognition (Schultz,
2005) and that it exhibits lower structural connectivity in
ASD compared to TD (Roine et al., 2015). Its role in ASD-
related resting-state functional connectivity abnormalities is also
prominent (Venkataraman et al., 2015), and Table 3 indicates

that the cortical thickness of the right temporal pole in greater in
TD than in ASD, in agreement with findings from other studies
(Boddaert et al., 2004; Jiao et al., 2010). The parahippocampal

gyrus, which play an important role in contextual fear and
in the interactions between emotion and cognition (Ke et al.,
2008), is found to be bilaterally and significantly smaller in
ASD, which confirms previous findings by other researchers
(Ecker et al., 2010; Jiao et al., 2010). The functions of this
structure are intimately related to those of the superior temporal

gyrus, which is implicated in social behavior according to
several lines of evidence provided by animal studies, human
lesion research, and by functional imaging (Adolphs, 2001). The
present study indicates that the curvature of this structure is
abnormal in ASD, a conclusion which is supported by previous
studies (Levitt et al., 2003; Nordahl et al., 2007). It is important
to note that our findings appear to be congruent with those
reported recently by Ecker et al. (2017); these researchers found
spatial clusters of significant sex-by-diagnosis interaction when
comparing the cortical thickness of ASD subjects to that of HC
individuals. Despite confounds—e.g., children in our study vs.
adults in Ecker et al.’s—it is interesting that both studies found
the sex-by-diagnosis interaction to be mediated by structural
brain differences localized in the ventral and medial aspects of
the temporal lobe (e.g., temporal pole, parahippocampal area,
superior temporal gyrus). These are regions implicated in the
ventral processing stream of attention, working memory, and
salience (Hickok and Poeppel, 2004), on whose developmental
stages little is known even though the cognitive processes
associated with this stream are frequently affected in ASD
(Gathers et al., 2004). Whereas the dorsal stream appears
to experience problematic developmental trajectories in ASD
(Spencer et al., 2000), it is not well understood whether these
trajectories are modulated by the interaction of ASD diagnosis
and sex. Future studies should test the hypothesis that, in
ASD, the structural features of brain areas recruited by the
ventral processing stream may reflect functional abnormalities
modulated by the interaction of ASD diagnosis with sex.

Pertaining to the limbic lobe, the isthmus of the right
cingulate gyrus is found to have a larger volume in ASD,
which confirms the findings of Jiao et al. (2010). This structure
connects the limbic lobe to the parahippocampal gyrus and
plays an important role in the encoding of memories associated
with executive function and cognitive control, both of which
are affected by ASD (Hadland et al., 2003). The pericallosal

sulcus, which is anatomically adjacent to the cingulate gyrus
and functionally related to it, is found here to have a larger
area in ASD patients compared to TD subjects. This is perhaps
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TABLE 3 | SVM-identified brain structure measures which can together distinguish among patients based on their diagnosis (i.e., ASD vs. TD, Welch’s T test) or on the

interaction between sex and diagnosis (two-way ANOVA).

Diagnosis Diagnosis × Sex

Anatomic structure Hemisphere Measure t d. f. p F(3, 189) p

FRONTAL LOBE

Medial orbital sulcus Right Thickness 2.388 189.649 0.018* 3.113 0.027*

Straight gyrus Right CD 2.124 187.787 0.035* 2.351 0.074*

Left Thickness 2.150 183.505 0.033* 3.409 0.019*

Left Volume 2.190 186.758 0.030* 4.618 0.004*

Inferior frontal gyrus, orbital part Left CD −2.138 170.856 0.034* 2.655 0.050*

TEMPORAL LOBE

Temporal pole Left Curvature 2.909 190.090 0.004* 3.929 0.009*

Right Thickness −1.971 183.857 0.049* 2.883 0.037*

Parahippocampal gyrus Right Volume −2.026 166.292 0.044* 3.394 0.019*

Left Volume −2.304 190.792 0.022* 2.254 0.083*

Superior temporal gyrus Right Curvature 2.080 182.553 0.039* 3.052 0.030*

LIMBIC LOBE

Isthmus of the cingulate gyrus Right Volume 2.276 188.168 0.024* 3.606 0.014*

Left Area 2.543 186.679 0.012* 3.002 0.032*

Pericallosal sulcus Left Area 2.318 178.371 0.022* 2.320 0.077*

Right Area 1.962 189.338 0.049* 1.271 0.285*

OCCIPITAL LOBE

Cuneus Right Area 2.223 186.596 0.027* 3.676 0.013*

Left Area 1.957 185.521 0.049* 1.976 0.119*

Superior and transverse occipital sulci Left CD 2.069 181.599 0.040* 1.837 0.142*

Occipital pole Right Area 2.454 190.459 0.015* 4.570 0.004*

Left Area 2.443 180.449 0.016* 3.536 0.016*

In the first case (diagnosis), a posteriori statistical analysis indicates that all identified measures exhibit statistically significant differences between the study (ASD) group and the control

(TD) group. Welch’s T-test with a significance level of α < 0.05 was used; t statistics, the associated d. f. and p-values are reported. A positive t statistic indicates that a corresponding

measure’s mean over the study (ASD) group is significantly larger than its mean over the control (TD) group. A negative t statistic indicates the reverse. To estimate the d. f., Welch’s

T-test relies on the Welch-Satterthwaite approximation, which involves the variances of the two samples. Thus, unlike in the case of Student’s T-test, the d. f. of Welch’s T test can differ

whenever sample variances also differ. In the second case (diagnosis × sex interaction), a two-way ANOVA (factors: ASD diagnosis, sex) was used to identify the brain features which,

in addition to being able to distinguish ASD from TD subjects, can also distinguish these subjects based on their sex. In this second analysis, the F statistic has 3 and 189 d. f. In both

analyses, the null hypothesis is rejected at a significance level α < 0.05 subject to a multiple comparison correction, and statistically significant p-values are marked with an asterisk.

unsurprising given the abundance of evidence to the effect that
the structural properties of the corpus callosum are substantially
different in ASD compared to TD (Hardan et al., 2000; Barnea-
Goraly et al., 2004; Herbert et al., 2004; Alexander et al., 2007; Just
et al., 2007). A neuroimaging study meta-analysis undertaken by
Stanfield et al. (2008) identified substantial consensus in the ASD
literature to the effect that the volume of the corpus callosum is
smaller in ASD compared to TD (Pua et al., 2017). A relatively
thin corpus callosum implies that the distance between it and the
cingulate gyrus is longer; however, since the grove between the
two structures is the pericallosal sulcus, our finding is consistent
with the notion that the latter region has a larger area in ASD.

It is widely acknowledged that the GM of the occipital lobes
is thicker in ASD than in TD (Pua et al., 2017). For example,
both Libero et al. (2015) and Zielinski et al. (2014) report that the
cuneus has greater cortical thickness in ASD. The latter study also
indicates that the transverse occipital sulci and occipital poles

exhibit thicker cortex in ASD. These findings are consistent with
our own, which indicate that the surface areas of these structures
are larger in ASD compared to TD. The finding according to

which ASD patients have greater CD in the transverse occipital
sulci is, to our knowledge, new. Because our findings indicate
that the surface area of the right cuneus and occipital poles
are larger in ASD females than in ASD males—with no such
difference being present in TD volunteers—these features may
potentially contribute to explaining the interaction between
ASD diagnosis and sex. The cunei of both ASD and non-ASD
males with highly-repetitive behaviors appear to share structural
abnormalities (Focquaert and Vanneste, 2015). Thus, sex-related
structural differences in the right cuneus are consistent with
previous observations regarding male ASD patients exhibiting
more repetitive behavior than female ASD patients (Hartley and
Sikora, 2009).

In their review of ASD neuroanatomy, Amaral et al. (2008)
lamented the paucity of ASD neuroimaging studies which
have adequately-sized samples and proposed that brain imaging
studies of ASD should include hundreds of subjects of both
sexes.Whereas, a substantial fraction of older ASD neuroimaging
studies involve sample sizes as low as ∼10 to ∼30, the present
study is based on MRI and DTI volumes acquired from 193

Frontiers in Computational Neuroscience | www.frontiersin.org 9 November 2018 | Volume 12 | Article 93

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Irimia et al. SVM and MDS for ASD Neuroimaging

volunteers. Presumably, this lends much more credence to
our findings relative to those of underpowered studies and
additionally allows us to more confidently evaluate the merits of
SVMs for distinguishing ASD patients fromTD subjects based on
their neuroanatomic descriptors.

Few previous studies have used ML (in general) and SVMs
(in particular) to distinguish between ASD patients and TD
volunteers, as well as between individuals of either sex within
these populations. Ecker et al. (2010) used an SVM classifier
to investigate the predictive value of whole-brain structural
volumetric differences between ASD and TD volunteers and
obtained a classification accuracy of 81% (compared to ∼93%
in the present study) based on cross-validation in a sample
which was considerably smaller than ours (N = 44 vs. N
= 193 in our case). Compared to our study, Ecker at al.
identified a considerably greater number of brain regions which
played an important role in distinguishing ASD from TD
using SVMs. Furthermore, though our study and theirs agree
in identifying medial frontal areas, the inferior frontal gyrus
and the parahippocampal gyrus as being important for SVM
classification of ASD and TD volunteers, there are discrepancies
between our findings and theirs regarding the utility of various
neuroanatomic descriptors to the classification process. These
and other differences between the two studies could be due to
a variety of factors, including (1) heterogeneity across the two
samples, (2) differences in the inclusion and/or exclusion criteria,
(3) differences between SVM implementations, (4) the sample
size difference between the two studies, potentially leading
to (5) insufficiently broad sampling of the ASD population
in the study with the smaller sample, (6) bias in accurately
identifying the neuroanatomic descriptors which are most
useful for the purpose of SVM classification, etc. Although
the design of an SVM based on the exact parameters adopted
by Ecker et al. could provide additional insight into our own
results, these two studies’ analysis streams and dimensionality
reduction techniques differed substantially and likely influenced
SVM results appreciably. To provide but one example, we
performed dimensionality reduction via PCA whereas Ecker
et al. implemented recursive feature elimination with leave-one-
out cross-validation. For this reason, it may be misleading to
compare the two studies based on SVM design alone; rather, a
full replication of the work by Eckert et al. may be necessary to
undertake a fair comparison of the two studies. The potential

existence of the confounds listed above, however, suggests that
further research should be undertaken to understand whether
and how ML—and SVMs, in particular—can best be utilized to
identify structural brain differences between ASD and TD and
between individuals of different sex within these populations.

In conclusion, the present study fills important gaps in the
ASD neuroimaging literature and is important because it (1) uses
a sample size which is larger than in many previous studies on
the topic at hand, (2) suggests useful neuroanatomic measures
which are broadly descriptive of ASD-related structural brain
abnormalities, (3) accurately identifies such measures whose
importance has already been acknowledged by a variety of other
studies, (4) uses SVMs to confirm the results of these previous
studies which were based on standard statistical approaches, and
therefore (5) provides confirmatory evidence to the effect that
SVMs are powerful tools for the study of structural abnormalities
in ASD.
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