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Recent neurophysiological and computational studies have proposed the hypothesis that

our brain automatically codes the nth-order transitional probabilities (TPs) embedded in

sequential phenomena such as music and language (i.e., local statistics in nth-order

level), grasps the entropy of the TP distribution (i.e., global statistics), and predicts the

future state based on the internalized nth-order statistical model. This mechanism is

called statistical learning (SL). SL is also believed to contribute to the creativity involved

in musical improvisation. The present study examines the interactions among local

statistics, global statistics, and different levels of orders (mutual information) in musical

improvisation interact. Interactions among local statistics, global statistics, and hierarchy

were detected in higher-order SL models of pitches, but not lower-order SL models of

pitches or SL models of rhythms. These results suggest that the information-theoretical

phenomena of local and global statistics in each order may be reflected in improvisational

music. The present study proposes novel methodology to evaluate musical creativity

associated with SL based on information theory.

Keywords: creativity, Markov model, N-gram, improvisation, statistical learning, machine learning, uncertainty,

entropy

INTRODUCTION

Statistical Learning in the Brain: Local and Global Statistics
The notion of statistical learning (SL) (Saffran et al., 1996), which includes both informatics
and neurophysiology (Harrison et al., 2006; Pearce and Wiggins, 2012), involves the hypothesis
that our brain automatically codes the nth-order transitional probabilities (TPs) embedded in
sequential phenomena such as music and language (i.e., local statistics in nth-order levels)
(Daikoku et al., 2016, 2017b,c; Daikoku and Yumoto, 2017), grasps the entropy/uncertainty of
the TP distribution (i.e., global statistics) (Hasson, 2017), predicts the future state based on the
internalized nth-order statistical model (Daikoku et al., 2014; Yumoto and Daikoku, 2016), and
continually updates the model to adapt to the variable external environment (Daikoku et al.,
2012, 2017d). The concept of brain nth-order SL is underpinned by information theory (Shannon,
1951) involving n-gram or Markov models. TP (local statistics) and entropy (global statistics) are
used to estimate the statistical structure of environmental information. The nth-order Markov
model is a mathematical system based on the conditional probability of sequence in which the
probability of the forthcoming state is statistically defined by the most recent n state (i.e., nth-order
TP). A recent neurophysiological study suggested that sequences with higher entropy are learned
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based on higher-order TP whereas those with lower entropy
are learned based on lower-order TP (Daikoku et al., 2017a).
Another study suggested that certain regions or networks
perform specific computations of global statistics (i.e., entropy)
that are independent of local statistics (i.e., TP) (Hasson, 2017).
Few studies, however, have investigated how perceptive systems
of local and global statistics interact. It is important to examine
the entire process of brain SL in both computational and
neurophysiological areas (Daikoku, 2018b).

Statistical Learning and Information Theory
Local Statistics: Nth-Order Transitional Probability
Research suggests that there are two types of coding systems
involved in brain SL (see Figure 1): nth-order TPs (local statistics
at various order levels) (Daikoku et al., 2017a; Daikoku, 2018a)
and uncertainty/entropy (global statistics) (Hasson, 2017). The
TP is the conditional probability of an event B, given that the
most recent event A has occurred—this is written as P(B|A). The
nth-order TP distributions sampled from sequential information
such as music and language can be expressed by nth-order
Markov models (Markov, 1971). The nth-order Markov model
is based on the conditional probability of an event en+1, given
the preceding n events based on Bayes’ theorem [P(en+1|en)].
From a psychological viewpoint, the formula can be interpreted
as positing that the brain predicts a subsequent event en+1 based
on the preceding events en in a sequence. In other words, learners
expect the event with the highest TP based on the latest n
states, and are likely to be surprised by an event with lower TP.
Furthermore, TPs are often translated as information contents
[ICs, -log21/P(en+1|en)], which can be regarded as degrees of
surprising and predictable (Pearce and Wiggins, 2006). A lower
IC (i.e., higher TPs) means higher predictability and smaller
surprise whereas a higher IC (i.e., lower TPs) means lower
predictability and larger surprise. In the end, a tone with lower IC
may be one that a composer is more likely to predict and choose
as the next tone compared to tones with higher IC. IC can be used
in computational studies of music to discuss the psychological
phenomena involved in prediction and SL.

Global Statistics: Entropy and Uncertainty
Entropy (i.e., global statistics, Figure 1) is also used to understand
the general predictability of a sequence (Manzara et al.,
1992; Reis, 1999; Cox, 2010). It is calculated from probability
distribution, interpreted as uncertainty (Friston, 2010), and used
to evaluate the neurophysiological effects of global SL (Harrison
et al., 2006) as well as decision making (Summerfield and
de Lange, 2014), anxiety (Hirsh et al., 2012), and curiosity
(Loewenstein, 1994). A previous study reported that the neural
systems of global SL were partially independent of those of local
SL (Hasson, 2017). Furthermore, reorganization of learned local
statistics requires more time than the acquisition of new local
statistics, even if the new and previously acquired information
sets have equivalent entropy levels (Daikoku et al., 2017d).
Some articles, however, suggest that the global statistics of
sequencemodulate local SL (Daikoku et al., 2017a). Furthermore,
uncertainty of auditory and visual statistics is coded by modality-
general, as well as modality-specific, neural systems (Strange

FIGURE 1 | Relationship between order of transitional probabilities, entropy,

conditional entropy, and MI illustrated using a Venn diagram. The degree of

dependence on Xi for Xi+1 is measured by MI (MI (I(X;Y)) = entropy (H(Xi+1)] –

conditional entropy [H(Xi+1 |Xi ))). The MI of sequences in this figure is more

than 0. Thus, each event Xi+1 in the sequence is dependent on a preceding

event Xi .

et al., 2005; Nastase et al., 2014). This suggests that the neural
basis that codes global statistics, as well as local statistics, is a
domain-general system. Although domain-general and domain-
specific learning system in the brain are under debate (Hauser
et al., 2002; Jackendoff and Lerdahl, 2006), there seems to be
neural and psychological interactions in perceptions between
local and global statistics.

Depth: Mutual Information
Mutual information (MI) and pointwise MI (PMI) are measures
of the mutual dependence between two variables. PMI refers to
each event in sequence (local dependence), and MI refers to the
average of all events in the sequence (global dependence). In the
framework of SL based on TPs [P(en+1|en)], MI explains how
an event en+1 is dependent on the preceding event en. Thus,
MI is key to understanding the order of SL. For example, a
typical oddball sequence consisting of a frequent stimulus with
high probability of appearance and a deviant stimulus with low
probability of appearance has weak dependence between two
adjacent events (en, en+1) and shows low MI, because event en+1

appears independently of the preceding events en. In contrast, an
SL sequence based on TPs, but not probabilities of appearance,
has strong dependence on the two adjacent events and shows
larger MI. For example, a typical SL paradigm that consists of
the concatenation of pseudo-words with three stimuli has large
MI until second-order Markov or tri-grammodels [i.e., P(C|AB)]
whereas it has low MI from third-order Markov or four-gram
models [i.e., P(D|ABC)]. Thus, MI is sometimes used to evaluate
levels of SL in both neurophysiological (Harrison et al., 2006) and
computational studies (Pearce et al., 2010). In sum, the three
types of information-theoretical evaluations of SL models (i.e.,
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IC, entropy, and MI) can be explained in terms of psychological
aspects. (1) IC reflects local statistics. A tone with lower IC
(i.e., higher TPs) may be one that a composer is more likely
to predict and choose as the next tone compared to tones
with higher IC. (2) Entropy reflects global statistics and is
interpreted as the uncertainty of whole sequences. (3) MI
reflects the levels of orders in statistics and is interpreted as
the dependence of preceding sequential events in SL. Using
them, the present study investigated how local statistics, global
statistics, and the levels of the orders in musical improvisation
interact.

Musical Improvisation
Implicit statistical knowledge is considered to contribute to
the creativity involved in musical composition and musical
improvisation (Pearce and Wiggins, 2012; Norgaard, 2014;
Wiggins, 2018). Additionally, it is widely accepted that implicit
knowledge causes a sense of intuition, spontaneous behavior,
skill acquisition based on procedural learning, and creativity,
and is also closely tied to musical expression, such as
composition, playing, and intuitive creativity. Particularly, in
musical improvisation, musicians are forced to express intuitive
creativity and immediately play their own music based on
long-term training associated with procedural and implicit
learning (Clark and Squire, 1998; Ullman, 2001; Paradis,
2004; De Jong, 2005; Ellis, 2009; Müller et al., 2016). Thus,
compared to other types of musical composition in which a
composer deliberates and refines a composition scheme for
a long time based on musical theory, the performance of
musical improvisation is intimately bound to implicit knowledge
because of the necessity of intuitive decision making (Berry
and Dienes, 1993; Reber, 1993; Perkovic and Orquin, 2017)
and auditory-motor planning based on procedural knowledge
(Pearce et al., 2010; Norgaard, 2014). This suggests that the
stochastic distribution calculated from musical improvisation
may represent themusicians’ implicit knowledge and creativity in
music that has been developed via implicit learning. Few studies
have investigated the relationship betweenmusical improvisation
and implicit statistical knowledge. The present study, using real-
world improvisational music, first proposed a computational
model of musical creativity in improvisation based on TP
distribution, and examined how local statistics, global statistics,
and hierarchy in music interact.

METHODS

Extraction of Spectral and Temporal
Information
General Methodologies
The three musicians of William John Evans (Autumn Leaves
from Portrait in Jazz, 1959; Israel from Explorations, February
1961; I Love You Porgy from Waltz for Debby, June 1961;
Stella by Starlight from Conversations with Myself, 1963; Who
Can I Turn To? from Bill Evans at Town Hall, 1966; Someday
My Prince Will Come from the Montreux Jazz Festival, 1968;
A Time for Love from Alone, 1969), Herbert Jeffrey Hancock
(Cantaloupe Island from Empyrean Isles, 1964; Maiden Voyage

from Flood, 1975; Someday My Prince Will Come from The
Piano, 1978; Dolphin Dance from Herbie Hancock Trio ’81,
1981; Thieves in the Temple from The New Standard, 1996;
Cottontail from Gershwin’s World, 1998; The Sorcerer from
Directions in Music, 2001), and McCoy Tyner (Man from
Tanganyika from Tender Moments, 1967; Folks from Echoes of
a Friend, 1972; You Stepped Out of a Dream from Fly with
the Wind, 1976; For Tomorrow from Inner Voice; 1977; The
Habana Sun from The Legend of the Hour, 1981; Autumn Leaves
from Revelations, 1988; Just in Time from Dimensions, 1984)
were used in the present study. The highest pitches with length
were extracted based on the following definitions: the highest
pitches that can be played at a given point in time, pitches
with slurs that can be counted as one, and grace notes were
excluded. In addition, the rests that were related to highest-
pitch sequences were also extracted. This spectral and temporal
information were divided into four types of sequences: [1]
a pitch sequence without length and rest information (i.e.,
pitch sequence without temporal information); [2] a temporal
sequence without pitch information (i.e., temporal sequence
without pitches); [3] a pitch sequence with length and rest
information (i.e., pitch sequence with temporal information); and
[4] a temporal sequence with pitch information (i.e., temporal
sequence with pitches).

Pitch Sequence Without Temporal Information
For each type of pitch sequence, all of the intervals were
numbered so that an increase or decrease in a semitone was
1 and −1 based on the first pitch, respectively. Representative
examples were shown in Figure 2. This revealed the relative
pitch-interval patterns but not the absolute pitch patterns. This
procedure was used to eliminate the effects of the change in key
on transitional patterns. Interpretation of the key change depends
on the musician, and it is difficult to define in an objective
manner. Thus, the results in the present study may represent a
variation in the statistics associated with relative pitch rather than
absolute pitch.

Temporal Sequence Without Pitches
The onset times of each note were used for analyses. Although,
note onsets ignore the length of notes and rests, this methodology
can capture the most essential rhythmic features of the music
(Povel, 1984; Norgaard, 2014). To extract a temporal interval
between adjacent notes, all onset times were subtracted from the
onset of the preceding note. Then, for each type of temporal
sequence, the second to last temporal interval was divided by
the first temporal interval. Representative examples are shown in
Figure 2. This revealed relative rhythm patterns but not absolute
rhythm patterns; it is independent of the tempo of each piece of
music.

Pitch Sequence With Temporal Information
The two methodologies of pitch and temporal sequences were
combined. For each type of sequence, all of the intervals were
numbered so that an increase or decrease in a semitone was 1
and −1 based on the first pitch, respectively. Additionally, for
each type of pitch sequence, all onset times were subtracted from
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FIGURE 2 | Representative phrases of each type of transition pattern. Red: pitch transition, Blue: rhythm (temporal) transition. (A) Pitch; (B) Rhythm.

the onset of the preceding note, and the second to last temporal
intervals were divided by the first temporal interval. The
representative examples were shown in Figure 2. On the other
hand, a temporal interval of first-order model was calculated
as a ratio to the crotchet (i.e., quarter note), because only a
temporal interval is included for each sequence and the note
length cannot be calculated as a relative temporal interval. Thus,
the patterns of pitch sequence (p) with temporal information (t)
were represented as [p] with [t].

Temporal Sequence With Pitches
Themethodologies of sequence extraction were the same as those
of the pitch sequence with rhythm (see Figure 2), whereas the
TPs of the rhythm, but not pitch, sequences were calculated as a
statistic based onmulti-orderMarkov chains. The probability of a
forthcoming temporal interval with pitch was statistically defined
by the last temporal interval with pitch to six successive temporal
interval with pitch (i.e., first- to six-order Markov chains). Thus,
the relative pattern of temporal sequence (r) with pitches (p) were
represented as [t] with [p].

Modeling and Analysis
The TPs of the sequential patterns were calculated based on
0th−5th-order Markov chains. The nth-order Markov chain is
the conditional probability of an event en+1, given the preceding
n events based on Bayes’ theorem:

P (en+1|en) =
P(en+1 ∩ en)

P(en)
(1)

The ICs (I[en+1|en]) and conditional entropy [H(B|A)] in
the nth-order TP distribution (hereafter, Markov entropy)
were calculated using TPs in the framework of information
theory.

I (en+1|en) = log2
1

P (en+1|en)
(bit) (2)

H (B|A) = −
∑

i

∑

j

P(ai)P
(

bj
∣

∣ai
)

log2 P
(

bj
∣

∣ai
)

(bit)(3)

where P(bj|ai) is a conditional probability of sequence “ai bj.”
Then, MI [I(X;Y)] were calculated in 1st-, 2nd-, and 3rd-
order Markov models. MI is an information theoretic measure
of dependency between two variables (Cover and Thomas,
1991). The MI of two discrete variables X and Y can be
defined as

I(X;Y) =
∑

y∈Y

∑

x∈X
p
(

x, y
)

log (
p(x, y)

p(x)p(y)
) (bit) (4)

where p(x,y) is the joint probability function of X and Y, and p(x)
and p(y) are the marginal probability distribution functions of
X and Y, respectively. From entropy values, the MI can also be
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expressed as

I (X;Y) =
∑

x,y
p
(

x, y
)

log (
p(x, y)

p(x)p(y)
)

=
∑

x,y
p
(

x, y
)

log (
p(x, y)

p(x)
)−

∑

x,y
p
(

x, y
)

log p(y)

=
∑

x,y
p (x) p(y|x) log p(y|x)−

∑

x,y
log p

(

y
)

p(x, y)

=
∑

x
p (x)

(

∑

y
p
(

y
∣

∣x
)

log p
(

y
∣

∣x
)

)

−
∑

y
log p(y)(

∑

x
p(x, y))

= −
∑

x
p (x)H (Y|X = x) −

∑

y
p
(

y
)

log p(y)

= −H (Y|X) + H (Y)

= H (Y) −H (Y|X)
(

bit
)

(5)

where H(X) and H(Y) are the marginal entropies, H(X|Y)
and H(Y|X) are the conditional entropies, and H(X,Y) is the
joint entropy of X and Y (Figure 1). Based on psychological
and information-theoretical concepts, the Equation (5) can be
regarded that the amount of entropy (uncertainty) remaining
about Y after X is known. That is, the MI is corresponding
to reduction in entropy (uncertainty). Then, the transitional
patterns with 1st−20th highest TPs in all musicians, which
show higher predictabilities in each musician, were used as local
statistics of familiar phrases. The applied familiar phrases and the
TPs were shown in Supplementary material. The TPs of familiar
phrases were averaged. Repeated-measure analysis of variances
(ANOVAs) with factors of order and type of sequence were
conducted in each IC, entropy, and MI. Furthermore, the global
statistics andMI in each order were compared with local statistics
of familiar phrases by Pearson’s correlation analysis. Statistical
significance levels were set at p= 0.05 for all analyses.

RESULTS

Local vs. Global Statistics
The means of IC, conditional entropy, and mutual information
were shown in Figure 3. The means of IC, conditional entropy,
and mutual information were shown in Figure 3. The main
sequence effect were significant [IC: F(2.39, 47.89) = 1010.07,
p < 0.001, partial η

2 = 0.98; Entropy: F(1.20, 23.92) = 828.82,
p < 0.001, partial η

2 = 0.98; MI: F(2.00, 39.91) = 225.54,
p < 0.001, partial η

2 = 0.92] (Table 1). The main order effect
were significant [IC: F(2.05, 40.93) = 2909.59, p < 0.001, partial
η
2 = .99; Entropy: F(1.55, 31.03) = 2166.02, p < 0.001, partial

η
2 = 0.99; MI: F(1.68, 33.59) = 2468.35, p < 0.001, partial

η
2 = 0.99] (Table 1). The order-sequence interactions were

significant [IC: F(3.39, 67.76) = 592.24, p< 0.001, partial η2 = 0.97;
Entropy: F(2.25, 44.94) = 282.95, p < 0.001, partial η2 = 0.93; MI:
F(1.82, 36.45) = 351.48, p < 0.001, partial η2 = 0.95)] (Table 1).

Local vs. Global Statistics
All of the results in correlation analysis are shown in Figure 4.
In pitch sequence without temporal information, 1st−5th-
order models showed that the conditional entropies of the TP

distributions were moderately (0.4 ≦ |r| <0.7) related to the ICs
of TPs of familiar phrases (1st: r = 0.65, p= 0.001; 2nd: r = 0.66,
p = 0.001; 3rd: r = 0.63, p = 0.002; 4th: r = 0.66, p = 0.001;
5th: r = 0.69, p = 0.001). In pitch sequence with temporal
information, 1st-, 4th, and 5th-order models showed that the
conditional entropies of the TP distributions were moderately
(0.4 ≦ |r| <0.7) related to the ICs of TPs of familiar phrases (1st:
r = 0.58, p = 0.006; 4th: r = 0.49, p = 0.023; 5th: r = 0.43,
p = 0.049), and 2nd- and 3rd-order models showed that the
conditional entropies of the TP distributions were strongly (0.7
≦ |r| <1.0) related to the ICs of TPs of familiar phrases (2nd:
r = 0.73, p < 0.001; 3rd: r = 0.82, p < 0.001). In temporal
sequence with pitches, 0th−5th-order models showed that the
conditional entropies of the TP distributions were moderately
(0.4 ≦ |r| <0.7) related to the ICs of TPs of familiar phrases (0th:
r = 0.68, p = 0.001; 1st: r = 0.61, p = 0.004; 2nd: r = 0.72,
p < 0.001; 3rd: r = 0.45, p = 0.043; 4th: r = 0.45, p = 0.004;
5th: r = 0.47, p= 0.003).

Local Statistics vs. Hierarchy
All of the results are shown in Figure 5. In pitch sequence without
temporal information, 3rd−5th-order models showed that the
MI of the TP distributions were moderately (0.4 ≦ |r| <0.7)
related to the ICs of TPs of familiar phrases (3rd: r = 0.45,
p = 0.043; 4th: r = 0.45, p = 0.043; 5th: r = 0.47, p = 0.03).
In pitch sequence with temporal information, 2nd- and 3rd-
order models showed that the MI of the TP distributions were
moderately (0.4 ≦ |r| <0.7) related to the ICs of TPs of familiar
phrases (2nd: r = 0.44, p= 0.046; 3rd: r = 0.49, p= 0.025).

DISCUSSION

Psychological Notions of Information
Theory
The present study investigated how local statistics (TP and IC),
global statistics (conditional entropy), and levels of orders (MI) in
musical improvisation interact. The TP, IC, conditional entropy,
and MI can be calculated based on Markov models, which are
also applied to psychological and neurophysiological studies on
SL (Harrison et al., 2006; Furl et al., 2011; Daikoku, 2018b).
Based on psychological and neurophysiological studies on SL
(Harrison et al., 2006; Pearce et al., 2010; de Zubicaray et al.,
2013; Daikoku et al., 2015;Monroy et al., 2017), these three pieces
of information can be translated to psychological indices: a tone
with lower IC (i.e., higher TPs) may be one that a composer is
more likely to predict and choose as the next tone compared to
tones with higher IC whereas entropy and MI are interpreted as
the global predictability of the sequences and the levels of order
for the prediction, respectively. Previous studies also suggest that
musical creativity in part depends on SL (Pearce, 2005; Pearce
et al., 2010; Omigie et al., 2012, 2013; Pearce and Wiggins, 2012;
Hansen and Pearce, 2014; Norgaard, 2014), and that musical
training and experience is associated with the cognitive model
of probabilistic structure in the music involved in SL (Pearce,
2005; Pearce andWiggins, 2006, 2012; Pearce et al., 2010; Omigie
et al., 2012, 2013; Hansen and Pearce, 2014; Norgaard, 2014). The
present study, using improvisational music by three musicians,
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FIGURE 3 | The means of information content (IC), Conditional entropy, and mutual information (MI). Error bars represent standard errors of the means. P, pitch

sequence; R, rhythm sequence; PwR, pitch sequence with rhythms; RwP, rhythm sequence with pitches.

examined how local and global statistics embedded in music
interact, and discussed them from the interdisciplinary viewpoint
of SL.

Local vs. Global Statistics
In pitch sequence with and without temporal information,
higher-order (1st−5th order) models detected positive
correlations between global (conditional entropy) and local
statistics (IC) in musical improvisation whereas no significance
was detected in a lower-order (0th order) model. To understand
the local statistics of familiar phrases, the present study used
only the transitional patterns that showed the 1st−20th highest
TPs for all musicians, which can be interpreted as higher
predictabilities for each musician. Thus, the results suggest
that, when the TPs of familiar phrases are decreased, the
conditional entropy (uncertainty) of the entire TP distribution
is increased. This finding is mathematically and psychologically

reasonable. When improvisers are attempting to use various
types of phrases, the variability of sequential patterns is
increasing. In the end, the ICs (degree of surprise) of familiar
phrases are positively correlated with the conditional entropy
(uncertainty) of the entire sequential distribution. It is of note
that this correlation could not be detected in a lower-order
(0th order) model, and that no correlation was detected in
a temporal sequence without pitches. This suggests that the
interaction between local and global statistics may be stronger
in the SL of spectral sequence compared to that of temporal
sequence. Furthermore, these correlations may be detectable
in higher-order models. This may suggest that higher-order SL
can connect with grasping entropy. In sum, skills of musical
improvisation and intuition may strongly depend on SL of pitch
compared with that of rhythm. In addition, this phenomenon
on intuition may occur in higher-, but not lower-order levels
in SL. The higher-order SL model of pitches may be important
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TABLE 1 | ANOVA results.

A. MAIN EFFECT

IC Entrophy MI

Diff p-value Diff p-value Diff p-value

Sequence P R 0.09 0.043 0.28 <0.001 0.94 <0.001

PwR 0.78 <0.001 0.51 <0.001 0.16 0.021

RwP 1.25 <0.001 1.27 <0.001 1.89 <0.001

R PwR 0.69 <0.001 0.23 <0.001 −0.78 <0.001

RwP 1.16 <0.001 0.99 <0.001 0.95 <0.001

PwR RwP 0.47 <0.001 0.76 <0.001 1.72 <0.001

Order 0th 1st 2.26 <0.001 1.04 <0.001

2nd 2.73 <0.001 1.83 <0.001

3rd 2.97 <0.001 2.23 <0.001

4th 3.05 <0.001 2.39 <0.001

5th 3.09 <0.001 2.46 <0.001

1st 2nd 0.47 <0.001 0.79 <0.001 −0.79 <0.001

3rd 0.71 <0.001 1.19 <0.001 −1.19 <0.001

4th 0.79 <0.001 1.35 <0.001 −1.35 <0.001

5th 0.83 <0.001 1.42 <0.001 −1.42 <0.001

2nd 3rd 0.24 <0.001 0.4 <0.001 −0.4 <0.001

4th 0.33 <0.001 0.56 <0.001 −0.56 <0.001

5th 0.36 <0.001 0.64 <0.001 −0.64 <0.001

3rd 4th 0.09 <0.001 0.16 <0.001 −0.16 <0.001

5th 0.12 <0.001 0.24 <0.001 −0.24 <0.001

4th 5th 0.03 0.001 0.07 <0.001 −0.07 <0.001

B. INTERACTION

IC Entropy MI

Order Sequence Diff p-value Diff p–value Diff p-value

0th P R −0.54 0.009 1.06 <0.001

PwR 3.51 <0.001 0.65 <0.001

RwP 4.66 <0.001 2.84 <0.001

R PwR 4.05 <0.001 −0.42 0.016

RwP 5.24 <0.001 1.78 <0.001

PwR RwP 1.15 <0.001 2.2 <0.001

1st P R 1.33 <0.001 1.18 <0.001 −0.120 0.356

PwR 0.83 <0.001 1 <0.001 −0.35 <0.001

RwP 1.82 <0.001 2.63 <0.001 0.22 0.039

R PwR −0.56 <0.001 −0.180 0.525 −0.23 0.002

RwP 0.49 <0.001 1.44 <0.001 0.34 <0.001

PwR RwP 0.99 <0.001 1.63 <0.001 0.57 <0.001

2nd P R 0.27 <0.001 0.28 <0.001 0.79 <0.001

PwR 0.26 <0.001 0.84 <0.001 −0.19 0.032

RwP 0.71 <0.001 1.34 <0.001 1.5 <0.001

R PwR −0.010 1.000 0.56 <0.001 −0.98 <0.001

RwP 0.44 <0.001 1.06 <0.001 0.71 <0.001

PwR RwP 0.45 <0.001 0.51 <0.001 1.69 <0.001

3rd P R −0.12 0.022 −0.22 <0.001 1.28 <0.001

PwR 0.050 0.772 0.37 <0.001 0.27 0.002

RwP 0.22 <0.001 0.52 <0.001 2.32 <0.001

R PwR 0.16 0.011 0.59 <0.001 −107 <0.001

RwP 0.33 <0.001 0.74 <0.001 1.04 <0.001

PwR RwP 0.17 <0.001 0.15 <0.001 2.05 <0.001

(Continued)
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TABLE 1 | Continued

IC Entropy MI

Order Sequence Diff p-value Diff p–value Diff p-value

4th P R −0.21 <0.001 −0.33 <0.001 1.39 <0.001

PwR 0.000 1.000 0.15 <0.001 0.5 <0.001

RwP 0.06 0.004 0.2 <0.001 2.64 <0.001

R PwR 0.21 <0.001 0.47 <0.001 −0.89 <0.001

RwP 0.28 <0.001 0.53 <0.001 1.25 <0.001

PwR RwP 0.06 0.011 0.06 <0.001 2.14 <0.001

5th P R −0.17 <0.001 −0.3 <0.001 1.36 <0.001

PwR 0.03 0.027 0.06 <0.001 0.59 <0.001

RwP 0.05 0.009 0.09 <0.001 2.75 <0.001

R PwR 0.2 <0.001 0.36 <0.001 −0.78 <0.001

RwP 0.22 <0.001 0.39 <0.001 1.39 <0.001

PwR RwP 0.020 0.360 0.03 <0.001 2.17 <0.001

IC, information content; MI, mutual information; Diff, mean difference.

P, pitch sequence; R, rhythm sequence; PwR, pitch sequence with rhythms; RwP, rhythm sequence with pitches.

FIGURE 4 | The correlation analysis between conditional entropy (global statistics) and ICs of familiar phrases (local statistics) based on zeroth- to fifth-order Markov

models of pitch and temporal (rhythm) sequences.
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FIGURE 5 | The correlation analysis between MI and ICs of familiar phrases (local statistics) based on zeroth- to fifth-order Markov models of pitch and temporal

(rhythm) sequences.

to grasp the entire process of hierarchical SL in musical
improvisation.

Local Statistics vs. Hierarchy
In pitch sequences without temporal information, higher-order
(3rd−5th order) models showed negative correlations between
dependence of previous events (MI) and local statistics (IC), and
no significance was detected in lower-order (0th−2nd order)
models. This finding is also mathematically and psychologically
reasonable.When players strongly depend on previous sequential
information to improvise music, they tend to use familiar phrases
because familiar phrases with higher TPs P(Xi+1|Xi) tend to
have strong dependence on previous sequential information (Xi).
In the end, the ICs (degree of surprise) of familiar phrases
are decreased when improvisers depend on previous sequential

information that can be detected as larger MIs. Interestingly,
this correlation could not be detected in a lower-order model
(0th order), and no correlation was detected in the temporal
sequence without pitches. As shown in the correlation between
local and global statistics, the interaction between local statistics
and levels of orders may be stronger in the SL of spectral
sequence compared to that of temporal sequence. Furthermore,
these correlations may be detectable in higher-order models.
In contrast, fourth- and fifth-order models of pitch sequence
with temporal information did not show correlations. Thus,
rhythms may modulate the levels of orders in the SL of pitches
in improvisational music (Daikoku, 2018c). This hypothesis may
be supported in the models of temporal sequence with pitches.
No correlation was detected in temporal sequence (Daikoku
et al., 2018) with pitches. Future study is needed to investigate
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how rhythms affect improvisational music, and how the SL
of rhythms interact with those of pitches. It is of note that
the present study did not directly investigate the improviser’s
statistical knowledge of music, as only the statistics of music were
analyzed. However, the transition probabilities shape only a small
part of their respective styles. Future study should investigate
the SL of music from many improvisers using interdisciplinary
approaches of neurophysiology and informatics in parallel. The
methodologies in this study are missing important information
that constructs music such as beat, stresses, and ornamental
note, which inspire the rhythm and intonation. Furthermore,
the present study only analyzed three improvisers. To discuss
universal phenomena in SL associated with improvisation,
future study will be needed to examine a body of pieces of
music.

CONCLUSION

The present study investigated how local statistics (TP and IC),
global statistics (entropy), and levels of orders (MI) in musical
improvisation interact. Generally, the interactions among local
statistics and global statistics were detected in higher-order SL
models of pitches, but not lower-order SL models of spectral
sequence or SL models of temporal sequence. The results

of the present study suggested that information-theoretical
phenomena of local and global statistics in each hierarchy can
be reflected in improvisational music. These results support a
novel methodology to evaluate musical creativity associated with
SL based on information theory.
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