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Cortical networks both in vivo and in vitro sustain asynchronous irregular firings with

extremely low frequency. To realize such self-sustained activity in neural network models,

balance between excitatory and inhibitory activities is known to be one of the keys.

In addition, recent theoretical studies have revealed that another feature commonly

observed in cortical networks, i.e., sparse but strong connections and dense weak

connections, plays an essential role. The previous studies, however, have not thoroughly

considered the cooperative dynamics between a network of such heterogeneous

synaptic connections and intrinsic noise. The noise stimuli, representing inherent nature

of the neuronal activities, e.g., variability of presynaptic discharges, should be also of

significant importance for sustaining the irregular firings in cortical networks. Here, we

numerically demonstrate that highly heterogeneous distribution, typically a lognormal

type, of excitatory-to-excitatory connections, reduces the amount of noise required to

sustain the network firing activities. In the sense that noise consumes an energy resource,

the heterogeneous network receiving less amount of noise stimuli is considered to realize

an efficient dynamics in cortex. A noise-driven network of bi-modally distributed synapses

further shows that many weak and a few very strong synapses are the key feature of the

synaptic heterogeneity, supporting the network firing activity.

Keywords: network firing activity, cortical network, lognormal distribution, excitatory and inhibitory connections,

heterogeneity, synaptic noise

1. INTRODUCTION

Intrinsic neuronal activities in the cortical network are inherently noisy (Tomko and Crapper, 1974;
Softky and Koch, 1993; Shadlen and Newsome, 1994; Faisal et al., 2008; Stiefel et al., 2013). The
so-called spontaneous irregular firings have been characterized by extremely low firing frequency
(Hromádka et al., 2008; Mizuseki and Buzsáki, 2013), high-amplitude membrane potential
fluctuations (Wilson and Kawaguchi, 1996; Destexhe et al., 2001), persistent UP (depolarized)
state of membrane potential (Steriade et al., 2001; Destexhe et al., 2003; Shu et al., 2003a), and
sensitivity to perturbations (London et al., 2010). They have been observed in cortical cell cultures
(Gross et al., 1982; Plenz and Aertsen, 1996; Marom and Shahaf, 2002), brain slices (Mao et al.,
2001; Shu et al., 2003b), and in vivo (Timofeev et al., 2000) even in the absence of external
stimuli. Such randomness is considered to play a key role in various computations in the cortex,
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ranging from sensory perception (Arieli et al., 1996; Tsodyks
et al., 1999), working memory (Fuster, 1995; Wang, 2002;
Compte, 2006), dynamical switching of cortical states (Kenet
et al., 2003) to information propagation (Destexhe and
Contreras, 2006; Kumar et al., 2010). Although detailed cortical
microcircuitry is yet to be explored, theoretical models have
been developed to elucidate the electrophysiological mechanisms
that underlie the spontaneous firing. The modeling approaches
can be roughly classified into two types: externally driven
network dynamics vs. self-sustained network dynamics. In the
externally driven network, individual neurons as well as their
network state are quiescent when no external input is provided.
The network dynamics is activated by external stimuli such as
background noise inputs, which may represent, e.g., variability
of presynaptic discharges of individual cells (Destexhe and
Contreras, 2006). Alternatively, existence of a certain portion
of endogenously active cells within a network of quiescent cells
may also act as external input to maintain the ongoing firing
state (Latham et al., 2000a,b). In the modeling type of self-
sustained network dynamics, on the other hand, interaction
between a network of cortical neurons plays an essential
role for maintaining the intrinsic firing activities. In random
networks of leaky integrate-and-fire neurons, balance between
excitatory and inhibitory activities is shown to be the key to
sustain asynchronous irregular dynamics (van Vreeswijk and
Sompolinsky, 1996; Brunel, 2000) even without external stimuli
(Vogels and Abbott, 2005; Kumar et al., 2008). Modeling the
statistical features of synaptic strengths of cortical neurons
(Song et al., 2005; Lefort et al., 2009; Avermann et al., 2012;
Buzsáki and Mizuseki, 2014) enabled asynchronous irregular
firing in a biologically plausible parameter range. Teramae et al.
(2012) studied a network of leaky integrate-and-fire neuron
model with lognormally distributed excitatory postsynaptic
potentials (EPSPs) and showed analytically that low-frequency
firings of few Hz can be generated without external stimuli.
Ikegaya et al. (2013) observed lognormal distribution in the
amplitudes of unitary excitatory postsynaptic conductance in
rat hippocampal CA3 pyramidal cells. Lognormally distributed
excitatory-to-excitatory synapses, fitted from the experimental
data, were implemented into the recurrent networkmodel, which
realized long-tailed distribution of firing rates and infrequent
spontaneous firings (< 2 Hz) without external stimuli. Kriener
et al. (2014) studied a network of strong excitatory-to-excitatory
synapses and showed that bistability of quiescent state and
moderate firing state is the key determinant for the onset and the
lifetime of self-sustained activity states.

As a combined situation of the two types, cooperative
dynamics between the network of long-tailed synaptic
distribution and the external noise stimuli has not yet been
thoroughly investigated. Kriener et al. (2014) simulated external
Poisson processes to drive such network and reported an
amplification of the input spike correlations and the spike
irregularity, leading to fluctuations of a large population of
neurons. They, however, focused on the noise input not as the
main source of sustaining the network dynamics. Of particular
interest in the present study is that the noise may enhance
subthreshold state of the intrinsically active network, leading

to the onset of self-sustained neuronal firings. Since the noise
requires an energy resource (Laughlin et al., 1998; Attwell and
Laughlin, 2001; Lennie, 2003), it is biologically more efficient
to maintain the network firing activities with less amount of
noise. To distinguish the present approach from the preceding
studies (Vogels and Abbott, 2005; Kumar et al., 2008; Teramae
et al., 2012; Ikegaya et al., 2013; Kriener et al., 2014), which
discussed spontaneous firings without assuming any external
stimulus, we refer to low-frequency irregular firings observed
in our noise-driven system as “network firing activities.” We
numerically detect the minimal level of noise that gives rise to
the network firing activities and compared such levels between
networks of lognormally and normally distributed EPSPs. Our
study shows that the noise required to generate the network
firings is strongly reduced in the network of lognormally
distributed EPSPs. Examination of the network of bi-modally
distributed EPSPs further clarifies that essential mechanism of
the network can be determined only by a pair of one weak and
one strong EPSP values and their balance. Our results suggest a
strong advantage of the heterogeneous excitatory-to-excitatory
connections that realize robust and efficient operation of the
cortical network.

The rest of the paper is organized as follows. In section
2, a network of integrate-and-fire neurons is introduced as
a mathematical model for the cortical network. Quantity to
measure the level of synchronized firings is also introduced.
In section 3, the effect of dynamical noise on the network of
lognormally distributed EPSPs is studied in comparison to a
network of normally distributed EPSPs. By introducing Bernoulli
distribution of binary variables, which represent weak and strong
synapses, to the noise-driven neural network, the key statistical
feature is highlighted for the heterogeneous distribution of the
EPSPs. The final section is devoted to our results summary and
discussions on future problems of the cortical networks.

2. METHODS

2.1. Model of a Single Neuron
The following conductance-based leaky integrate-and-fire
neuron was utilized to represent the dynamics of individual
neuron

dv

dt
= −

1

τm
(v− VL)− gE(v− VE)− gI(v− VI), (1)

where v stands for membrane potential, τm is a membrane time
constant, and VL, VE, and VI denote reversal potential of leak,
excitatory, and inhibitory postsynaptic currents, respectively. The
constant values were set to τm = 20 ms for excitatory neurons,
τm = 10 ms for inhibitory neurons, VL = −70 mV, VE = 0 mV,
and VI = −80 mV.

The excitatory and inhibitory synaptic conductance
normalized by the membrane capacitance, gE and gI , evolves as
follows:

dgX

dt
= −

gX

τs
+

∑

j

GX,j

∑

sj

δ(t − sj − dj), X = E, I, (2)
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where the indices X = E and X = I are for excitatory and
inhibitory conductance, respectively. δ(t) represents the delta
function, GX,j, dj, and sj are synaptic weight, delay, and spike
timing of synaptic input from the j-th neuron, respectively. The
decay time constant τs was set to 2 ms for both excitatory and
inhibitory conductance. The synaptic delays dj obey uniform
distribution that ranges from d0 − 1 to d0 + 1 [ms]. The mean
synaptic delay was set to d0 = 2 ms for excitatory-to-excitatory
connections and d0 = 1 ms for other connections. The threshold
value for spike generation was set toVthr = −50 mV, where vwas
reset to Vr = −70 mV after the spiking. The refractory period
was set to 1 ms. These parameter setting is based on the one use
by Teramae et al. (2012).

2.2. Organization of Cortical Network
Model
The network model consisted of 10, 000 excitatory neurons and
2, 000 inhibitory neurons (Figure 1A). Based on the physiological
measurements of Song et al. (2005), probability that a pair of
excitatory neurons is bidirectionally connected was set to Pbi =
0.0542, while probability that a pair is unidirectionally connected
was set to Puni = 0.123. For excitatory-to-excitatory connections,
their synaptic weights GE,j∈E were randomly generated such that
the amplitudes of EPSPs x measured from the resting membrane
potential obey the following lognormal distribution

p(x) =
exp[−(log x− µL)

2/2σ 2
L ]√

2πσLx
. (3)

µL and σL representmean and standard deviation of the variable’s
natural logarithm. As the parameter to control variability of
the EPSPs, the value of σL was varied under the condition
that the mean EPSP remained the same, i.e., µL + σ 2

L /2 =
log(0.9). The case of σ 2

L = 1.0 reproduces the long-tailed EPSP
distribution observed in the experiment of Song et al. (2005).
When generating the synaptic weights, any unrealistic value
GE,j∈E that gave EPSP amplitude larger than 20mVwas discarded
and we selected another value from the distribution.

Following the former study of Teramae et al. (2012), a
constant value of GE,j∈I = 0.018 was used for the excitatory-
to-inhibitory connections. Since the inhibitory-to-inhibitory
synaptic weight was set to be relatively small by Teramae et al.
(2012), the weight value was modified as GI,j∈I = 0.018. The
corresponding postsynaptic potentials, which were measured
from the resting membrane potential of −70 mV (EPSP) and
−55 mV (IPSP), were 1.66 and −0.55 mV, respectively. They
are within the range of experimentally measured postsynaptic
potentials (Tamás et al., 1998; Avermann et al., 2012; Jiang et al.,
2015).

It has been shown that lognormal distribution of inhibitory-
to-excitatory connections plays an important role of suppressing
synchronized neuronal firings especially in a high-frequency
firing state (Kada et al., 2016). This setting is consistent with the
physiological experiments reporting that inhibitory postsynaptic
potentials (IPSPs) are indeed highly heterogeneous in the cortex
(Miles and Wong, 1984; Holmgren et al., 2003; Chapeton et al.,
2012). Following these studies, the synaptic weights GI,j∈E were
generated so that the corresponding IPSPs on excitatory neurons

were lognormally distributed as p(x) = exp[−(log x−µI )
2/2σ 2

I ]√
2πσIx

. The

mean and standard deviation of the variable’s natural logarithm
were set as µI = log(0.52) − σ 2

I /2 and σI = 1.25, respectively.
Any unrealistic value of GI,j∈E that gave IPSP amplitude larger
than 30 mV was discarded and another value was selected from
the distribution.

The connection probabilities of excitatory-to-inhibitory,
inhibitory-to-excitatory and inhibitory-to-inhibitory neurons
were PEI = 0.1157, PIE = 0.3, and PII = 0.32, respectively.
Excitatory-to-excitatory synaptic transmissions failed with a rate
pE = b/(b + EPSP) (b = 0.1). This formula has been developed
by Teramae et al. (2012) to model the experiment of Lefort
et al. (2009), who reported that trial-to-trial variability of large-
amplitude EPSPs is very low compared with highly variable
responses observed at small-amplitude synaptic connections.

It has been known that presynaptic discharges of individual
cells are variable in time and can be represented as background
noise inputs (Tomko and Crapper, 1974; Softky and Koch,

FIGURE 1 | (A). Schematic illustration of the network of excitatory and inhibitory neurons. Lognormally distributed EPSPs were set to excitatory-to-excitatory and

inhibitory-to-excitatory connections. Uniform connections were set to other types. Poisson spike trains were added externally to all excitatory neurons. (B) CCG-based

synchronization index and event synchrony computed for 50 sets of Poisson spike trains. Percentage of the common spikes included in the individual spike trains was

increased from 0 to 90 %.
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1993; Shadlen and Newsome, 1994; Destexhe and Contreras,
2006; Faisal et al., 2008). To take into account such noisy
inputs, external Poisson spike trains were added to all excitatory
neurons. The Euler’s method was used to integrate the differential
Equations (1),(1) with a time step of 0.01 ms.

2.3. Index of Synchronized Firings
We quantified the level of synchronization between spike trains
based on the cross-correlogram (CCG). The cross-correlogram
CCG has been a standard method for detecting spike synchrony
(Logigian et al., 1988; Gray et al., 1989; Datta and Stephens,
1990; Bremner et al., 1991; Engel et al., 1991; Nordstrom et al.,
1992). First, from 10, 000 excitatory neurons, 100 neurons were
randomly selected. Then, the CCG was drawn as a histogram
of spike-time differences (bin size: 1 ms, time lag: ±20 ms) for
all pairs of the 100 neurons. In accordance with our previous
study (Kada et al., 2016), we define the synchronization index as
a normalized height of the peak,

SI =
M − A

M
, (4)

where M and A are the maximum and the average of CCG,
respectively. The present index quantifies the level of synchrony,
since peaks in the CCG indicate occurrences of synchronized
firings.

As a quantity to measure distance as well as synchrony
between spike trains, various methods have been developed
(Victor and Purpura, 1996; van Rossum, 2001; Quian Quiroga
et al., 2002; Aronov, 2003; Kreuz et al., 2007, 2009). To
validate our approach, the CCG-based synchronization index
was compared with the event synchrony (Quian Quiroga et al.,
2002), which is one of the simple yet well-established methods to
quantify synchronized firings.

As a test data-set, we generated 50 independent Poisson spike
trains with a time-interval of 20 s. Then, another Poisson spike
train was generated and included in the 50 spike trains as
the common spikes. Frequency of the common spikes ranged
from 0 to 9 Hz, while that of the individual spike trains was
set to be 10 Hz. Figure 1B shows the results of applying our
synchronization index and the event synchrony to these artificial
data. As the frequency of the common spikes was increased, the
level of synchrony monotonously increased for both CCG-based
synchronization index and the event synchrony. The error-bars,
obtained from 10 realizations of different data sets, were relatively
small. Correlation coefficient between the CCG-based index and
the event synchrony was r = 0.872 (p < 10−4), indicating that
the present index provides a reliable measure for detecting the
synchronized firings.

3. RESULTS

3.1. Noise-Induced Network Firing in the
Network of Lognormally Distributed EPSPs
We first examined the effect of external Poisson spike trains
on the cortical network model. The EPSP amplitudes between
excitatory neurons were lognormally distributed with σL = 1.0.

To activate the network firing state, relatively strong Poisson
spikes with a frequency of 1 Hz were applied during the initial
duration of 100 ms. After 100 ms, frequency of the external spike
inputs was lowered to 0.05 Hz. The results are shown in the raster
plots of Figures 2A–E. First, the network firings were activated
by the initial application of strong external inputs. After the
initial transients, the firing activities were eventually weakened
and the firing level was lowered to that of the external noise.
The duration, for which the high-frequency network firings last,
was variable, depending upon the random initial conditions
(note that the time intervals are different in Figures 2A–E). For
high-frequency network firing and low-frequency quiescent
states, their average firing frequencies of the excitatory
neurons were comparable among different initial conditions
(Figure 3A).

Next, frequency of the external spike inputs, which were
given after the initial strong inputs, was increased to 0.09 Hz.
The duration of the network firings was lengthened. Among 5
random initial conditions, 3 of them sustained network firing
activities for more than 10 s and only 2 switched to low-frequency
quiescent states before 10 s. In the case that the frequency of
the external spikes was further increased to 0.2 Hz, the network
firings became stable. For all 5 random initial conditions, the
network firing activities lasted more than 10 s.

For the external spike inputs of 0.05 , 0.09 , and 0.2 Hz,
average firing frequencies of the excitatory neurons during the
quiescent states were slightly above those of the external inputs
(see Figure 3). During the network firing activities, the average
firing frequencies were around 1.5 Hz, which were independent
of both initial conditions and frequency of the external inputs.
The fact that these firing frequencies were much higher than
those of the external inputs implies that the high-frequency
activities are due to intrinsic network dynamics. The external
noise merely supported the base-line level of the network
activity.

3.2. Bistability of Low and High Frequency
States
To further study the effect of external Poisson inputs on the
network of lognormally distributed EPSPs, dependence of the
firing frequency of the excitatory neurons on the frequency of
noise inputs was computed in more detail. Two settings of the
standard deviations, i.e., σL = 0.90, 0.95, were examined. In
each setting, frequency of the external noise was initially set
to 0 Hz. During the network simulation, the noise frequency
was increased by 0.02 Hz every one second until it reached to
0.28 Hz. The noise frequency was then decreased by 0.02 Hz
every one second until it reached to 0 Hz. For both increasing
and decreasing frequency of the external noise, average firing
frequency of the excitatory neurons was plotted in Figures 4A,B.
We see a clear transition between low-frequency quiescent
state and high-frequency network firing. The low-frequency
states coincide with the base-line frequencies of the noise input
(dashed black line), whereas the high-frequency states are clearly
distinguished from them. Bistability of the two states is indicated
by the hysteresis region. This is consistent with Kriener et al.
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FIGURE 2 | Raster plots representing the firing patterns of the cortical network model. Lognormal distribution of EPSPs was set according to Equation (3) with

σL = 1.0. External Poisson spike trains were added with a frequency of 0.05 Hz. Spikes of excitatory (# 0-9999) and inhibitory (# 10000-11999) neurons are indicated

by the black dots. Five realizations of stochastic simulations started from different random initial conditions are indicated in (A) (“1st”), (B) (“2nd”), (C) (“3rd”), (D)

(“4th”), and (E) (“5th”). Note that the time intervals are different between (A–E).

(2014), who showed that saddle-node bifurcation gives rise to
bistability of quiescent state and moderate firing state in a
network of heavy tailed distribution of excitatory-to-excitatory
synapses.

To further study the existence domain of high-frequency

network firing, its life-time was computed following the

procedure of Kriener et al. (2014). For each setting of the input
noise frequency, strong noise with a frequency of 0.3 Hz was
injected during initial 10 ms to induce high-frequency network
firings. Then, the noise frequency was lowered to the setting level
and the system was ran for 2 s. For different initial conditions
and different realizations of the noise processes, this free-run was
repeated for 30 times. From the 30 time traces, their average firing
rate r(t) was obtained with a sampling time interval of 1.5 s. The
averaged time trace was fitted to an exponential decay function
as r(t) = A exp(−t/λ), where the estimated life-time was given
by λ. As shown in Figure 4C, the life-time grew rapidly as the

frequency of the external noise was increased. The critical point
of the noise frequency, above which the high-frequency network
firings became stable, was lowered as the standard deviation of
the lognormally distributed EPSPs was increased from σL = 0.90
to 0.95.

To compare the lognormal EPSP distribution with Gaussian
EPSP distribution, we simulated a network with normally
distributed EPSPsN(µG, σ

2
G). Standard deviation of the Gaussian

distribution was varied as σG = 4.0, 6.0, 8.0, 10.0, while the
averaged EPSP was set to be the same as that of the lognormally
distributed EPSPs in the following manner. To generate realistic
EPSP values, the EPSP amplitudes were restricted between 0 and
20 mV. For a given σG, the mean parameter µG was determined
in such a way that the probability density function pG(x) =
exp[−(x − µG)

2/2σ 2
G] /

∫ 20
0 exp[−(x − µG)

2/2σ 2
G]dx (0≤x≤20)

yields an average EPSP equal to that of the lognormal EPSP
distribution. To randomly generate EPSP values within a range
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FIGURE 3 | Average firing frequencies of the excitatory neurons in the cortical network model. The firing dynamics were classified into high-frequency network firing

and low-frequency quiescent states, which were plotted separately. Lognormal distribution of the EPSPs was set according to Equation (3) with σL = 1.0. Frequencies

of the external Poisson spike trains were 0.05 Hz in (A), 0.09 Hz in (B), and 0.2 Hz in (C).

between 0 and 20 mV, acceptance-rejection method (Neal, 2003)
was utilized. Figure 4D shows the results. As the frequency of the
noise inputs was increased, the average firing frequency of the
excitatory neurons monotonously increased. In the four settings
of the normally distributed EPSPs, the average firing frequency
lay on the level of input noise up to 0.035 Hz. No significant
frequency jump was observed. Even after the onset of network
firing state, deviation of the average firing frequency from that
of the input noise was rather minor. Between increasing and
decreasing directions of the noise frequency, no hysteresis was
observed.

3.3. Comparison of Onset Noise Frequency
Next, we studied onset frequency of the external noise, that
is required to induce network firing state, and its dependence
on the EPSP distributions. The onset point was determined as
follows. First, distribution of the EPSPs and frequency of the
input noise were fixed. Then, the network was simulated by
supplying a strong external noise (frequency of 1 Hz) during
initial duration of 100 ms. After 100 ms, frequency of the external
noise was lowered to the setting level and the system was ran
for 10 s. From time interval between 500 ms and 10, 100 ms,
average firing frequency of the excitatory neurons was computed.
This simulation was repeated for 5 different realizations of the
random initial conditions and the input noise processes. Second,
for each setting of the EPSP distribution, the noise frequency was
increased from 0 to 0.3 Hz. The onset frequency was detected

at the point, where, for all 5 realizations, the average firing
frequency became larger than that of the input noise by 0.08
Hz and standard deviation of the average frequencies of the 5
realizations became less than 0.03 Hz.

Figure 5A displays dependence of the onset noise frequency
on the standard deviation σL of the lognormally distributed
EPSPs. As the standard deviation σL of the lognormal distribution
is increased, the onset noise frequency continues to decrease
and it reaches to a value less than 0.1, that is about three times
smaller than that of σL = 0.8. Figure 5C, on the other hand,
shows dependence of the onset noise frequency on the standard
deviation σG of the normally distributed EPSPs. Compared to
the case of lognormal distribution, the onset noise frequency is
much higher in the case of normal distribution. This indicates
that much less amount of noise is needed to induce network firing
in a network of lognormally distributed EPSPs.

As another quantity of the network dynamics, the
synchronization indices corresponding to Figures 5A,B

were shown in Figures 5C,D, respectively. In both cases, the
synchronization index was kept within a low level (SI < 0.05),
indicating that asynchronous firings have been realized in
this region. It has been shown by Kada et al. (2016) that
heterogeneity in the inhibitory-to-excitatory connections plays
a key role in suppressing synchronized firing activities in a
cortical network. The lognormal distribution, introduced to the
inhibitory-to-excitatory connections, functioned efficiently to
maintain the desynchronized firing dynamics.
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FIGURE 4 | Dependence of the network firings on external noise. (A,B) Average firing frequency of the excitatory neurons plotted as a function of the external noise

frequency. Two curves were drawn by increasing (green solid line) and decreasing (blue dotted line) the noise level. Standard deviation of the lognormally distributed

EPSPs was set to σL = 0.90 in (A) and σL = 0.95 in (B). The dashed black line corresponds to base-line frequency of the external noise. (C) Life-time of the network

firing states was plotted as a function of the external noise frequency. Standard deviation of the lognormally distributed EPSPs was set to σL = 0.90 (green solid line)

and σL = 0.95 (blue dotted line). (D) Case of normally distributed EPSPs. Average firing frequency of the excitatory neurons was plotted as a function of the external

noise frequency. Four curves were drawn for the normal distribution with σG = 4.0 (red), σG = 6.0 (green), σG = 8.0 (blue), and σG = 10.0 (light blue). The dashed

black line corresponds to base-line frequency of the external noise.

FIGURE 5 | Dependence of the network firings on control parameter of the EPSP distribution. Case of lognormally distributed EPSPs (A,C) is compared with that of

normally distributed EPSPs (B,D). (A,C) Onset noise frequency drawn as a function of the standard deviation σL of lognormally distributed EPSPs in (A) and σG of

normally distributed EPSPs in (C). (B,D) Synchronization indices of the network dynamics corresponding to (A,C), respectively. At each point, the error bar indicates

standard deviation of 5 realizations started from different random initial conditions.
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3.4. Bernoulli Distribution
In the previous subsection, the network of lognormally
distributed EPSPs has been shown to require much lower
frequency of noise to induce network firing activities, compared
to that of normally distributed EPSPs. This result implies that
modest heterogeneity of EPSP amplitudes, i.e., the Gaussian
distribution, is not efficient for giving rise to network firings,
while the highly heterogeneous EPSP distribution, such as the
lognormal distribution, works efficiently to support the firing
state with less amount of noise. Which statistical properties of
the lognormal EPSP distribution are essential for maintaining the

network firing activities? One of the key feature of the lognormal
distribution is that it has a long-tailed distribution with many
weak and a few extremely strong synapses. As another type of
such distribution, we introduce Bernoulli distribution of binary
EPSPs. For two values of EPSP amplitudes a, b (a < b),
their probabilities are defined as Pa = p and Pb = 1 − p,
respectively. Mean and standard deviation of the binary EPSPs
are given by m = ap + b(1 − p) and σB = p(1 − p)(b − a)2,
respectively.

First, the effect of external Poisson spike trains on the
network of binary EPSPs was examined. By increasing and
decreasing the external noise frequency, average firing frequency
of the excitatory neurons was drawn in the hysteresis plots of
Figures 6A,B. The value for large EPSP amplitude was set to b =
9 mV, whereas its probability was set to Pb = 0.015 (Figure 6A)
and Pb = 0.020 (Figure 6B). For the two settings, the mean EPSP
was set to be the same as m = 0.9 mV. In both settings of Pb,
we see a clear transition between low-frequency quiescent state
and high-frequency network firings. The low-frequency states lie
on the base-line frequencies of the noise input (dashed black
line), whereas the high-frequency states are distinguished from
them. The hysteresis region indicates bistability of the two states.
These features agree quite well with those of the network having
lognormally distributed EPSPs.

Figure 6C displays dependence of the onset noise frequency
on the probability Pb of large EPSP. As the probability Pb is
increased, the onset noise frequency continues to decrease and
reaches to a value close to 0.1 Hz. This indicates that a larger
number of large EPSP amplitudes is quite helpful to give rise
to network firing, when the external noise input is rather weak.
On the other hand, the synchronization indices of Figure 6D
show that the level of synchrony reaches to a high level (SI∼0.35)
as the probability Pb is increased. Too many strong synapses
may create hubs in the complex network of neurons, where
spike generation from such hubs leads to synchronized firings of
the connected neurons. Thus, to realize asynchronous network
firing, too many strong synapses may not be desired. Taking into
account both the onset noise frequency and the synchronization
indices, not too large, not too small, but intermediate number
of large EPSPs is needed to maintain the asynchronous network
firing state.

To see the generality of the present analysis, dependence of
the optimal configuration of the Bernoulli (binary) distribution
on the value of large EPSP amplitude b was further examined.
For three settings of the large EPSP amplitudes, i.e., b = 9
mV (red), 10 mV (green), and 11 mV (blue), the probability Pb

was varied, while the mean EPSP was kept to be the same as
m = 0.9 mV. As the probability Pb was increased, the onset
noise frequency decreased and reached to a value close to 0.1 Hz
or even lower (Figure 7A). The corresponding synchronization
indices of Figure 7B increased to a high level as the probability
Pb was increased. The same tendency as Figure 6 was therefore
confirmed. The optimal probability of large EPSPs, at which the
onset noise frequency reaches the bottom level and at the same
time the synchronization index SI is minimized, was Pb = 0.025,
0.02, and 0.015 for b = 9, 10, and 11 mV, respectively. As
the EPSP took larger values, smaller number of large EPSPs is
required to maintain asynchronous firing state.

To further study the effect of the mean EPSP, three settings
were considered as m = 0.8 mV (red), 0.9 mV (green), and
1 mV (blue). The probability Pb was varied, while the value
of large EPSP amplitude was fixed to b = 9 mV. Again,
as the probability Pb was increased, the onset noise frequency
decreased (Figure 7C) and the corresponding synchronization
indices increased (Figure 7D). The optimal number of large
EPSPs to maintain asynchronous firing state was lowered as the
mean EPSP was increased.

The present analysis based on Bernoulli distribution of the
EPSP amplitudes is therefore general in the sense that it does
not depend upon the detailed setting of the binary distribution (b
and m). Neither too large nor too small numbers of large EPSPs
works. There exist an optimal number of large EPSPs, which
efficiently sustain the network firing activities and at the same
time suppress their synchronous firings. Although there exist
various types of long-tailed distributions that can represent many
weak and a few extremely strong EPSPs, the Bernoulli model,
which represents one of the simplest distribution types, suggests
that the essential mechanism of sustaining the network firing
activity can be elucidated by only a pair of one weak and one
strong EPSP values and their balance.

4. DISCUSSIONS

In this paper, cooperative dynamics that emerge from a network
of highly heterogeneous synaptic connections and external
noise inputs have been investigated. Heterogeneous distribution,
typically a lognormal distribution, of excitatory-to-excitatory
connection strengths have been reported experimentally (Song
et al., 2005; Ikegaya et al., 2013). External noise stimuli can
be thought of as representing the variability of presynaptic
discharges to single cells (Destexhe and Contreras, 2006) or
as endogenously active cells that stimulate the neighboring
quiescent cells (Latham et al., 2000a,b). As the combined effect,
the noise works efficiently to activate intrinsic network dynamics
to give rise to asynchronous firings. Comparative study with
Gaussian distribution as well as Bernoulli distribution revealed
that weak-dense and sparse-strong connections are the key
feature of the synapses that support the stable firing activity.
Our finding is consistent with the theoretical study of the
autonomous network of lognormal EPSP distribution, which
was shown to be capable of sustaining spontaneous firings
without external stimulus (Teramae et al., 2012; Kriener et al.,
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FIGURE 6 | Dependence of the network firing on the probability of large value (Pb) in Bernoulli distribution. (A,B) Mean firing frequency of the excitatory neurons as a

function of the external noise frequency. Two curves were drawn by increasing (green solid line) and decreasing (blue dotted line) the noise level. In Bernoulli

distribution of binary EPSPs, probability of large value b was set to Pb = 0.015 in (A) and Pb = 0.020 in (B). The dashed black line corresponds to base-line

frequency of the external noise. (C) Dependence of the onset noise frequency on the probability of large value (Pb). (D) Synchronization index of the network dynamics

corresponding to (C). The error bars indicate standard deviation of 5 realizations started from different random initial conditions.

FIGURE 7 | Dependence of Figure 6 on parameter setting of the Bernoulli distribution. (A) Dependence of the onset noise frequency on the probability (Pb) of large

value. The red solid line is identical to Figure 6C (b = 9 mV), whereas green and blue dotted lines correspond to the cases of b = 10 mV and b = 11 mV, respectively.

As the probability Pb was varied, average of the EPSPs was set to be constant (m = 0.9 mV). (B) Synchronization index of the network dynamics corresponding to

(A). The error bars indicate standard deviation of 5 realizations started from different random initial conditions. (C) Dependence of the onset noise frequency on the

probability (Pb) of large value. Large EPSP value was set to b = 9 mV, whereas average of the EPSPs was kept as m = 0.9 mV (green dotted line), m = 0.8 mV (red

solid line), and m = 1.0 mV (blue dotted line). (D) Synchronization index of the network dynamics corresponding to (C).
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2014). The present study extends such idea to the case of
non-autonomous network having external stimuli, where the
long-tailed EPSP distribution reduces the noise level needed
for the onset of network firings. In the sense that stochastic
noise is ubiquitous in neural systems, this extension is of
essential importance to incorporate the lognormal network
to more realistic neurophysiological situation. Since synaptic
noise requires an energy resource (Laughlin et al., 1998;
Attwell and Laughlin, 2001; Lennie, 2003), it is biologically
more efficient to maintain the firing activities with a few
support from such expensive resource. The fact that the
network of lognormally distributed EPSPs effectively reduced
the noise level compared to that of normally distributed EPSPs
indicates that highly heterogeneous distribution of excitatory-
to-excitatory connection strengths can be advantageous for
maintaining network firing activity in an efficient and robust
fashion.

It should be noted that energy expenditure in the cortical
system provides an intriguing issue. Not only the energy spent
for spike generations (Laughlin et al., 1998; Attwell and Laughlin,
2001; Lennie, 2003; Harris et al., 2012), resting potentials (Harris
and Attwell, 2012), and other electrical activities, but also
metabolic energy spent for development of synapses (Karbowski,
2012) and their maintenance (Bezprozvanny and Hiesinger,
2013; Tononi and Cirelli, 2014) have been recently discussed.
The advantage of having few but very strong synapses should be
considered carefully by taking into account the maintenance cost
of such strong synapses.

In the present study, the external noise inputs to individual
neurons have been assumed to be independent from each
other. Considering the real neurophysiology, where synaptic
projections are overlapped among neurons and the neurons may
receive common stimuli from the same external sources, it would
be more realistic to assume a certain level of correlation in the
noise inputs. It is therefore an important future study to deal

with the case that the external noise is spatially correlated. How
to separate synaptic noise from irregular firings that originate
from intrinsic network dynamics provides also an important
open problem to quantitatively examine our modeling study in
experimental data.

Interesting application of the present study is to model the
transition of cortical neurons between Up (depolarized) and
Down (hyperpolarized) states. Stimulus-dependent transitions
between the Up and Down states have been reported in cat
visual cortex (Anderson et al., 2000). Single neuron membrane
potentials in slice preparations also show spontaneous transition
between them (Cossart et al., 2003; Shu et al., 2003b), where
intrinsic network dynamics is considered to play an important
role (Cossart et al., 2003). Such transition has been modeled
as bistable Up and Down states, embedded in a network of
excitatory and inhibitory neurons (Wilson and Cowan, 1972),
where the switching can be triggered, e.g., by synaptic depression
(Bazhenov et al., 2002). Synaptic noise can lead to random
transitions between the basins of Up–Down states (Holcman and
Tsodyks, 2006). It should be of great interest to examine how the
lognormal network combined with the noise stimuli may model
such Up–Down transitions.
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