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Acceptance of novelty depends on the receiver’s emotional state. This paper proposes a

novel mathematical model for predicting emotions elicited by the novelty of an event

under different conditions. It models two emotion dimensions, arousal and valence,

and considers different uncertainty levels. A state transition from before experiencing an

event to afterwards is assumed, and a Bayesian model estimates a posterior distribution

as being proportional to the product of a prior distribution and a likelihood function.

Our model uses Kullback-Leibler divergence of the posterior from the prior, which we

termed information gain, to represent arousal levels because it corresponds to surprise,

a high-arousal emotion, upon experiencing a novel event. Based on Berlyne’s hedonic

function, we formalized valence as a summation of reward and aversion systems that

are modeled as sigmoid functions of information gain. We derived information gain as a

function of prediction errors (i.e., differences between the mean of the posterior and the

peak likelihood), uncertainty (i.e., variance of the prior that is proportional to prior entropy),

and noise (i.e., variance of the likelihood function). This functional model predicted an

interaction effect of prediction errors and uncertainty on information gain, which we

termed the arousal crossover effect. This effect means that the greater the uncertainty,

the greater the information gain for a small prediction error. However, for large prediction

errors, greater uncertainty means a smaller information gain. To verify this effect, we

conducted an experiment with participants who watched short videos in which different

percussion instruments were played. We varied uncertainty levels by using familiar

and unfamiliar instruments, and we varied prediction error magnitudes by including

congruent or incongruent percussive sounds in the videos. Event-related potential P300

amplitudes and subjective reports of surprise in response to the percussive sounds

were used as measures of arousal levels, and the findings supported the hypothesized

arousal crossover effect. The concordance between our model’s predictions and our

experimental results suggests that Bayesian information gain can be decomposed into

uncertainty and prediction errors and is a valid measure of emotional arousal. Our model’s

predictions of arousal may help identify positively accepted novelty.
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INTRODUCTION

Novelty is a factor of creativity. Acceptance of novelty, however,
depends on the receiver’s emotions. As the “most advanced yet
acceptable” (MAYA) principle of industrial designer Raymond
Loewy (1951) suggested, an extremely advanced (i.e., novel)
design may not be accepted. In design aesthetics, Hekkert et al.
(2003) observed experimentally that both typicality and novelty
affect product design preferences in ways consistent with the
MAYA principle. Berlyne (1970) suggested that novelty, which
he termed a collative variable, is a source of arousal potential.
According to his theory, an appropriate level of arousal potential
might induce a positive hedonic response, but an extreme
arousal potential might induce negative responses. Several
experimental studies have supported Berlyne’s theory, including
studies on food preferences (Giacalone et al., 2014) and artistic
preferences (Silvia, 2005). However, Berlyne’s model did not
mathematically formalize novelty or its effects on emotions, and
biases due to factors such as one’s prior knowledge and experience
were not exhaustively investigated. Experiments with multiple
participants are required to identify the effect of novelty on the
emotional response to each target and condition. The objective
of this study was to mathematically model emotions elicited
by novelty in order to predict how novelty affects emotions.
In doing so, we aimed to provide fundamental knowledge of
how to achieve acceptable novelty. Most dimensional models of
emotion incorporate dimensions for arousal (or intensity) and
valence (i.e., positivity or negativity) (Russell, 1980; Lang, 1995).
We therefore proposed a mathematical model incorporating
arousal and valence dimensions through an information theory
approach. We used this model to analyze how the uncertainty of
expectations prior to a novel event and the difference between
expectations and reality (i.e., prediction errors) interactively
affect emotional arousal. We tested our model’s predictions by
conducting an experiment in which participants watched short
videos of percussion instruments. In the experiment, we induced
uncertainty of expectations by showing instruments of varying
probable familiarity, and we used inconsistencies between the
instrument shown and the sound played to model prediction
errors. We evaluated participants’ responses to the videos by
analyzing event-related potentials (ERPs) and subjective reports
of feelings of surprise.

MODEL OF EMOTIONAL DIMENSIONS
ELICITED BY A NOVEL EVENT

Overview
Novelty provides new information. We assume that the amount
of information gained from an event represents the degree of
novelty. The information content of an event x can be described
as I(x) = − log px, where px is the probability of x. I(x)
is termed self-information. The self-information averaged over
a probability density is termed information entropy, which
Shannon et al. (1949) defined as follows:

H(X) = −
∑

x∈X
px log px (1)

For the continuous random variable X following a probability
density distribution p(x), information entropy is expressed as:

H(X) = −
∫ ∞

−∞
p(x) log p(x)dx (2)

Assume a state transition from before an event to afterwards.
Let the probability density distribution of a continuous random
variable x before an event occurs, which we term the prior, be
q(x), and let the probability density distribution of x after an event
occurs, which we term the posterior, be p(x). The information
entropy of the prior represents the expectation of information
content gained after an event occurs or the uncertainty of
prior expectations. Information content gained after an event
occurs corresponds to the decrement of information entropy
over the posterior. Thus, the information content gained is
obtained by subtracting prior self-information from posterior
self-information and averaging over the posterior:

〈

− log q(x)− (− log p(x))
〉

p
=

∫ ∞

−∞
p(x) log

p(x)

q(x)
dx ≡ DKL

(

p(x)||q(x)
)

(3)
where <q>p represents the average of density q over density
p. The expression DKL

(

p||q
)

is the Kullback-Leibler (KL)
divergence of p from q (Kullback and Leibler, 1951). Hereinafter,
we term the KL divergence of the Bayesian posterior from the
prior the information gain. The more novel an event is, the more
information one gains. Information gain represents averaged
surprise. Itti and Baldi (2009) defined the KL divergence of
the Bayesian posterior from the prior as surprise and provided
experimental evidence that it attracts visual attention.

Surprise is often used as a typical high-arousal emotion
(Mauss and Robinson, 2009). Thus, we used the information
gain as a mathematical expression of the arousal dimension of
emotion. We then investigated the valence dimensions. An event
with no information causes no arousal and has a neutral valence.
Conversely, excessive information gain, such that one can
hardly cope, should cause discomfort (i.e., a negative valence).
Therefore, we hypothesized that one positively accepts a novel
event providing an appropriate amount of information gain that
can be coped with. Based on the arousal potential model (Berlyne,
1970), we formulated the valence as a function of information
gain.

Bayesian Model
Bayes’s theorem provides a formula for updating the prior
to the posterior. Recent studies have indicated that humans
perform near-optimal Bayesian inference (Ma et al., 2006) in
a wide variety of tasks, ranging from cue integration (Ernst
and Banks, 2002; Kersten et al., 2004; Stocker and Simoncelli,
2006; Yanagisawa, 2016) to decision-making and motor control
(Körding and Wolpert, 2004, 2006). Let a prior be π(θ) in terms
of a parameter θ that one estimates. After one obtains continuous
data x ∈ R by experiencing an event, the prior π(θ) is updated to
the posterior π(θ |x) according to the following formula derived
from Bayes’s theorem:

π(θ |x) =
f (x|θ)π(θ)

∫

θ
f (x|θ)π(θ)dθ

∝ f (x|θ)π(θ) (4)
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FIGURE 1 | Example of Bayesian inference with a prior distribution, a posterior distribution, and a likelihood function. The prediction error is the difference between the

prior expectation and the peak of the likelihood function (i.e., reality). Uncertainty is the variance of the prior. Noise is the variance of the likelihood function.

where f (x|θ) is the likelihood function of θ when data x are
obtained. The posterior is proportional to the product of the
likelihood function and the prior.

Figure 1 shows an example of the relationships between
the prior, the posterior, and the likelihood function. Neural
population activity with Poisson variability can encode any
Gaussian probability distribution (Ma et al., 2006). With Poisson
variability, the posterior with a flat prior converges to a Gaussian
distribution as the number of neurons increases. The mean
of the Gaussian distribution is close to the stimulus at which
the population activity peaks. The variance of the distribution
is encoded as a value that is inversely proportional to the
gain of the population code (i.e., the distribution’s amplitude).
Hence, we assume Gaussian distributions for the prior and the
likelihood function. Assume one obtains n samples of event x
and encodes them as a Gaussian posterior N(µ, σ 2) with a flat
prior. Now assume a non-flat prior of µ that follows a Gaussian
distributionN(η, τ 2). Using Bayes’s theorem, the prior is updated
to a Gaussian distribution N(ηpost , τpost

2), where:

Average : ηpost =
spx̄+ slη

sp + sl
;Variance : σpost2 =

spsl

sp + sl
(5)

In these formulae, x̄ is the mean of the data, sp = τ 2, and
sl = σ 2/n. Therefore, the prior and the posterior are represented
as the following Gaussian functions, respectively:

π(µ) = N(µ; η, sp) =
1

√

2πsp
exp

[

−
(µ − η)2

2sp

]

, and (6)

π(µ|x) = N(µ; ηpost , σpost2) =
1

√

2πσpost2
exp

[

−
(µ − ηpost)

2

2σpost2

]

(7)

A Functional Model of Emotional Arousal
As noted in Overview, we represented emotional arousal as
information gain after experiencing an event. The information

gain from the prior to the posterior DKL(π(µ|x)||π(µ)) ≡ G can
be derived from formulae (2, 5, 6, and 7) as the following formula:

G =
∫ ∞

−∞
π(µ|x) log

π(µ|x)
π(µ)

dµ (8)

=
1

2

{

sp

(sp + sl)
2
δ2 + log

sp + sl

sl
−

sp

sp + sl

}

where δ is the difference between the prior expectation (η) and
the peak of the likelihood function (x̄). δ represents the difference
between expectations and reality, so we term δ the prediction
error (Yanagisawa, 2016) (Figure 1).

Information entropy of the prior is proportional to a
logarithm of τ as follows:

Hprior = −
∫ ∞

−∞
π(µ) logπ(µ)dµ = log

√
2πe log τ ∝ log τ

(9)
Thus, we term sp the uncertainty (Yanagisawa, 2016), and sl
represents the variation of data x. In the case of sensory data
(i.e., stimuli), the variance refers to external noise (Yanagisawa,
2016). From formula (7), we can regard the information gain G
as a function of the prediction error δ , the uncertainty sp, and the
external noise sl:

G = f (δ, sp, sl) (10)

Interaction Effect of Uncertainty and
Prediction Errors on Information Gain
We analyzed how prediction errors, uncertainty, and external
noise affect information gain (i.e., arousal levels). In formula (8),
information gain is a quadratic function of the prediction error δ

when uncertainty and external noise are fixed.

G = αδ2 + β , (11)

α =
sp

2(sp + sl)
2
, and

β =
1

2

(

log
sp + sl

sl
−

sp

sp + sl

)
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The value of α is always greater than zero because sp and sl are
variances that are always greater than zero. Thus, the information
gain is a monotonically increasing function of a prediction error.
This means that the level of an arousal dimension, such as the
degree of surprise, is proportional to the square of the difference
between expectations and reality.

Next, we investigated the effect of uncertainty. We found that
the partial derivative of the intercept β with respect to uncertainty
sp is always less than zero:

∂β

∂sp
=

sp

2(sp + sl)
2

> 0 (12)

Thus, at δ = 0, the greater the uncertainty, the greater the
information gain. We then investigated the case of δ > 0. We
compared any two information gain functions of δ using formula
(10) with constant external noise between different degrees of
uncertainty. If the two functions of different uncertainties have
an intersection, then the information gains change as δ increases.
We then assumed two information gain functions with different
uncertainties, G1 and G2:

G1 = α1δ
2 + β1 and

G2 = α2δ
2 + β2 (13)

A condition where the two functions have an intersection is
α1δ

2 + β1 = α2δ
2 + β2. We derived δ2(α1 − α2)+ (β1 − β2) = 0

under β1 6= β2. Therefore, (α1−α2)(β1−β2) < 0 is the condition.
We found that this condition applies when the relationship
between different uncertainties sp1 and sp2 and constant external
noise sl is as follows:

sp1sp2 > sl
2 (14)

Because the uncertainty of prediction is likely to exceed the
external noise (i.e., the uncertainty of sensory stimuli), the
condition in question is likely to occur. Given formula (12),
the greater the uncertainty, the greater the intercept of the
information gain function. As the prediction error increases,
the difference in information gains between the two functions
changes such that lower uncertainty tends to mean greater
information gain.

Figure 2 shows two functions of information gain with respect
to different uncertainties at constant external noise. The two
information gain functions have an intersection point. The
information gain as an index of arousal (in this case, surprise)
increases as the prediction error increases. The prediction error
and uncertainty have an interaction effect on information gain.
The greater the uncertainty, the greater the information gain for
zero or small prediction errors. The smaller the uncertainty, the
greater the information gain for larger prediction errors.We term
this intersection-related phenomenon the arousal crossover effect.

A Functional Model of Emotional Valence
We next investigated how novelty affects the valence dimensions
of positivity and negativity. Berlyne (1970) proposed collative
variables that consist of stimulus factors, such as novelty,
complexity, uncertainty, and conflict. Each collative variable has

the quality of arousal potential (i.e., the ability to affect the
intensity of arousal). Highly novel stimuli can increase arousal.
Berlyne (1967, 1971) assumed that the hedonic qualities of
stimuli arise from separate biological incentivization systems.
The first system, the reward system, generates positive affect
whenever arousal potential increases. The second system, the
aversion system, generates negative affect whenever arousal
potential increases. The aversion system has a higher absolute
activation threshold than the reward system does. Thus, the joint
operation of these two systems creates an inverted U-shaped
curve, as shown in Figure 3. The valence of a stimulus changes
from neutral to positive as the arousal potential increases but
shifts from positive to negative after the arousal potential passes

FIGURE 2 | Mathematically derived information gain, as a function of

prediction errors, for uncertainty levels varying from 0.2 to 1.0. The external

noise is set at 0.1.

FIGURE 3 | Valence as a function of information gain. The valence is modeled

as a summation of two sigmoidal functions representing reward and aversion

systems.
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the peak positive valence. This inverse U shape is reasonable. One
may feel safe and experience boredom if stimuli are too familiar
(i.e., not novel). Conversely, one may feel uncomfortable if
stimuli are extremely unfamiliar and novel. However, in Bayesian
models, repeated exposure to the same stimulus decreases both
prediction errors and uncertainty. Thus, the iterative information
gain for each update decreases. The decreasing information
gain and the inverse U-shaped function may explain emotional
desensitization, which is the psychological phenomenon of
emotional responsiveness to a negative, aversive, or positive
stimulus diminishing after repeated exposure to it. The positive
hedonic response to a stimulus is diminished by decreasing
information gain after repeated exposure to it, and a negative
hedonic response to an extremely novel stimulus is shifted to a
positive or neutral response by decreasing information gain after
repeated exposure.

As noted in Overview, we formalized the arousal level as
information gain from an event. If an event does not provide
any information, then the valence can be neutral. At the
opposite extreme, if an event provides excessive information
that is difficult for the brain to process, then the valence can
become negative. We can reasonably assume that between these
two extremes there lies a “sweet spot” at which an optimum
information gain maximizes a positive valence. We formalized
valence as a summation of the reward and aversion systems and
used sigmoid functions (Saunders, 2012) to model information
gain for each system:

Valence = Reward + Aversion (15)

where Reward(G) =
hr

1+ exp(−crG+ Gr)
(16)

and Aversion(G) =
−ha

1+ exp(−caG+ Ga)

In these formulae, Gr and Ga represent the thresholds of
information gain that activate reward and aversion systems,
respectively. The variables hr and ha are the maxima of positive
and negative valence levels, respectively, and cr and ca represent
the respective gradients. The condition Gr < Ga must always

be satisfied because the threshold of the reward system is lower
than that of the aversion system. If an extreme information
gain occurs, then the condition hr < ha must be satisfied to
obtain a negative valence. Figure 3 shows the valence, reward,
and aversion functions of formula (15). We can observe that the
valence function is an inverse U-shaped curve.

Model Summary
Figure 4 shows a schematic of our proposed model. We
formalized emotional arousal using information gain from an
event, which we represented as the KL divergence from the prior
to the posterior. We derived the information gain as a function of
three parameters: uncertainty, the prediction error, and external
noise, which are represented as the variance of the prior (or
entropy), the difference between the prior expectation and the
peak of the likelihood function, and the variance of the likelihood
function, respectively. We formulated valence (i.e., positivity
or negativity) as a summation of reward and aversion systems
represented as information gain functions based on Berlyne’s
theory.

In our model, the information gain is a key parameter to
explain the emotional dimensions of arousal and valence. The
information gain increases as the prediction error increases.
Recent neurological studies have shown that dopaminergic
neurons encode the prediction error signal of reward (Schultz
et al., 1997; Bayer and Glimcher, 2005). Our model explains
a reward system as a function of information gain affected
by prediction errors. From a mathematical analysis, we found
that uncertainty and prediction errors have interaction effects
on information gain. Prediction errors increase information
gain. The greater the uncertainty, the more the information
gain for zero or small prediction errors. In contrast, the
smaller the uncertainty, the more the information gain for
large prediction errors. Uncertainty represents the degree of
belief in the prior expectation. The familiarity of an event
or target and one’s knowledge and experience of a target
affect uncertainty. For example, if a product is so familiar
that everyone knows it well, then uncertainty about the
product is small. In contrast, if a product is unfamiliar, then

FIGURE 4 | Proposed model of the dimensions of novelty-elicited emotions. Emotional arousal is expressed as information gain from the Bayesian prior to the

posterior. Valence is a summation of reward and aversion systems, which are functions of information gain.
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uncertainty about the product should be considerable. Thus,
uncertainty represents prior information before experiencing
a target event. Indeed, uncertainty is proportional to the
information entropy of the prior, as in formula (9). This
model suggests that emotion is influenced by prior information,
discrepancies between expectations and reality, and stimulus
attributes.

EFFECTS OF UNCERTAINTY AND
PREDICTION ERRORS ON EMOTIONAL
AROUSAL RELATED TO PERCUSSION
INSTRUMENTS

We investigated the effects of uncertainty and prediction
errors on surprise to validate the arousal crossover effect
derived from the mathematical model in Interaction Effect
of Uncertainty and Prediction Errors on Information Gain.
Specifically, we tested the hypothesis that uncertainty increases
surprise when prediction errors are small and decreases surprise
when prediction errors are large. A set of short videos featuring
percussion instruments and accompanying sounds were used as
stimuli. In each video, a percussion instrument was presented
and then beaten. Different percussive sounds were synthesized.
We assumed a transition from a visual prior (i.e., the appearance
of an instrument) to an auditory posterior (i.e., the percussive
sound). Participants predicted an instrument’s sound from its
appearance and then listened to a sound. We induced prediction
errors by manipulating the congruency between the synthesized
percussive sounds and the instrument shown. We assumed that
prediction errors were large when the synthesized percussive
sounds were incongruent with the instruments shown, and we
assumed that the familiarity or unfamiliarity of the instruments
shown produced different levels of uncertainty. The appearance
of a familiar percussion instrument, such as a hand drum,
produces certainty of expectations concerning its sound (i.e., a
small uncertainty). The appearance of an unfamiliar percussion
instrument, such as the African percussion instrument known
as the jawbone, produces uncertain expectations concerning its
sound (i.e., a large uncertainty).

We used both questionnaires and ERP recordings to assess
participants’ levels of surprise in response to the percussive
sound in each video. We quantified surprise intensities based on
responses to a four-level Likert scale and measurements of ERP
P300 amplitudes (Mars et al., 2008).

Methods
Participants
Nine right-handed healthy male volunteers (mean age ±
standard deviation: 21.7 ± 1.2 years; range: 20–24 years) with
normal or corrected-to-normal vision and hearing participated
in this study. The study protocol was approved by the Ethics
Committee of the Graduate School of Engineering at the
University of Tokyo. In accordance with the principles of
the Declaration of Helsinki, all participants provided written
informed consent prior to their participation in this study. The

TABLE 1 | Combinations of percussion instruments and percussive sounds.

(Video stimuli are available in the Supplementary Material).

Instrument Congruent sound (X) Incongruent sound (Y)

Familiar (A) Clave Clave (AX), (Video S1) Bell (AY), (Video S3)

Hand drum Hand drum (AX), (Video S2) Guiro (AY), (Video S4)

Unfamiliar (B) Jawbone Jawbone (BX), (Video S5) Vibraphone (BY), (Video S7)

Slit drum Slit drum (BX), (Video S6) Snare (BY), (Video S8)

participants were allowed to interrupt the experiment sessions at
their convenience.

Stimuli
The stimuli consisted of eight short videos in which a percussion
instrument was beaten once and a synthesized percussive
sound followed. Table 1 shows the combinations of instruments
shown and the synthesized sounds (Videos are available in
Supplementary Material). The clave and hand drum were
selected as familiar percussion instruments (type A), and the
jawbone and slit drum were selected as unfamiliar percussion
instruments (type B). To create incongruent conditions, we
synthesized percussive sounds that were inconsistent with the
instruments shown. Our stimuli included videos with visually
familiar instruments and congruent sounds (type AX), videos
with visually familiar instruments and incongruent sounds
(type AY), videos with visually unfamiliar instruments and
congruent sounds (type BX), and videos with visually unfamiliar
instruments and incongruent sounds (type BY).

The duration of each video was 2,500ms. First, a percussion
instrument appeared in the center of the screen. The percussion
instrument was then beaten once 500ms into the video while
a percussive sound was presented simultaneously. Each video
had an 18◦ horizontal visual angle and a 10◦ vertical visual
angle and was centrally presented against a black background
on a 29.8-inch display located 100 cm away from the participant.
The participants wore noise-canceling headphones covered by
earmuffs while watching the videos.

Procedure
The participants completed experiments individually in an
electromagnetically shielded dark room. After participants
received instructions for the procedure, they were asked to start
the experiment.

First, we conducted sound-only experiments in which we
attempted to ensure uniform surprise levels in response to the
percussive sounds used in each video type (i.e., AX, AY, BX, and
BY). Achieving this uniformity was necessary so that we could be
sure that our observations in later experiments with audiovisual
stimuli reflected the effects of visual priors. The eight percussive
sounds were presented to the participants via headphones in five
random-order sets without any visual stimuli. This phase of the
procedure consisted of 40 trials (eight sounds× five presentation
sets). The interstimulus interval (ISI) was 1,000–2,000ms, with
an average of 1,500ms.

Second, we conducted additional sound-only experiments in
which we used electroencephalography (EEG) to confirm the
uniformity of the surprise levels evoked by the percussive sounds
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of each video type. The eight percussive sounds were presented to
the participants via headphones in 20 random-order sets without
any visual stimuli. This phase of the procedure consisted of 160
trials (eight sounds × 20 presentation sets). The ISI was 1,000–
2,000ms, with an average of 1,500ms. EEG recordings were
obtained for each trial. A short break was inserted after the tenth
presentation set.

Third, the participants watched videos of a clave or a hand
drum, which we assumed were familiar instruments for our
participants, accompanied by congruent percussive sounds. The
videos thus belonged to type AX. The participants watched
these videos five times to create expectations of certainty and
congruity.

Lastly, we conducted the main experiment in which
participants watched videos while undergoing EEG recordings
and subjectively reporting feelings of surprise. The eight videos
described in Table 1 were presented to the participants in 20
random-order sets. This phase of the procedure consisted of 160
trials (eight videos × 20 presentation sets). The ISI was 1,000–
2,000ms, with an average of 1,500ms. EEG recordings were
obtained for each trial. A short break was inserted after the tenth
presentation set. During the first, tenth, and final presentation
sets, the participants used a four-level Likert scale to report
the intensities of their surprise upon listening to the percussive
sounds. The participants used four push buttons under their
fingers to provide these reports so that they did not have to avert
their eyes from the display.

EEG Recordings
The EEG data were recorded with a portable digital recorder
(Polymate AP1132, TEAC Corporation, Tokyo, Japan) and active
electrodes. The data were obtained from three midline electrodes
positioned at the Fz, Cz, and Pz points as defined by the
international 10–20 system with reference to the nose. The data
were recorded at a sampling rate of 500Hz. The time constant
was set at 3 s. All electrode impedances were below 50 kΩ . A
digital bandpass filter of 0.1–20Hz was applied.

EEG Data Analysis
The ERP waveforms were obtained by averaging data from
the period starting 200ms before the stimulus onset, which we
define as the start of the video in video stimulus sessions, and
ending 1,500ms after the stimulus onset. This averaging was
done separately for each participant, stimulus type (i.e., AX,
AY, BX, and BY), and electrode site for both the sound-only
and video stimuli. For each averaged waveform, the 200-ms
period preceding the stimulus onset was defined as the baseline.
Any epochs containing EEG signals exceeding ± 100 µV were
regarded as eye movement–related artifacts and automatically
removed. The P300 component was designated as the largest
positive peak occurring 250–600ms after the onset of the
percussive sound. The baseline-to-peak P300 amplitudes were
measured at the Pz point, which was the dominant electrode site.

Statistical Analysis
Repeated-measures analysis of variance (ANOVA) was applied
to the ERP and Likert scale data. One-way ANOVA of the P300

data from the sound-only sessions was conducted to examine
how different percussive sound types affected P300 amplitudes.
To identify interaction effects on surprise intensities, we analyzed
the P300 amplitude and Likert scale data from the video sessions
with two-way ANOVA in terms of congruity and familiarity.
Statistical significance was defined as p < 0.05 for all statistical
tests. We compared the experimental results to the simulation
results shown in Figure 2.

Experimental Results
The type of percussive sound did not significantly affect P300
amplitudes in the sound-only sessions (F = 0.35, p= 0.79).

Figure 5 shows the grand mean ERP waveforms for the
four video types in the main video session. Under the
congruent condition, the sounds of unfamiliar percussion
instruments (type BX) elicited larger P300 amplitudes than
the sounds of familiar percussion instruments (type AX) did.
However, under the incongruent condition, the sounds of
familiar percussion instruments (type AY) elicited larger P300
amplitudes than the sounds of unfamiliar percussion instruments
(type BY) did.

Figure 6 shows the averaged P300 amplitude for each
condition (i.e., all combinations of congruity and familiarity)
in the main video session. The interaction effect of congruity
and familiarity on P300 amplitudes was significant (F = 10.99,
p = 0.01). The simple main effect of familiarity was significant
for both congruent (F = 4.7, p = 0.047) and incongruent (F =
11.82, p = 0.004) sounds. When congruent sounds were played,
the average P300 amplitude for the unfamiliar instruments
was larger than that for the familiar instruments, but when
incongruent sounds were played, the average P300 amplitude
for the unfamiliar instruments was smaller than that for the
familiar instruments. The simple main effect of congruity was
significant for the familiar instruments (F = 6.5, p = 0.02) but
not for the unfamiliar instruments (F = 3.09, p = 0.09). Thus,
the average P300 amplitude evoked by incongruent sounds was
larger than that evoked by congruent sounds only when familiar
instruments were shown.

Figure 7 shows the average Likert scale surprise rating for
each stimulus used in the main video session under different
conditions of congruity and familiarity. The interaction effect
of congruity and familiarity was significant (F = 39.06, p
< 0.001), as was the simple main effect of congruity (F =
144.9, p < 0.001). The simple main effect of familiarity was
significant for both congruent (F = 167.14, p < 0.001) and
incongruent (F = 16.72, p < 0.001) sounds. The difference
between Likert scale surprise ratings for the familiar and
unfamiliar instruments was significant under both congruent
and incongruent sound conditions (p < 0.01). These results
show that subjectively rated surprise under the unfamiliar
instrument condition was greater than that under the familiar
instrument condition when the sounds were congruent but
that subjectively rated surprise under the familiar instrument
condition was greater than that under the unfamiliar instrument
condition when the sounds were incongruent. The crossover
in both Figures 6, 7 corresponds to the simulation result in
Figure 2.
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FIGURE 5 | Grand mean event-related potential waveforms for the four different video types measured from frontal (Fz), central (Cz), and parietal (Pz) midline regions.

Open triangles represent the onsets of the videos, and solid triangle represent the onsets of percussive sounds. The horizontal bars show the time range of

250–600ms after the onset of the percussive sound.

FIGURE 6 | P300 amplitudes evoked by percussive sounds that are

congruent or incongruent with the instrument shown. The results for familiar

and unfamiliar instruments are compared.

DISCUSSION

We assumed that information gain from an event, which
can be calculated using KL divergence between the Bayesian
prior and the posterior, represents the intensity of arousal
emotions such as surprise. Prediction errors, which are
differences between prior expectations and likelihood function
peaks, increase information gain and surprise. We conducted

FIGURE 7 | Subjectively reported scores for surprise intensities in response to

percussive sounds that are congruent or incongruent with the instrument

shown. The results for familiar and unfamiliar instruments are compared.

an experiment featuring videos of percussion instruments
accompanied by synthesized percussive sounds. We varied
uncertainty levels by using familiar and unfamiliar instruments,
and we varied prediction error magnitudes by using congruent or
incongruent percussive sounds. We used ERP P300 amplitudes
and subjective reports to assess the participants’ surprise levels
in response to the percussive sounds. Compared to congruent
sounds, incongruent sounds produced greater subjectively
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reported surprise intensities, and this was particularly true
when familiar percussion instruments were shown. Similarly,
incongruent sounds increased P300 amplitudes when familiar
percussion instruments were shown. These results suggest
that prediction errors related to visuoauditory incongruities
increase surprise, attention, and the amount of information
processed in the brain (i.e., the arousal level). Moreover,
instrument familiarity, which induces certainty of expectations
concerning percussive sounds, provides a greater potential
for arousal in the event of visuoauditory incongruity than is
possible with unfamiliar instruments, which induce uncertainty
of expectations concerning sounds. This result supports our
mathematical hypothesis that information gain serves as an index
of arousal.

We mathematically derived a hypothesized effect that we
termed the arousal crossover effect: uncertainty, represented
as variance of the prior, increases information gain when
prediction errors are zero or small, but uncertainty decreases
information gain when prediction errors are large. Both the
P300 amplitude data and the subjectively reported surprise
intensity data supported this hypothesized effect. When
congruent sounds accompanied the instruments shown,
videos featuring unfamiliar instruments evoked greater P300
amplitudes and subjectively reported surprise scores than videos
featuring familiar instruments did. However, when incongruent
sounds accompanied the instruments shown, videos featuring
unfamiliar instruments evoked lower P300 amplitudes and
subjectively reported surprise scores than videos featuring
familiar instruments did.

This concordance between our proposed model’s predictions
and the experimental results suggests that information gain
obtained from a novel event represents the level of emotional
arousal. Previous studies have shown that the KL divergence
represents surprise that attracts human attention (Itti and Baldi,
2009). We newly formalized the information gain, which is
mathematically equivalent to KL divergence, as a function of
prediction errors, uncertainty, and noise and showed both
mathematically and experimentally that an interaction effect of
prediction errors and uncertainty exists. Uncertainty of the prior
depends on an individual’s knowledge and prior experiences
as well as the familiarity of an event. Prior knowledge and
experience produce certainty of expectations. This implies that
our proposed model may explain individual differences in
emotional responses to an identical novel event as resulting from
differences in knowledge and prior experience. For example, an
expert’s expectations should be more certain than those of a
novice. Using our model, we can therefore predict that novices
are more surprised than experts are when an event differs
marginally from prior expectations but that experts are more
surprised than novices are when an event greatly differs from
prior expectations.

We formalized emotional valence as a function of arousal
levels based on Berlyne’s theory (Berlyne, 1970). The functional
model forms an inverse U-shaped curve that has a positive
valence peak at a certain arousal level. Therefore, we can
predict that variable uncertainty levels related to an individual’s
knowledge and experience and the familiarity of an event

modulate the effect of prediction errors on valence responses.
Although our mathematical model is firmly grounded in
Berlyne’s theory, further experimental evidence validating the
ability of our valence model to predict empirical observations
will be more than welcomed. Indeed, the chief limitation of
this study is the reliance on mathematical formulations of both
arousal and valence and the lack of experimental validation of
our formulation of valence. In future studies, we will conduct
experiments to test the validity of our valence model.
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