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Electrical stimulation is a promising tool for interacting with neuronal dynamics to identify

neural mechanisms that underlie cognitive function. Since effects of a single short

stimulation pulse typically vary greatly and depend on the current network state, many

experimental paradigms have rather resorted to continuous or periodic stimulation in

order to establish and maintain a desired effect. However, such an approach explicitly

leads to forced and “unnatural” brain activity. Further, continuous stimulation can make it

hard to parse the recorded activity and separate neural signal from stimulation artifacts.

In this study we propose an alternate strategy: by monitoring a system in realtime,

we use the existing preferred states or attractors of the network and apply short and

precise pulses in order to switch between those states. When pushed into one of its

attractors, one can use the natural tendency of the system to remain in such a state

to prolong the effect of a stimulation pulse, opening a larger window of opportunity

to observe the consequences on cognitive processing. To elaborate on this idea, we

consider flexible information routing in the visual cortex as a prototypical example.

When processing a stimulus, neural populations in the visual cortex have been found

to engage in synchronized gamma activity. In this context, selective signal routing is

achieved by changing the relative phase between oscillatory activity in sending and

receiving populations (communication through coherence, CTC). In order to explore how

perturbations interact with CTC, we investigate a network of interneuronal gamma (ING)

oscillators composed of integrate-and-fire neurons exhibiting similar synchronization and

signal routing phenomena. We develop a closed-loop stimulation paradigm based on the

phase-response characteristics of the network and demonstrate its ability to establish

desired synchronization states. By measuring information content throughout the model,

we evaluate the effect of signal contamination caused by the stimulation in relation to the

magnitude of the injected pulses and intrinsic noise in the system. Finally, we demonstrate

that, up to a critical noise level, precisely timed perturbations can be used to artificially

induce the effect of attention by selectively routing visual signals to higher cortical areas.

Keywords: signal routing, selective attention, intracortical microstimulation, phase-response curves,

communication-through-coherence, gamma-oscillations, visual cortex, model
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1. INTRODUCTION

With evolving technology, new and promising techniques to

interfere with the brain natural activity have played a crucial
role in moving from correlational to causal links between

neuronal activity and behavior (Tehovnik et al., 2006; Logothetis
et al., 2010; Fenno et al., 2011). Crucially, the same techniques
are used clinically to treat pathological injuries and disorders

(Martin et al., 2003; Benabid et al., 2009; Fisher et al.,
2010; Berényi et al., 2012). The development of perturbation
technology, among many others, includes ablations of cortical

and subcortical targets, chemical lesions, reversible inactivations,
transcranial direction current stimulation (tDCS), transcranial
magnetic stimulation (TMS), intracortical microstimulation
(ICMS), and finally the fairly recent and exciting optogenetic
techniques (Wurtz, 2015). This advancement of tools has
provided increasingly higher temporal and spatial perturbation
precision, allowing for more intricate control over neural activity,
which in turn has supported progressively stronger conclusions
about the neuronal mechanisms underlying cognition.

While non-invasive techniques such as tDCS and TMS
ease clinical applicability, the effects of their stimulation
unfortunately lack spatial precision. Invasive techniques, in
particular, ICMS and optogenetics allow for precise temporal
and spatial resolution, providing the ability to deliver a single
short and temporally precise perturbation at a precise location
in the brain, which in turn, should greatly increase the ability
to accurately affect and control neural circuits. However, the
effect of such a single short perturbation can be very short-
lived and, crucially, it can vary greatly in dependence on the
state of the neural system at the pulse onset. Because of this,
many perturbation paradigms have opted to either use a very
strong pulse, essentially resetting and disrupting the activity
of the target network, or to use a continuous or repetitive-
pulse stimulation in order to establish and maintain a desired
effect. For instance, a series of seminal studies (Cardin et al.,
2009; Siegle et al., 2014) entrained a local population in the
barrel cortex of mice with a rhythmic optogenetic train of
pulses at 40 Hz. By delivering a vibrissa stimulation at different
phases of the entrained population cyclic activity, the researchers
showed that the neural population response as well as the rodent
behavioral performance depends on the phase at which the
whisker stimulation stimulus arrives to the population. In a more
recent study, Ni et al. (2016) used a similar technique to show
how an optogenetically induced neural rhythm modulates the
gain of spike responses and behavioral reaction times in response
to visual stimuli in cats.

Using continuous stimulation serves its role as a powerful
research tool, however it also brings up a number of concerns.
First, in some cases, stimulation can effectively destroy and
suppress any ongoing local processing (Logothetis et al., 2010).
Even if it does not lead to full suppression, in addition
to achieving a desired effect, continuous stimulation may
interfere and contaminate the relevant neural signals. Further,
in many cases, when analyzing the activity recorded during the
stimulation, it becomes hard, if not unfeasible, to separate the
stimulation artifacts from the relevant neural data. Finally, such

an approach explicitly forces the neural system to remain in
some desired network state, resulting in artificial dynamics and
making it questionable what we learn about processing during
natural activity.

In this study, we propose to use an alternate strategy. Rather
than using continuous stimulation in order to sustain a desired
state of the neural network, we wish to utilize a single precise
pulse in order to push the system into one of its (potentially)
existing preferred states (Tsodyks et al., 1999). If the network
is pushed into one of its attractors, the natural tendency of the
system to remain in such a state extends the duration of the effect
of the pulse, which opens up a larger window of opportunity
to observe the consequences on cognitive processing. Crucially,
it becomes necessary to monitor the system in real time in
order to be aware of the system state and to deliver just the
right stimulation at just the right time, resulting in a closed-
loop paradigm.

The brain’s rhythmic activity and synchronization phenomena
provide a perfect test-bed for our approach. Brain rhythms have
been at the center of neuroscience research since they were first
observed with the invention of EEG (electroencephalography)
over a century ago (Coenen et al., 2014). Neural oscillations
are generated at specific frequencies, coexisting with background
noise (non-oscillatory) activity. They can be observed at multiple
scales, from the activity of a single neuron to the coordinated
output of large neuronal networks (Varela et al., 2001). Further,
distinct neural populations can entrain each other, exhibiting
coupled states and synchronized activity (Singer, 1999; Varela
et al., 2001). Research has shown that such neural synchrony
plays a crucial role that underlies many cognitive processes,
such as perceptual grouping (Schmidt et al., 1997), working
memory (Sarnthein et al., 1998), and information routing of
signals throughout the brain (Fries, 2005). Clinically, abnormal
levels of synchrony have been linked to pathological disorders,
such as schizophrenia, autism, Alzheimer’s, and Parkinson’s
(Uhlhaas and Singer, 2006).

Approaching the brain’s rhythmic activity and
synchronization phenomena from a perspective of non-linear
dynamics provides useful inferences on neural oscillator activity
(Guevara Erra et al., 2017). First, oscillatory synchronization
collapses the normally high dimensional dynamics of neural
dynamics into a low dimensional set of attractor states. Further, if
a neural system can be modeled using self-sustained, oscillators,
a perturbation inserted at a specific phase of a cycle would evoke
a consistent phase-shift in the oscillator’s activity—an effect that
is captured by a phase-response-curve (PRC) (Schultheiss
et al., 2011; Canavier, 2015). Numerous experimental
studies have found evidence for PRCs in vitro (Akam et al.,
2012) and as well as in vivo (Velazquez et al., 2007, 2015;
Voloh and Womelsdorf, 2016).

In the present study, through a modeling approach, we
develop a method to explore the feasibility of utilizing PRCs in
order to shift the synchronization of a system into a desired
state. First, we choose to model selective information routing
in the visual cortex, between V1 and V4 cortical areas. A
prominent mechanism explaining how information routing
occurs, communication through coherence (CTC), relies on the
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inherent oscillatory dynamics of neural activity and postulates
that neural populations establish favorable and unfavorable
information routing states through frequency-specific phase-
locking (Fries, 2005, 2015). In support of this hypothesis,
experimental studies have shown strong evidence for gamma-
band synchronization between sending V1 and receiving V4
neural populations during a visual attention task (Bosman et al.,
2012; Grothe et al., 2012). Once a favorable synchronization state
is established, rhythmic bursts of V1 spikes arrive to V4 during its
excitability peaks, increasing the likelihood that further spikes are
evoked leading to effective signal routing. On the other hand, if
the V1 and V4 populations establish an unfavorable phase state
relationship, the V1 spikes arrive to V4 during the excitability
troughs and hence should fail or at least be less effective in
evoking further activity.

We begin with a model of an isolated neural oscillator and
then expand to a more realistic system of multiple coupled
populations, constructed to exhibit the synchronization and
information routing phenomena observed in the visual cortex.
We explicitly measure the information content in the model
to evaluate the effect of signal contamination caused by the
stimulation in relation to the magnitude of the injected pulses
and intrinsic noise level of the system. Further, we vary the
background noise level to investigate how increased stochasticity
affects the phase-response properties the system and hence our
ability to control it. We demonstrate that up to a critical noise
level, precisely timed perturbations can be used to “simulate” the
effect of attention by selectively routing a visual signal to higher
cortical areas and identify optimal pulse strengths required to
achieve this goal.

2. RESULTS

In the first part of this section, we present the model of
a single cortical column as the basic building block of our
framework. Further, we introduce the techniques needed to
monitor oscillatory dynamics, and demonstrate how to use them
to control single oscillators to maintain a desired system state.
Taken together, these considerations pave the way for interacting
with a more realistic, hierarchical cortical network in Part II of
this section.

2.1. Part I: Stimulating a Cortical
Column—Basic Concepts
2.1.1. Cortical Column Model

2.1.1.1. Model structure and dynamics
For representing one cortical column, we construct a recurrent
network with 800 excitatory and 200 inhibitory, conduction-
based quadratic integrate-and-fire neurons. Their membrane
potentials V evolve according to the differential equation

CmV̇ = p2V
2+p1V+p0+ge(V−Ve)+gi(V−Vi)+σnη(t). (1)

Here, Cm is the membrane capacitance,Ve andVi are the reversal
potentials and ge and gi the corresponding conductances for
excitatory and inhibitory input currents, and η(t) is 1/f (pink)
noise with magnitude σn. If the membrane potential V crosses

TABLE 1 | Neuron and synaptic connection parameters.

Variable

value

Ae

2.88× 10−4
cm

2
Ai

1.2× 10−4
cm

2
p0

3.89× 10−9
A

p1
1.30× 10−7

A/V

Variable

value

p2
1.08× 10−6

A/V
2

Ve

0mV

Vi
−75mV

Vthresh
−56.23mV

Variable

value

Vreset
−67mV

τe

3ms

τ1
i

1.2ms

τ2
i

8ms

Variable

value

χ1

0.9

χ2

0.1

ωe

0.4 nA

ωi

1.2 nA

The parameters are taken to emulate biophysically-realistic neurons, in accordance

with Bartos et al. (2002). These parameters were specifically derived from neural

data, corresponding to neurons responsible for generative gamma oscillations in the

hippocampus. p0,1,2 were found by a mathematical reduction of the Hodgkin-Huxley

model (Abbott and Kepler, 1990).

the threshold Vthresh, a spike is generated and delivered to all
connected neurons, and V is reset to Vrest .

Synaptic term equations and all the relevant parameter values
are presented in Table 1. Connections exist from the inhibitory
population to itself, with projection probability plocii = 0.5 and

corresponding delay τ locii = 5 ms, and from the inhibitory to

the excitatory populations, with projection probability plocie =

0.5 and corresponding delay τ locie = 5 ms (Figure 1A). The
high link probability of the inhibitory neurons reflects the
dense connectivity of the inhibitory interneurons found in the
cortex (Packer and Yuste, 2011). The neuron and coupling
parameters are set to emulate realistic neurons, in accordance
with Bartos et al. (2002) (for details on the implementation and
parameters see Methods section). In our case, having 5 ms delays
allows the network to generate gamma frequency oscillations
(Figures 1B,C) by means of an ING-mechanism (Tiesinga and
Sejnowski, 2009).

Both populations are driven by afferent connections delivering
excitatory input with time-varying rates Se(t) and Si(t), realized
by inhomogeneous Poisson processes. We scaled the mean rate
and driving magnitude of the afferent input such that we achieve
a relatively high firing rate of 60 Hz for the inhibitory units,
and a significantly lower rate of 15 Hz for the excitatory units
reflecting the typical differences found between the firing rates of
the neuron types in the cortex (Vinck et al., 2013).

2.1.1.2. Quantifying stimulus representation
When interacting with a cortical network by external electric
stimulation, we pursue two goals: Assessing the implied changes
in dynamical network states, and quantifying the impact on
function, i.e., the representation and processing of visual
information. For the latter goal, we adopt a method which
was used successfully to quantify selective signal transmission
(“gating”) in dependence on the attentional state (Harnack et al.,
2015; Grothe et al., 2018). The main idea of this method is
to modulate the visual (input) signal by a random change
in its amplitude (“flicker”), and to compare the output of a
neural population with the input flicker signal by computing a
frequency-resolved correlation using spectral coherence (SC). In
our case, we modulated the external drive with mean rate S0x,
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FIGURE 1 | Single oscillator model and activity. (A) A single cortical column is

represented by a neural oscillator, consisting of an excitatory and an inhibitory

neuron population. It is driven by an input signal containing a time-varying

amplitude modulation. The inhibitory population projects onto itself and onto

the excitatory neurons, resulting in an ING mechanism which produces cyclic

population activity in the gamma frequency range (60–75 Hz). To evaluate the

signal routing ability of the network, we assess the spectral coherence SC(f , τ )

between the input signal modulation and the excitatory output activity for

different frequencies f and signal time lags τ . An cumulative input signal

information measure SC (white text) is computed by pooling across the

relevant time-frequency range within the cone of interest (solid black lines).

(B) A raster plot of the all spiking activity withing the system for the medium

amount of background noise σn = 0.075 nA. Neurons 1–800 are excitatory

(red shading) and 801–1,000 are inhibitory. One in fifty neurons is marked by a

small black bar, in order to highlight the spiking activity of a few individual

neurons. (C) Samples of excitatory and inhibitory population activity for

increasing internal noise levels are displayed for multiple background noise

conditions. At zero noise, oscillatory spiking activity is very regular—large

population bursts are followed by periods of silence. With increasing noise,

activity gets more irregular and less phase specific. (D) We show how input

signal modulation contribution to the neural activity SC decreases with

increasing internal noise σn. The dashed line at the bottom indicates the 95%

chance level, calculated by pairing up the network activity with surrogate input

signals.

x ∈ {e, i} by a flicker signal Fx via

Sx(t) = S0x(1+ σFFx(t)) . (2)

Fx was sampled from a uniform distribution between [−1, 1],
changing every 10 ms, corresponding to the experimental flicker
signals used in Grothe et al. (2018) where a luminance of a
stimulus changed every frame at 100 frames per second. The
strength of flicker modulation was set to σF = 0.10. This
modulation is passed onto the spiking rates of the driven neural
populations (Figure 1A). Note that even though the background
1/f noise η(t) and the flicker modulation Fx(t) appear to have
similar effects on the model, the flicker changes at a much lower
rate and its magnitude is kept consistent throughout all the
simulations, whereas the magnitude of background noise η(t)
is used to change the noise level of the system. By design, the
flicker is the signal we track throughout the network, and η(t)
constitutes intrinsic, interfering noise that affects the cleanliness
of oscillations and overall stability of network states.

To assess the input flicker modulation contribution to the
neural activity, we utilize spectral coherence (SC). This method
allows to investigate the linear contribution of the input to
network’s activity and was successfully used experimentally to
study similar selective processing in Grothe et al. (2018). In our
study, it provides a simple proxy to evaluate how well we can
control the system and the level of signal degradation due to
perturbations. This does not exclude that stimuli information
is also encoded in other ways such as population or temporal
coding, but suffices to compare the effects of “simulated”
attention by ICMS to “physiological” attention.

First, we compute the spectrograms of the input signal and
the spike output using a wavelet transform with Morlet kernels.
The transform yields complex valued coefficients Wz(f , t)
representing the amplitude and phase of a signal z(t) around the
frequency band f at time t. By evaluating the normalized cross-
correlation between the spectrograms of x(t) and y(t) we obtain
the spectral coherencemeasureCxy(f , τ ), where f is the frequency
and τ is the delay between the two signals:

Cxy(f , τ ) =

∑

iW
∗
x (f , ti) ·Wy(f , ti + τ )

∑

i |Wx(f , ti)| ·
∑

i |Wy(f , ti + τ )|
, (3)

Due to the normalization terms in the denominator, the values of
Cxy lie between zero and one.

If neurons are driven well by the external stimulus,
experimental data (Grothe et al., 2018) and model simulations
(Figure 1A) reveal that the input signal can be tracked in the
population activity of a cortical column in V1 (or V4) up to
frequencies of about 45 Hz (or 25 Hz). Hence, in order to obtain
a cumulative measure of input signal contribution to the neural
activity, we defined a cone-of-interest whose upper frequency
limit was selected to be at 45 Hz, and whose temporal range
was defined as ±7/6f around τ = τxy, where τxy is the delay
between input signal x and neural output y. We pooled across the
relevant frequencies f and time lags τ within the cone of interest,
to compute a single spectral coherence score SCxy.
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2.1.1.3. Gamma oscillations and noise
In a typical experimental situation, it is impossible to assess the
output signal of a specific neural population directly. Instead, the
measurement is confounded by both, measurement noise and
noise induced by background activity or by contributions from
neighboring circuits. For interacting with the brain, it is therefore
essential to quantify the impact of noise on the assessment of
the current system state and to determine limits up to which
successful control is still possible. We therefore introduced
internal noise via the additional term σnη(t) in Equation (1)
(Fourcaud and Brunel, 2002). η(t) is 1/f noise with standard
deviation equal to 1, making σn represent the magnitude of the
noise. Every single neuron unit receives its own unique noise
input. By changing the magnitude σn, we control the overall level
of noise in the entire system.

In Figure 1C in the top three plots, we display model
activity at different noise levels. With zero noise level we
clearly see oscillations within the Gamma frequency range, with
low jitter and high regularity and phase specificity—inhibitory
and excitatory populations of neurons both evoke concentrated
bursts of spikes followed by periods of silence. Increasing the
noise renders oscillations more irregular and less phase-specific,
and decreases peak amplitudes. Also, oscillation frequency
increases from 60 Hz for the zero noise condition to 75 Hz
for 0.15 nA. In order to maintain a stable cyclic activity with a
constant frequency, the ratio of inhibitory and excitatory post-
synaptic currents needs to stay consistent within each population
of neurons (Buzsáki and Wang, 2012). Increasing the magnitude
of noise inherently raises the firing rate of neurons. Since our
units are recurrently coupled, a change in average firing rate
upsets the inhibition-excitation ratio of the system, which results
in a dramatic change in activity. To counteract this effect, for
each noise level, we update the magnitude of driving rates Se and
Si to provide just the right amount of input drive to excitatory
and inhibitory units to maintain firing rates consistent with
physiological evidence, i.e., an average of 15 Hz for excitatory and
60 Hz for inhibitory units (see Methods section).

For noise levels of about 0.1 nA, we observe signals similar to
physiological findings (Grothe et al., 2018). To cover a realistic
range, we investigated noise levels from σn = 0 nA up to
σn = 0.175 nA. Crucially, as can be expected, the input
signal representation as quantified by SC becomes worse with
increasing noise, although it stays well above the significance
level (Figure 1D).

2.1.2. Tracking Oscillations and Stimulation Effects

2.1.2.1. Real-time phase tracking
For a targeted interaction with a neural system, we have to assess
its internal state in real-time. In our case, the internal state is
characterized by the current phase of an ongoing oscillation (in
the Gamma frequency range). Consequently, we will have to
determine this phase as precisely and timely as possible.

Tracking the phase of a signal in real-time imposes the
constraint that only data from the past can be used for phase
measurement, whereas the typical offline phase measurement
algorithms rely on utilizing past and future data for an accurate
estimate of the instantaneous phase at that time point. Hence,

FIGURE 2 | Autoregression (AR) signal prediction and phase error. In order to

extract real-time phase or the phase of a signal prior to a perturbation, we

utilize AR in order to forecast signals into the future before using typical offline

methods (Hilbert transform). In the (top) row, we show a few current signals

generated by our model for increasing levels of noise. The black-to-gray line

shows the original signal and the red line shows the AR prediction. In the

(bottom) row, we show the corresponding distributions of differences

between offline vs. real-time phase, showing the efficacy of the method.

we utilize use a phase-extraction scheme motivated by Chen
et al. (2013) that relies on using autoregression (AR) in order to
forecast the signal forwards (Figure 2, top row). The AR model
has been found to perform well in forecasting noisy signals with
power spectrum limited to certain frequencies (Blinowska and
Malinowski, 1991), making it adequate for our data.

In order to use the AR model, it must first be trained on
data without any perturbations. Once the model is acquired,
it is used to extend the signal into the future, allowing us to
use any of the typical offline methods for phase extraction. In
our case, we utilize the Hilbert transform. We apply a zero-
phase bandpass filter with bandstops at the halfway points
found in the power spectrum to obtain the gamma component
of the signal without distorting its phase. Then, the data is
passed through a Hilbert transform (Boashash, 1992), providing
us with the complex analytical signal. The argument of the
analytical signal reveals the instantaneous gamma phase. The
narrow range of the bandpass filter is necessary, since the
instantaneous phase only becomes accurate andmeaningful if the
filter bandwidth is sufficiently narrow (Nho and Loughlin, 1999).
The difference between the realtime and offline phase extraction
shows to be sufficiently small, demonstrating the efficacy of the
method (Figure 2, bottom row), and obliviating the need to
revert to more elaborate phase estimation schemes such as using
multiple band-pass filters with slightly different filter parameters
(Mortezapouraghdam et al., 2018).

In addition to allowing us to extract realtime phase, the same
method is also applied to neural signals just prior to an input
pulse to determine the phase of the ongoing oscillation before it
is affected by the systems response to the perturbation. A similar
method relying on AR was utilized specifically for this reason in
Ni et al. (2016).
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2.1.2.2. Phase-response curves
Using stimulation pulses, our goal is “push” a neural system
toward particular states and quantify the impact of such
a “configuration change” on information processing. For an
oscillatory system, when a perturbation occurs at a specific phase
of its cyclic activity, the following oscillatory activity is shifted
by a consistent amount. This can be quantified by a phase-
response-curve (PRC) (Smeal et al., 2010; Schultheiss et al., 2011;
Canavier, 2015) by tabulating the phase shift 1ϕ induced by
a perturbation in dependence on the phase ϕ at pulse onset
(Figure 3A). Conversely, a PRC can be used to determine the
“right” time for a stimulation in order to shift the system’s phase
by a desired amount.

We simulate electric stimulation by injecting a square pulse
of current of 1 ms duration into all the neurons within the
oscillator. The pulse was intended to emulate intracortical
microstimulation (ICMS), affecting the population of local
neurons indiscriminately. We tested depolarizing (positive
pulses, exciting the neurons) and hyperpolarizing (negative
pulses, inhibiting the neurons) pulse polarities at multiple pulse
strengths δI, from 0.25 to 4 nA. To collect the PRC curve data,
first, we run the model for a total time T without any stimulation
pulses (Figure 3A, left panel, black curves). Using real-time phase
measurement, this data allows us to tabulate normal, unpulsed
phase progression ϕ(t). For assessing the impact of perturbation
on phase, we again run the model for time T, now pulsing at
random points in time, and obtain the pulsed phase progression
ϕδI(t) (Figure 3A, left panel, red curves). The resulting phase
shift observed after a delay time τ is then given by 1ϕ(τ ) =

ϕδI(tonset + τ )− ϕ(tonset + τ ). Except for very simple or idealized
systems, 1ϕ is typically not independent of τ . In particular, one
distinguishes between the immediate PRC for τ = 0+, and the
permanent PRC for large τ (Prinz et al., 2003).

Since we consider a stochastic dynamical system, one can
not directly obtain a PRC from network simulations. Instead we
repeated the described procedure for sufficiently many tonset ’s
to first obtain a phase-response probability density function
ρτ (1ϕ|ϕ) (Figure 3A, right panel, blue shading). By taking the
circular mean across 1ϕ, one can condense ρτ into a mean PRC
1ϕτ (ϕ) (Figure 3A, right panel, red line), whose inverse gives the
appropriate onset phase(s) ϕ which achieve(s) on average a phase
shift 1ϕ at time τ after giving the pulse.

Note that this inversemapping does not have to be unique, nor

does it have to exist for any desired phase shift, especially for low
pulse strengths. In theory, one can realize any desired phase shift

by using a sequence of (small) shifts into the right direction, but

since we have to cope with a noisy dynamics inducing frequency
jitter, we typically aim at achieving a desired shift with as few

pulses as possible.
Note that the phase shift 1ϕ does not occur immediately.

Rather, following the stimulation, the network takes time to

stabilize and settle back into its normal cyclic activity, similar
to what has been described as “permanent resetting” in the case
of PRCs for individual neurons (Prinz et al., 2003). In the single
oscillator model, it takes around 2–3 cycles (around τ = 30 ms)
for the network to settle into its new stable phase state. Following

this time point, the mean phase shift stays consistent, however,
the variability goes up, due to the activities’ intrinsic fluctuations
in frequency.

For weak perturbations (δI = 0.25−1.0 nA pulse magnitude),
the resulting phase offsets are small, resulting in a smooth
biphasic PRC. The negative and positive pulses cause shifts into
opposite directions (Figure 3B, compare top and bottom rows
of first plots on the left). However, as the strength of the pulse
increases, the phase-shifts increase as well, until they look the
same and a complete phase reset occurs resulting in a PRC
that approaches the shape of a straight line (Figure 3B, plots
on the right). With a strong negative/hyperpolarizing pulse,
both the excitatory and inhibitory neurons are reset to their
steady state and the whole system is silenced. When a strong
positive/depolarizing pulse is delivered, both populations of the
network discharge a large volley of spikes, which is then followed
by a strong hyperpolarization τii = τie = 5 ms later due to
the connections from the inhibitory neurons, which essentially
acts as a strong negative pulse onto the system. In each case,
the neurons are reset to the steady state, taking the network
a predictable amount of time to recover back to its oscillatory
activity, regardless of onset phase of the perturbation.

As we increase the internal noise of the model, the variability
of the PRC goes up with it. At a sufficiently high noise level,
σn ≥ 0.175 nA, we no longer achieve stable or predictable phase
shifts (Figure 3C), which means that the oscillator has become
too unstable to exhibit phase-response properties (Guevara Erra
et al., 2017). Additionally, when applying a specific magnitude
of a pulse, its effect seems to increase (getting closer to a full
phase-reset) with noise as well. In part, this is due to the fact
that the amplitude of the oscillations in the noisy conditions are
lower, meaning that the relative magnitude of the pulse to the
oscillations gets higher with increasing noise.

2.1.3. Controlling Oscillations

2.1.3.1. Phase control procedure
To test the ability to use the phase-response characteristics of our
model, we employ the following task: we run two independent
oscillators, X and Y, simultaneously. If we let them run without
interfering, the phase difference between their activities 8XY =

ϕX − ϕY performs a random walk, as their frequencies fluctuate
independently from each other1. We want to pulse X to keep it
synchronized with Y. To achieve this, first, we track their phases
ϕX and ϕY in realtime, using the AR model to forecast signal
at each time point (see Figure 4A). Once 8XY surpasses the
allowed threshold level (more than an eighth of a cycle difference,
|8XY| > π/4), we apply a stimulation pulse at just the right
phase in order to enact a shift in X’s phase 1ϕX that is as close
as possible to the required correction −18XY. As soon as ϕX

matches the desired onset phase, the stimulation current is given.
After the pulse, we enforce a refractory period of τref = 100 ms

1In our mathematical notation, we consistently designate phases with ϕ, phases

shifts (induced by the perturbation) with a prefix1, and phase differences (between

oscillators i and j) with a greek uppercase 8ij. Consequently, 18XY will describe

the phase shift induced by a pulse on the phase difference between oscillators X

and Y.

Frontiers in Computational Neuroscience | www.frontiersin.org 6 February 2019 | Volume 13 | Article 7

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Lisitsyn and Ernst Stimulation Simulation

FIGURE 3 | Phase response curves. (A) The plots on the left (top and middle row) show the activity of the excitatory population (in black) and how a single

perturbation applied to the oscillator changes both activity and post-synaptic current (in red). From the corresponding phase dynamics (bottom row), we capture the

phase ϕ at the pulse onset, and the resulting phase shift δϕ 100 ms later (blue arrow). This gives us a single data point (marked in black) in the PRC space on the

right. By repeating this procedure we obtain the distribution of pulse responses indicating the PRC and its variability due to internal and external noise sources. The

blue shading in the plot corresponds to the probability density of many runs, with darker blue corresponding to higher probability. (B,C) We show multiple PRCs

across different conditions—varying pulse magnitude (B) and internal noise level (C). In each plot, the thick red line represents circular mean of the phase shift across

the pulse onsets, while the thin red lines indicate the corresponding 25th and 75th percentiles. At low pulse strengths, the resulting PRC shows a smooth biphasic

relationship—pulsing at the peak [0 < ϕ(tonset ) < 0.5π ] results in a negative phase shift (delay) and pulsing at the trough [−π < ϕ(tonset ) < −0.5π ] gives a positive

phase shift. As we increase the strength of the perturbation the magnitude of the phase shift increases. At sufficiently high pulse magnitude of either polarity, a

perturbation leads to a complete phase reset.
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when no pulses are allowed in order to let the network settle and
maintain its new phase relationship.

2.1.3.2. Synchronizing two independent oscillators
In Figure 4B we show the resulting phase difference between
X and Y, with the desired state shaded in gray. In the
unpulsed control condition, due the inherent variability in the
oscillator’s frequency, their phase difference constitutes a random
walk, resulting in a uniform distribution. Once the closed-
loop procedure is applied, the difference of phases between the
oscillators shows the desired distribution centered around the
target phase state (-π/4 to +π/4). Notably, the strength of the
pulse does not affect the distribution (hence, just one distribution
shown for all pulse strengths in Figure 4B). Once the first few
pulses bring the oscillators into the desired phase relationship,
only small phase shifts are required in order to maintain the
phase difference. Since any of the utilized pulse magnitudes are
capable of achieving the required shifts, the final phase difference
distribution is unaffected.

On the other hand, the model’s inherent noise level plays
a major role. As the noise increases, the ability of the pulsing
procedure to maintain the desired state decreases. At the highest
noise level, even though their PRC curve shows no reliable shifts,
we still achieve a distribution centered around the desired phase
difference. Note, that this is not due to any phase-response
properties but is merely the effect of applying pulses to the
network whenever it is not in the desired state, thus pushing it
away from the “forbidden” state, and then letting it run passively
whenever the desired state is achieved—the phase onset of the
pulse does not matter.

Next, we use spectral coherence to assess the amount of
input signal information that is present in the networks’ output
activity (Figure 4C). By pulsing the population, we degrade
the signal content. With perturbations of higher magnitude,
the amount of degradation increases appropriately. Notably,
negative perturbation pulses (in blue) result in significantly less
information degradation than the positive pulses (in red). The
excitatory pulses evoke large bursts of spiking activity, which
strongly diminishes the stimulus content measure, whereas the
inhibitory pulses, at most, suppress the spiking activity to zero
which results in less stimulus interference. At high noise levels
and at a sufficiently high pulse magnitude (4 nA), the amount
of signal information is no longer significant and falls below the
95% chance level at the bottom of the plot. Thus, if we want to use
electrical stimulation for assessing information processing in the
brain, we have to take care to use an appropriate pulse strength
to not completely overpower the signals whose representations
we desire to enhance.

2.2. Part II: Bistable Columnar Network
Here the techniques developed in the first part of our study
will be applied to an established, prototypical columnar
network implementing selective signal routing under
attention. After briefly describing the model itself and
its dynamics, we will first quantify how the model reacts
to perturbation pulses applied to different parts of the
system. Using this knowledge, we can finally interact

with the model “cortex” in a meaningful way, simulating
the effects of “natural,” physiological attention by using
“artificial” pulses to selectively route external signals
to neural target populations. Conversely, our results
provide predictions which can be used in physiological
experiments to specifically test the particular model setup
and, on a more general level, hypotheses about the still
debated neural mechanisms realizing communication-
through-coherence.

2.2.1. Structure and Dynamics of Columnar Network

2.2.1.1. Setup and connectivity
We use the cortical column setup from Part I to construct a
model composed of several interconnected oscillator modules,
representing interactions between cortical columns in areas V1
and V4, similar to the work of Harnack et al. (2015). All the
projections between the cortical columns originate from their
respective excitatory subpopulation, reflecting the finding that
inhibitory neurons have been found to form primarily local
connections, whereas the excitatory neurons project to up- and
down-stream visual areas (Stepanyants et al., 2009), and laterally
to neighboring columns (Stettler et al., 2002).

A schematic of the model is presented in Figure 5A. The
input (upstream) layer of the model is composed of two
oscillators, X and Y, representing two neighboring V1 cortical
columns. These are driven by afferent connections delivering
independent Poisson spike trains, each modulated by its own
input signal, SX and SY. Furthermore, X and Y share a
connection from the excitatory pool of neurons of one population
to the inhibitory neurons of the other, Xe to Yi and Ye

to Xi with connection probability pXY = 0.02 and delay
τXY = 5 ms.

In the output (downstream) layer of the model, a third
oscillator Z represents a single V4 cortical column that
receives input from each of the V1 populations, emulating
the convergence of receptive fields when going downstream
in the visual system. Xe and Ye project with equal strength
onto Ze with connection probability pZe , and onto Zi with
connection probability pZi . Each of the individual populations
retains local parameters of the single cortical column from the
previous section, resulting in cyclic activity within the same
natural frequency.

Increasing levels of additional background noise significantly
increase the firing rates of integrate-and-fire neurons (Brunel
and Latham, 2003). Since our model contains all sorts of
recurrent connections, these increased firing rates cause various
runaway effects that drastically change the behavior of the
model. Thus, to make the comparison between different noise
levels fair, we scale the driving magnitude of the afferent
inputs into each population in order to maintain consistent
firing rates across the conditions. First, Se(t) and Si(t) are
scaled for the X and Y oscillators, similar to the case with
a single cortical column. Once X and Y evoke the desired
output spiking rate of 15 Hz, pZi and pZe are scaled such
that Z is sufficiently driven to display the same spiking rates
as well.
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FIGURE 4 | Using PRCs to synchronize two independent oscillators. (A) The top plot shows the diagram of the two oscillators next to their output activity traces, X

(green) and Y (orange). As soon as the phase difference between the two oscillators (lower plot, blue line) exceeds 0.25π in either direction (region shaded in gray), the

appropriate phase for pulse onset onto X in order to achieve the required shift to bring it back into synchronization with Y is determined. Once X is at this right phase,

a pulse is applied (vertical red line). Following the stimulation pulse, a refractory period is induced for 100 ms during which no pulses are allowed (blue-shaded

regions). (B) Evolution of X-Y phase difference distribution with increasing noise. With higher noise, the amount of time that the model spends in the desired state

diminishes, as visible by the broadening distribution. The magnitude of the pulse does not affect the distributions, since any of the pulses are equally capable of

causing the appropriate shift to maintain an already established and desired phase relationship between the oscillators. (C) Signal content SC for different pulse

strengths (blue-red scale) across different background noise conditions. Stronger pulses cause larger and longer-lasting artifacts in activity which greatly reduce the

signal information content measure SC. Negative pulses consistently lead to less signal degradation than positive pulses of the same magnitude. The errorbars

correspond to the SE of 10-s simulation runs. The gray shading at the bottom indicated the 95% chance level.

2.2.1.2. Model dynamics
Due to the intra-population connectivity between X and Y and
their associated synaptic delays, their oscillations are consistently
in an anti-phase relationship. The outputs from X and Y drive
compete to entrain Z, which results in bistable model dynamics
as described in Harnack et al. (2015).

To demonstrate these dynamics, we display a snippet of
activity in Figures 5B–E, focusing on Ze. When Z is entrained by
X, the troughs of Zi’s input to Z activity correspond to the peaks
of X and to the troughs of Y, and vice versa when Z is entrained by
Y (marked by the vertical lines throughout plots Figures 5B–D).

Thus, during the first half of the displayed activity, Ze’s spikes
are mostly driven by X’s input, and during the second half by
Y. These sort of dynamics enact the CTC mechanism to route
the input information SX or SY depending on which population
X or Y is in a favorable (matching peaks) phase relationship
with Z.

When the peaks of the currents in Ze appear aligned, the stable
state phase differences ϕZ − ϕX = 8ZX (or ϕZ − ϕY = 8ZY)
do not perfectly correspond to 0, but rather span the range
between 0 to 0.5π , derived empirically from the model’s behavior
(shaded in gray in Figure 5E). This is merely an epiphenomenon
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FIGURE 5 | Bistable XYZ model. (A) The model consists of three cortical

populations X, Y, and Z. X and Y form the lower layer of the model, each

population is driven by its own input signal SX and SY. X and Y are connected

laterally, set up such that the two populations’ activities oscillate in antiphase.

The outputs of X and Y drive the activity of Z which forms the upper layer.

(Continued)

FIGURE 5 | (B–E) In row (B), we display the postsynaptic currents in Ze as a

result of the inputs it receives from Xe, Ye, and Zi . X and Y’s activity is

consistently in antiphase. In row (C), we show the sum of all these currents,

which then leads to the spiking activity displayed in row (D). Points of minimal

inhibition from Zi (i.e., peaks in the inhibitory Zi current) are marked with

vertical lines extending across the plots in order to track their location. Toward

the beginning, these peaks align with the peaks of Xe’s current, switching to

Ye partway through time, indicated by the change in color of the vertical lines.

Thus, at first Xe’s input fails to evoke spikes in Ze since it coincides with the

highest inhibition from Zi whereas toward the end the spiking activity is driven

primarily by Xe, demonstrating the idea behind selective information routing via

the CTC mechanism. In row (E), we show the phase differences

φXe − φZi = 8ZX and φYe − φZi = 8ZY . They gray shaded region indicates the

favorable phase difference, which corresponds to aligned peaks between Zi
and Xe or Ye currents. At the beginning of the displayed data snippet, the

network’s state is favorable to transfer Y’s information, TrY, switching to be

favorable for X, TrX, in the latter portion. (F) Distributions of phase differences

for different levels of internal noise for the X-Y populations (left) and X-Z (or

Y-Z) populations (right). The two peaks of the distributions in the right-hand

plot indicate the bistable dynamics of the network. Phase differences between

0 and 0.5π correspond to the preferred state when signal routing should be

optimal (shaded in gray). (G) The signal content SC in the activity of X and Y as

a function of internal noise level is displayed. X activity manifested mostly the

input signal SX and significantly less of input signal SY, which shows up due to

the lateral connection between X and Y. (H) The stimulus content of SX input

in Z is shown, first without considering the state of the network and then

separately for each state, TrX and TrY. The errorbars in (G,H) correspond to

the SE of 10-s simulation runs and the gray shading at the bottom indicates

the 95% chance level.

of the phase extraction, due to the mismatch between the signals’
waveforms which stray away from perfect sinusoids.

We designate the system’s stable states by using the 8ZX

and 8ZY phase differences: state TrX when Z is entrained by X
(0 < 8ZX < 0.5π , corresponding to 25% of available phases)
and SX information should be transferred over to Z while SY is
suppressed by Zi’s inhibition; and state TrY (0 < 8ZY < 0.5π)
when the opposite is true. Considering that X and Y are always
oscillating in anti-phase, this leaves half of the available phases as
the unstable region, when the system is transitioning from one
state to the other.

The bistable dynamics of the system are clearly visible in
Figure 5F where we plot a histogram of 8ZX and 8ZY phase
differences, across multiple noise conditions. As can be expected,
with increasing levels of noise, the system’s affinity to maintain its
stable states decreases.

2.2.1.3. Signal transmission
The inherently bistable dynamics provides a perfect mechanism
for implementing communication through coherence (CTC).
The CTC hypothesis states that when a population receives
multiple oscillatory inputs, it can selectively route one and
suppress the others by establishing favorable and unfavorable
phase relationships, respectively. For example, in the first half
of the trial shown in Figures 5B–E, X input to Ze arrives when
Ze is least inhibited by the Zi input, putting it into an excitable
state and allowing the information content of the signal in X to
propagate into (and through) Z. Simultaneously, the bursts of
Y’s activity arrive concurrently with maximal inhibition from Zi,
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hence suppressing Y’s information content. In sum, the output
spikes of Z during this period primarily reflect the activity it
receives from X. The same is true in the other direction—when
Y wins the entrainment “battle” over Z, its output propagates
onwards, while X’s output is effectively suppressed. In the
following, we will call these two stable states trans-X-favorable
(abbreviated TrX) and trans-Y-favorable (abbreviated TrY).

By using the spectral coherence, we assess the content of each
input signal, SX and SY, in all three populations X, Y, and Z.
Due to the recurrent connections between X and Y that were
not present in the independent case considered in part I, there
is a weak mixing of the input signals in the first layer, as seen in
Figure 5G. X represents primarily SX (green bars), and to a small
but significant extent SY (orange bars). For reasons of symmetry,
the same lines also represent signal content in Y (green for SY in
Y, and orange for SX in Y).

If we compute the representation of each input signal SC
in Z output without regard for the current state (TrX or TrY),
we find that on average each signal is equally expressed, as
indicated by the blue bars in Figure 5H. However, when we
assess signal content when the network is in the TrX state,
we find that Z activity contains significantly more information
from SX (green bars) as opposed to when the system is in TrY

state (orange bars). Thus, the model does indeed perform signal
routing, stochastically switching between the two equivalent
input sources. As we increase the background 1/f noise,
qualitatively none of these relationships change—populations
in a favorable phase relation always route more information.
However, at a sufficiently high noise level (σn > 0.15 nA),
the difference between stimulus content SC during TrX and TrY

states is no longer significant (Student’s t-test between two sets,
composed of 100 simulations of 10 s each, p > 0.05).

2.2.2. Pulse-Response and State Switch

Characteristics of the Columnar Network
As introduced earlier, we will use ϕi to denote the phase of
oscillator i, and 1ϕi to denote the change in phase of oscillator
i induced by an external pulse. The probability ρτ (1ϕi|ϕi) to
observe a phase shift 1ϕi a delay τ after a pulse was given
when the oscillator was at phase ϕi then constitutes a stochastic
realization of the phase response-curve (PRC) of unit i.

However, in our extended model an oscillator is part of a
network in which a single oscillator’s phase is less important
for network function than phase differences between pairs of
oscillators. For example, in order to gate an input signal from
population X to population Z, their phase difference must be
close to 0 as was observed in the previous section. For this
reason, we will also consider how the phase difference 8ij =

ϕi − ϕj between populations i and j is affected by a pulse, giving
us a distribution ρτ (18ij|8ij) over induced phase difference
shifts 18ij. Since these shifts are indicative of changes in the
network state, we will use the term “state switch characteristics”
for these distributions.

One can distinguish two conceptually different possibilities
to interact with the columnar network: Pulsing population X
(or Y) from the input layer, or pulsing population Z in the
output layer. In the following paragraphs, we will investigate

these two possibilities in more detail, with Figure 6 illustrating
the corresponding effects at a delay of τ = 100 ms after the pulse,
at an intermediate noise level of σn = 0.075 nA. Furthermore, we
assume the network to be in a TrY state, and we will thus compute
the state switch probabilities to the TrX state.

2.2.2.1. Pulsing input layer population X or Y
If we apply the pulse to one of the lower level populations,
the perturbation will propagate forth and back via recurrent
connections and lead to a cascading effect of pulse echos.
However, after more time passes (τ = 100 ms is more than
sufficient), the X–Y populations settle back into their anti-phase
relationship. Because of this, at a sufficient delay τ , the PRC
densities for X and Y are essentially identical and appear to
resemble a diffused version of the PRC in the single oscillator case
(compare the left graphs from Figures 6A,B to the corresponding
plot in the middle of Figure 3B).

How do these perturbations act on the output population Z?
A pulse given at a peak of X’s activity arrives at a trough of Z’s
activity, giving rise to the phase shifts 1ϕZ(ϕX) shown in the
middle graph of Figure 6A. However, if a pulse is given at a peak
of Y’s activity, the propagated pulse arrives at Z at about the same
phase as the initial perturbation was given to Y, resulting in the
phase shifts 1ϕZ(ϕY) shown in the middle graph in Figure 6B.

How do these different effects of a pulse given to the input
layer combine and affect the global state of the columnar
network? To obtain the corresponding measure 18ZX, we can
take the difference between the corresponding data points from
the left and middle graphs in Figures 6A,B, thus obtaining the
state switch densities. The corresponding graphs displayed in the
right column of Figures 6A,B reveal a bimodal distribution with
peaks at 0 and π . In order to best summarize the concentrations
in the state switch densities around 0 and π , we calculate the
state switch probability psw across the onset phases 8 via psw =

1−
∫ +π/2
−π/2 ρ(18)d18.

2.2.2.2. Pulsing output layer population Z

Since Z does not send feedback projections to the input layer, the
effect of a pulse stays confined exclusively to Z’s activity and is
independent on the system being in state TrX or TrY. Because of
this, any phase shift1ϕZ induced onto Z is equivalent to the shifts
in phase difference 18ZX = 18ZY = 1ϕZ between X and Z,
and between Z and Y. In Figure 6C we can see that the resulting
PRC and state switch distributions are bimodal and have peaks
around 0 and π , unlike the effect of a pulse on the single cortical
column studied in the previous section. This result is due to the
bistable dynamics, which after the immediate effect of the pulse
cause Z’s phase to continue shifting until one of the stable states is
reached. For this reason, this generic behavior is also independent
on noise and pulse magnitude. Accordingly, the final phase shift
can be either close to zero or close to π , corresponding to no
system state change or to a switch between stable states TrX and
TrY, respectively.

When the pulse magnitude is sufficiently small, e.g., δI ≤

1 nA, a state change is unlikely (not shown) since the
corresponding average phase shift for a single oscillator is too
small, 1ϕX ≤ 0.5π . Once we increase the pulse strength the
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FIGURE 6 | Phase-response and state switch characteristics in the columnar network. Assuming the network being in a TrY-state, indicated by the thick gray lines in

the network diagrams, response characteristics for stimulation of input layer populations X (A) and Y (B), as well as for stimulation of output layer population Z (C) are

displayed. The first column of graphs shows the phase response curves (PRCs) for the stimulated oscillator. Note that these are different from the single oscillator

PRCs since the oscillators are now embedded into a larger system. The second column of graphs shows the effect a pulse has on the respective population Z (A,B)

or population X (C). Blue shading in both columns quantifies the probability density of causing any specific phase shift with darker colors indicating higher

probabilities. By taking the difference between the corresponding data points in the densities shown in the left and middle column, we can compute the probability to

switch to a TrX state, which is exemplified in the third column. Since there is no feedback from output population Z to input populations X or Y, the response of X to a

pulse onto Z is flat (lower middle graph). The horizontal dashed line in the third column represents the passive switch chance after 100 ms of runtime. Noise level was

σn = 0.075 nA for all panels, and pulse strength δI = 1 nA (4 nA) for (A–C).

likelihood for a phase shift of π increases, with their respective
phase onset locations roughly corresponding to the ones which
led to 1ϕ ≥ 0.5π phase shifts in the single oscillator (e.g.,
compare to Figure 3B, bottom middle plot). Once the strength
of the pulse is sufficiently high, a full state reset of the whole
system is achieved. Even if the pulse strength is doubled, there
are only small changes to the state switch probabilities shown in
Figure 6C for δI = 4nA.

Although an initial pulse magnitude of 1 nA was insufficient
to obtain a high state switching probability when pulsing Z,
when pulsing X with the same strength a much higher switching
probability is observed, and for a large range of pulse onset
phases (red curves in right column of Figures 6A,B). There

are two reasons why switching is easier when targeting an
input population: first, the perturbation does not only affect
one population but is propagated to all other “players” in the
network, and second, for a brief period of time after the pulse,
the anti-phase relationship between X and Y is disturbed.

2.2.3. Optimizing Stimulation Pulses for State

Switching
Our goal of using stimulation is to cause the network to be
continuously in a desired state TrX or TrY for either transmitting
signal X or signal Y, respectively. By deriving state switching
probabilities from phase-response curves as described in the
previous subsection, we now have a tool for optimizing the
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stimulation pulse parameters toward this goal. Accounting for
symmetry between X and Y, all the following results are presented
with the aim of switching to a TrX-favorable state. By this design,
whenever the network is already in a favorable TrX relationship,
no perturbation is necessary. However, if at any point the
network instead is in a TrY favorable relationship, we can apply
a pulse either to column X, Y, or Z to attempt to switch the
state to TrX.

In Figure 7, we display the columnar network’s state switch
capabilities for TrY −→ TrX for negative and positive pulses,
for each of the three possible pulse-target populations X, Y, and
Z. In the plots, we show the change in switch probability 1psw,
since the unpulsed system already possesses a non-zero passive
switch probability. In the column on the left, we show how this
probability evolves over time (vertical axis) for a medium amount
of noise σn = 0.075 nA and medium pulse magnitude δI = ±1
nA in dependence on onset phase ϕ of the pulse (horizontal axis).
In the rightmost three plots in each row, we show the switch
probability for multiple pulse magnitudes (different colored lines
in each plot) for increasing levels of background noise (the three
separate plots). The plots in the column on the left correspond to
one line in the middle plot of the three on right. The maximum
1psw is marked in each plot to indicate the optimal onset phase,
which can be used in order to switch the system sates. Crucially,
in some cases, a pulse leads to a negative 1psw indicating that,
if delivered at the wrong moment, a perturbation can actively
hinder a transition to TrX and instead stabilize the undesired TrY-
state. In the following paragraphs, we briefly discuss the effects of
pulsing the different target columns.

2.2.3.1. Pulse X
The graphs in Figure 7, top two rows, reveal that in addition to
having an optimal onset-phase, for each noise condition, there
is also an optimal pulse magnitude that results in the largest
increase in switching probability, indicated by a small circle.
Interestingly, for the medium level of noise, we observe larger
switch probabilities than the zero-noise condition.

When applying a negative pulse, there are always intervals
of phase onsets that increase, and intervals that decrease the
probability of the network switching its state. On the contrary,
when applying a positive pulse, at a high noise level (σn =

0.15 nA) and a high pulse magnitude (δI = 4 nA) the onset phase
does not appear to matter for the final outcome. In this particular
case, all phase onsets lead to a decrease in the switch probability.

The amount of time it takes the network to settle down onto
a new state tends to increase with pulse strength (≈ 30 ms for
δI = 0.5 nA pulse vs. ≈ 60 ms at δI = 2 and 4 nA, not shown in
figure). A stronger initial current causes a stronger reverberation
of the perturbation, which then takes longer to decay within the
system, increasing the time it takes the columnar network to settle
back to its normal activity. This effect is particularly strong for
the positive pulses, where we get to observe the different phase-
states the system goes through before settling down. A negative
pulse briefly suppresses all the activity in the network, whereas a
positive pulse evokes a volley of spikes in the target population,
which then travels and acts as it’s own perturbation across the
throughout the system.

2.2.3.2. Pulse Y
When pulsing Y instead of X, the graphs in Figure 7, rows 3 and
4, reveal that the switch probabilities appear complementary to
the ones from pulsing X.When pulsing X, if a specific phase onset
leads to an increase in switching probability, the same phase onset
typically leads to a decrease in switching probability if pulsing Y
instead. This makes sense, since by changing which population
(X or Y) we are pulsing at one specific pulse onset phase, we
are essentially changing the onset phase of the propagated pulse
that arrives to Z by an amount of π , since X and Y maintain an
anti-phase relationship.

Because of this, when applying a positive pulse of a large
magnitude (δI = 4 nA) in the noisy condition (σn = 0.15 nA),
the probability of a switch is now consistently high across all pulse
onsets, whereas in the previous condition a pulse to X was always
decreasing switch probability.

2.2.3.3. Pulse Z
As described previously for Figure 6, when pulsing Z, a pulse
of low magnitude is hardly sufficient for inducing a significant
change in the switch probability. As the noise level of the
system increases, the switch probability decreases substantially
(Figure 7, bottom two row).

2.2.4. Using Stimulation Pulses to Control Signal

Transfer in the Columnar Network
The paradigm to control the synchronization state of the network
is similar to controlling the phase of an independent oscillator,
with one crucial difference: In the independent oscillator case, a
pulse is applied at various phase onsets, depending on what sort
of a phase shift is currently necessary. In the columnar network,
however, the choice is binary: to switch or not to switch. If we
desire to change the current system state, then there is just one
specific optimal onset-phase for the pulse. So, for every pulsing
condition (i.e., which population pulsed, pulse magnitude, pulse
polarity, and network noise level), the state control procedure
comes down to the following:

At a time point t, apply the stimulation pulse if the following
conditions are met

1. Last pulse was more than τref ago.
2. The system is in the wrong state and a switch is necessary.
3. The current phase of the pulsed population corresponds to the

one that leads to the highest switch probability.

In order to evaluate how well the pulsing procedure works, we
first quantify the proportion of time that the system spends in
the desired target state (Figure 8). At the top of each plot, we
display the proportion of time that the network spends in that
state without pulsing. As defined previously, the desired state
is set to the interval 8ZX ∈ [0, 0.5π], which corresponds to a
quarter of the full interval of possible differences.

The goal of the perturbation pulses is to increase this value
as much as possible. The results observed in this figure perfectly
reflect the corresponding switch chance as predicted by the plots
in Figure 7. This is especially clear in the case when we pulse X
with using a large positive perturbation (δI ≈ 4 nA) at a high
noise level (σn ≈ 0.15 nA). In this condition, the effect of the
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FIGURE 7 | Changes in state switching probability. State switch capabilities for a transition TrY −→ TrX for the three possible target columns X, Y, and Z of a pulse

(upper, middle, and bottom sets of two rows each, respectively) for negative and positive pulses (top and bottom row in each set). The leftmost plot in each row shows

how the change in state switch probability 1psw depends on the phase of the pulse onset (horizontal axis) and how it evolves over time (vertical axis going up). The

remaining three plots in each row display the switch chance 100 ms after pulse onset, for multiple magnitudes of the pulse (differently colored lines in each graph), and

for different background noise levels (separate plot for each noise condition). In each plot, the maximum switch probability is marked by a small circle. The leftmost

plot in each row corresponds to one line from the middle plot of the three on the right.
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FIGURE 8 | Proportion of time spent in desired state. The plots display the proportion of time that the network spends in the desired state for all the conditions, as

labeled. The top row in each subplot indicates the amount of time that the network spends in the desired phase state passively, without any perturbation pulses. Since

our favorable state covers a quarter of the full cycle from 0 to 0.5π , the chance level of being in the favorable state is 0.25. To highlight this, the color map turns

sharply blue below this value. Thus, the sessions (see Figure 7) whose pulses could only achieve decreasing the switch probability are colored blue.

pulse can only decrease the switch chance, indicated by the blue
regions in the top right plot. In all other cases, the procedure
succeeds at increasing the amount of time the network spends
in the desired state.

Similarly to our previous results from pulsing independent
oscillators, the performance of the procedure decreases with
increasing noise level. On the contrary, in the columnar network
the pulse magnitude and polarity plays a crucial role, whereas in
the independent case, the strength of the pulse had no significant
effect on the performance. In fact, we observe qualitatively
different patterns for which pulse is optimal across the different
pulse-polarity and pulsed-target conditions. For instance, when
pulsing X, a pulse of δI = −1 or 1 nA achieves the best
performances. However, when pulsing Y, negative pulses get

better results at higher magnitudes (saturating at sufficiently high
levels), whereas positive pulses exhibit lower performance once
the magnitudes are sufficiently high.

Generally, with our model’s specific setup, the results seem to
indicate that pulsing Y (i.e., the population whose information
we wish to suppress) provides a much more robust and forgiving
conditions, by having more admissible phases of the perturbation
onset that result to a state switch.

Further, we evaluate the signal routing performance of the
pulse procedure by evaluating the difference between SX and SY
signal contents in Z. These differences are displayed in Figure 9.
Insignificant differences are marked appropriately (p > 0.05,
Student’s t-test). At the top of each plot, the maximally achievable
difference is displayed, as seen in Figure 5C, by evaluating the
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signal content in Z without delivering any pulses, but for the time
intervals in which the system is spontaneously in the preferred
state for transmitting a specific signal.

As we observed in the independent oscillator case, increasing
the pulse magnitude increases the amount of degradation
of the external signal in the population’s activity in all the
conditions. In some cases, a pulse of a higher magnitude
actually leads to a better performance in terms of keeping
the network in the desired state, but simultaneously, it
also increases the amount of signal degradation. Since we
focus on signal routing differences, the results in Figure 9

reveal the appropriate compromise to achieve the best gating
performance.

In a recurrent network, the effect of the pulse on external
signal representations is not straightforward and hard to predict.
First, the signal represented by the pulsed population is degraded
by the injected current. Subsequently, the pulse propagates
throughout the rest of the system, causing further degradation
of signal representations in other populations. Consequently,
the signal routing performance crucially depends on which
population is pulsed. For instance, if we compare the results
in the zero noise condition when pulsing X or Y with a
positive pulse of δI = 1 nA, we find that pulsing Y
provides much better routing results, even though pulsing
X is actually better at establishing the desired network state
(see Figure 8). In this case, a significant part of the result is
caused by signal SY getting degraded substantially more than
signal SX.

3. DISCUSSION

3.1. Summary
The goal of this study was to investigate how precise
perturbations can control a recurrently coupled neural network
by using its natural tendency to be in one of several
preferred network states. For this purpose we developed a
closed-loop paradigm to monitor the system state in realtime
and utilized the results to deliver rare, but accurately timed
stimulation pulses of proper magnitude. First, we evaluated
the method on a structurally simple system—the model of a
single cortical column. Here, it was possible to synchronize
two independent oscillators up to a critical noise level, and
to determine the optimal pulse strength. Next, we applied our
paradigm to a more elaborate network of local populations
representing recurrently coupled cortical columns, proposed
(Harnack et al., 2015) as a prototypical implementation for
selective information processing via communication-through-
coherence (CTC) in the visual cortex. For successfully interacting
with such a system, our results demonstrate that understanding
the behavior of one of its constituents in isolation (e.g., by
obtaining the phase-response curves, PRCs) is not sufficient—
instead one has to probe the network as a whole, which
required to compute the probabilities of state switches.
Furthermore, we investigated several ways of interacting
with the system, targeting either upstream or downstream
neural populations. Ultimately, we could simulate the effect
of physiological attention and gate signals by bringing the

desired population(s) into a preferred (or non-preferred)
phase relationship.

3.2. Limitation of Model and Significance of
Results
Certainly the columnar network is still an abstraction of the
real networks performing selective information processing in the
visual cortex. We only considered three coupled columns, back-
projections from downstream visual areas were not modeled,
and we assumed a lateral recurrent coupling structure which is
still subject to on-going physiological and anatomical research.
Furthermore, we restricted ourselves to investigate ING-
oscillators only (for details, see paragraphs below). Additionally,
the effects of our perturbation pulses on neural processes are
highly simplified in the simulations. However, even when taking
these restrictions into account, we believe our work contributes
in three important aspects to the field:

• For being successful in interacting with a neural system, the
current state of the system does matter. This is particularly
obvious when trying to construct a visual intracortical
prosthesis (Lowery, 2013). Since there is an on-going dynamics
in the cortex even in the absence of an actual visual stimulus
(Arieli et al., 1996), it is important to know when an
artificial stimulus would be most effective, either in inducing
a certain percept or in pushing the system into or toward
a desired network state. Another requirement is to ensure
an ongoing stimulus processing in downstream visual areas.
For this purpose, it would be necessary to first bring the
network into a state where incoming information can be
successfully gated across different stages. This goal was
successfully reached in model simulations of our closed-loop
stimulation paradigm.

• With respect to selective information processing, we
investigate one specific of potentially many implementations
of the CTC principle. Our results therefore constitute a
prediction of how the real network would react if it would
work according to our hypothesis. In particular, we predict
that pulsing the column representing the unattended stimulus
would be very effective in switching between the different
network states and in selectively gating a stimulus. This should
not be the case if the recurrent interactions would not push
the upstream populations X and Y into an antiphase relation,
thus providing an opportunity to test this critical assumption.

• Finally, our study brings together the tools needed to establish
realtime control of stochastic neural systems. One important
insight for us were the severe restrictions imposed by noise,
be it intrinsic or on the observation level. Crucially, we
present a paradigm that relies on single and rare stimulation
pulses, allowing the network to spend the majority of the
time unperturbed. This is in opposition to utilizing continuous
stimulation or repetitive pulses that explicitly entrain the
system, which we argue results in non-natural and forced brain
activity. Thus, we conclude that instead of explicitly forcing a
network state, it should be of great benefit to account for the
system’s inherent multistable attractor states and utilize the
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FIGURE 9 | Selective signal routing via precisely pulsing the columnar network. Difference in transferred signal content between the two competing input stimuli SX
and SY for different stimulation paradigms (rows) and pulse polarities (columns), evaluated for different pulse magnitudes δI (vertical axes) and noise levels σn

(horizontal axes). The top row in each graph shows the corresponding “optimal” or maximally achievable signal routing performance extracted from time intervals

when the network was in a particular preferred state (here, in TrX). Parameter combinations marked by a red “n.s.” indicate conditions where the difference in signal

transfer was not significantly different from zero (Student’s T-test, p < 0.05).

minimal perturbation to let the network settle naturally in a
desired network state.

Below, we discuss the relation of the columnar model to
experimental data and possible consequences of changes to the
model structure for our stimulation paradigm.

3.2.1. Intra-Population Connectivity
As briefly mentioned in the preceding paragraph, there are two
major assumptions in the connectivity between the X,Y and
Z modules in the columnar network. First, the connectivity
between the lower layer populations X and Y forces them
to establish a stable and symmetrical anti-phase relationship
between their activities, without establishing a clear winner
between the two. Second, there are no back-projections from Z
back onto X or Y.

By increasing the connection strength and changing the delays
in the X–Y connection it is possible for the populations to
synchronize at a different phase, exhibiting the phenomenon
of biased competition (Moran and Desimone, 1985) already
in the first layer, and controlling the overall bistability of the
model. In such a system, the bistable dynamics are evoked
as the two populations switch between which one leads and
which one follows. The phase response characteristics of
such a scenario of two interconnected oscillators have been
thoroughly explored in Witt et al. (2013). If we employed
this sort of connectivity between X and Y in our model, the
winner of the biased competition in the first layer would also
entrain Z. As Witt et al. (2013) show, in this scenario one
is also able to control the stable state via a precisely timed
stimulation pulse.
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3.2.2. Local Circuitry
The source of gamma frequency oscillations in the brain has
been attributed primarily to twomechanisms: ING—interneuron
gamma—which we utilize in our model, and PING—pyramidal
interneuron gamma (Tiesinga and Sejnowski, 2009). In the
ING mechanism, a population of mutually connected inhibitory
neurons generate synchronous IPSPs, creating an ongoing
rhythm which is then imposed onto the excitatory neurons
(Whittington et al., 1995). In the PING mechanism a volley of
excitation stimulates delayed feedback inhibition, resulting in
consistent cyclic behavior when the ratio between excitation and
inhibition is appropriate. Research shows that both mechanisms
can work together to generate gamma frequency oscillations
(Brunel andWang, 2003; Geisler et al., 2005; Belluscio et al., 2012;
Buzsáki andWang, 2012). Either mechanism or a combination of
the two constitutes a self-sustaining oscillator and exhibits phase-
response characteristics. Hence, we speculate that regardless of
the oscillation generating mechanism, the method established in
this study can be used to establish desired phase-locking between
populations of neurons and route information—however, with a
potentially different state switch characteristics.

3.2.3. Transient Synchrony
Even at high noise levels, the rhythmic behavior of our system
is an idealized version of what is observed in the visual cortex
where the amplitude of oscillations, along with the strength
of synchronization phenomena occur as transient events that
rarely last longer than 100 ms. In particular, for the V1–V4
interaction explored in this study, gamma activity tends to occur
in bursts at theta frequency through phase-amplitude coupling,
corresponding to the rate of attentional sampling (Canolty et al.,
2006; Landau and Fries, 2012; Spyropoulos et al., 2018). If
theta phase amplitude coupling was included in our model, we
presume that it should still be possible to control information
routing by injecting the appropriate perturbation toward the
beginning of each theta-coupled gamma burst.

3.2.4. Modeling the Perturbation
In the present study, the applied perturbations involved injecting
the same amount of current into all the neurons within a
local population. This was designed to model the effect of
intracortical microstimulation (ICMS). If we wanted to get
closer to the true postsynaptic effect of an ICMS pulse, it
would be necessary to work out advanced kernels to convolve
with the square wave function that we used. Additionally, it
would benefit to have different weights of the perturbations
effect by neuron type, physical orientation, and distance to
the electrode. As long as the final perturbation is sufficiently
short and precise relative to the oscillation cycle, the network
dynamics should still exhibit a PRC. We believe that the method
employed provides a generic pulse that can be easily modified
for other potential stimulation techniques. For example, in the
case of modeling an optogenetics pulse (Witt et al., 2013), the
stimulation affects just a specific subset of neurons within local
population (of type affected by the viral injection of a particular
light-sensitive protein).

3.2.5. Robustness: Different Levels of Background

Noise Within a Column
The background noise magnitude σn has two effects. First, it
masks the flicker signal to be transferred by the excitatory
population, and second, it reduces amplitude and frequency of
the gamma oscillations generated by the inhibitory population.
By allowing for different noise magnitudes σ e

n and σ i
n, for the

excitatory and inhibitory populations, respectively, σ e
n would

therefore predominantly attenuate signal transfer, while σ i
n would

rather reduce gamma amplitude and stability. As long as the
noise level remains sufficiently low for the network to still exhibit
stable oscillations, the conclusions of the research should not
be affected: signal routing by precise perturbations with two
different noise levels should work at least equally well, or even
better, than in a case where a common noise level of σn =

max(σ e
n , σ

i
n) is assumed.

3.2.6. Robustness: Different Natural Frequencies

Within the Columnar Network
For realizing anti-phase sync between X and Y, and bi-
stable synchronization of up- and down-stream populations,
a rough match of natural frequencies is important. However,
coupled oscillators can tolerate a certain amount of frequency
mismatch until (in- or out-of-phase) synchronization breaks
down. Stronger couplings allow for larger frequency mismatches,
quantified by the width of Arnolds’ tongues known from the
theory of coupled oscillators (see e.g., Rasband, 2015). For
the case of two coupled gamma oscillators realized in PING
networks, this property has been thoroughly quantified in
Lowet et al. (2015).

Actually, since noise introduces frequency jitter in our model
we already have a situation in which the momentary frequencies
are always different and can change rapidly, but still bi-stability
and entrainment persist until a critical noise level. From these
considerations one can conclude that our results are robust
against moderate mismatches of the natural frequencies of X, Y,
and Z. In particular, the strong coupling from X/Y to Z allows
for larger natural frequency deviations between up- and down-
stream populations before synchronization breaks down. In any
case, asymmetries in natural frequencies induce asymmetries
in the preferred states, making one of them more stable than
the other.

If natural frequencies are different between populations X and
Y, a lopsided leader/follower relationship can emerge, similar to
the one reported in Witt et al. (2013). The network as a whole
will still be bistable and allow switching between TrX and TrY

states, by changing which oscillator leads, and which oscillator
follows. Alternatively, X-Y can flip between in-phase and anti-
phase states. Here the in-phase state was accompanied with a
different working frequency than exhibited by the anti-phase
state.We speculate that in this case, perturbation control of signal
transmission could still be possible but will be more difficult,
since it is essential to prevent in-phase synchronization of X
and Y. With even larger natural frequency differences, bistability
can vanish completely and making switches between two stable
states impossible.
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With respect to Z synchronizing to X or Y, in our specific
model setup we have observed state switches going “forward,”
i.e., Z briefly speeding up, as well as going “backward,” i.e., Z
briefly slowing down, in order to switch its entrainment from
X to Y or vice versa. In consequence, when X and Y maintain
a “proper” anti-phase relationship and Z’s natural frequency is
different from X and Y, it would favor state switches primarily
of the appropriate type: always slowing down if its frequency
is sufficiently lower, and speeding up if its oscillation frequency
is higher.

When applying our methods to the visual system, it is
important to consider two possibilities how differences between
natural frequencies could emerge: First, attending one of two
competing stimuli can enhance the neural representation of the
attended stimulus relative to the representation of the stimulus
that has to be ignored. This enhancement can be accompanied
by relative rate and/or gamma frequency increases up to 4 Hz
(Ray and Maunsell, 2010; Bosman et al., 2012). On this subject,
Fries speculates in his 2015 review “Rhythms for Cognition:
Communication through Coherence” that after a theta-rhythm
evoked phase reset, the faster gamma rhythm would allow
the higher frequency V1 population (representing the attended
stimulus) have its first burst of activity arrive to V4 prior to
the competing V1 population, triggering a wave of inhibition
suppressing the inputs from the slower oscillating inputs. Second,
differences between two competing stimuli such as their sizes or
contrasts could also lead to natural frequency differences. In fact,
we expect stimulus manipulations such as a higher contrast of the
non-attended stimulus to compete with attentional mechanisms,
which might lead to break-down of routing by synchrony if
natural frequency mismatches in favor of the non-attended
stimulus are becoming too large.

3.3. Outlook
Intracortical microstimulation and other methods of providing
“artificial” input to the brain (i.e., optogenetics) are a useful
tool for investigating neural information processing in a causal
manner. More importantly, these techniques can be employed in
brain prostheses, helping patients to compensate for disabilities
in vision, hearing and touch. In the extreme periphery, devices
such as a cochlea or retinal implant have already been successfully
deployed. But what about the next stages in the brain? For
example, for patients with a damaged optical nerve, an implant
must interface primary visual cortex directly. Here, one would
have to cope with on-going processes, feedback from higher
areas, and a strong recurrent coupling—the state of the system.
Overriding these processes and directly providing the stimulus in
a “1:1-mapping” is difficult and could exert substantial stress to
the tissue, potentially making long-term applications unfeasible
(Johnson et al., 1963). We propose that one should rather try to
swim with the tide, using the natural tendencies of the network
as far as this is possible. In the present study, we started to think
about the appropriate strategies and methods and tested them
on a very simplistic model, designed after the visual system. The
logical next steps could proceed into two directions: first, to put
these methods to the test by performing animal experiments,
and second, to advance on a theoretical and conceptual level

by extending the paradigms into space and time, by delivering
complex spatio-temporal stimulation patterns appropriate for a
system which exhibits a complex spatio-temporal dynamics even
in the absence of an actual stimulus.

4. METHODS

4.1. Neurons and Synapses
Interactions between neurons are governed by synaptic
weights ωe and ωi and conductances ge and gi, which
reflect the magnitude and decay speed of EPSCs (excitatory
postsynaptic currents) and IPSCs (negative postsynaptic
currents) when receiving a spike from an excitatory or inhibitory
cell, respectively.

ge(t) = ωe

ne
∑

s=1

2(t − ts,e − d)exp

(

−(t − ts,e − d)

τe

)

(4)

gi(t) = ωi

ni
∑

s=1

2(t − ts,i − d)

[

χ1exp

(

−(t − ts,i − d)

τ 1i

)

+χ2exp

(

−(t − ts,i − d)

τ 2i

)]

(5)

Here 2 is the Heaviside function, d the synaptic delay, and ts,e
and ts,i are the times of presynaptic excitatory and inhibitory
spikes, respectively. The decay constants for EPSP and IPSP are
given by τe and τ

1,2
i , with the inhibitory response containing

a mixture of slow and fast components with the relative
contributions controlled by χ1,2. These parameters are set to
emulate realistic neurons, in accordance with Bartos et al. (2002)
(see Table 1). The activity of the units is simulated in Matlab in
discrete time using the forward Euler method with a timestep of
dt = 0.1ms.

4.2. Offline Phase Measurement
For measuring the phase of a cyclic signal, we utilize a well-
established procedure. For efficiency, the signal is downsampled
to 1 kHz and normalized. A power spectrum of the signal is
calculated using a Morlet wavelet transform, from which we
determine the location and halfway points of the gamma peak.
Then, we apply a zero-phase (“filtfilt” command in Matlab)
finite-impulse response (FIR) bandpass filter with bandstops at
the halfway points found in the power spectrum. This gives
us the gamma component of the signal without distorting
the phase. Afterwards, the signal is passed through a Hilbert
transform (Boashash, 1992), providing us with the complex
analytical signal. The argument of the analytical signal gives us
the instantaneous gamma phase of the signal. The narrow range
of the bandpass filter is necessary, since the instantaneous phase
only becomes accurate and meaningful if the filter bandwidth is
sufficiently narrow (Nho and Loughlin, 1999).

This sort of a procedure is prone to edge effects and
especially to the artifacts induced by sudden spikes in activity
due to stimulation pulses used in this study. To decrease
the effect of these artifacts, the affected region is set to zero
after normalization. Empirical tests showed that the edge and
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artifact effects on instantaneous phase measurement becomes
insignificant around 2 cycles away from the affected region,
around 30 ms for gamma oscillations.

4.3. Realtime Phase Measurement
When forecasting a discrete time signal Xt , given its past time
points Xt−i, an autoregressive model of order p is be defined as

Xt = c+

p
∑

i=1

αiXt−i + εt

where the set of αi’s are the parameters of the model, c is
a constant, and εt is white noise. The parameters and the
magnitude of the noise are trained on a pre-existing set of data
using the Burg lattice method (“arburg” command in Matlab).
The selection of the model order p depends on the sampling
rate and the characteristics of the input signal and is determined
empirically to provide the most accurate phase measurements
when compared to the offline phase measurements (McFarland
and Wolpaw, 2008).

For speed and efficiency, the AR model was applied to
downsampled 1kHz signals, for which the optimal order p was
found to correspond to the the average number of time steps
within a single cycle of oscillatory activity (15 ms for gamma
oscillations). For every condition, a separate AR model is trained
on an existing 10 s trial, which provides sufficient amount of data
to converge on the appropriate AR parameters.

4.4. Information Measure Significance
Levels
Chance levels for SCxy are calculated by pairing up the network
activity with surrogate input signals. The resulting distribution of
SC values allows us to extract the 95th percentile SC95%, allowing
us to evaluate the significance of the information measure
score. Further, spectral coherence is affected by sampling
size bias. Thus, in order to compare signal routing scores
across conditions, they were consistently computed from 100
simulations of 10 s each.

4.5. Conditioning of Input Drive on Internal
Noise
Increasing the level of noise inherently raises the spiking rates
of the affected neurons. Since our network relies on a series
of recurrent coupling, a change in mean spiking rate would
result in drastically different behavior. Thus, in order to keep
the comparison between the different noise levels fair, we scale
the magnitude of the mean input drive to the system (Sx and
Sy) in order to sustain comparable activity. Thus, in order to
obtain comparable model activity between the different internal
noise magnitude model conditions, the input drives, Se(t) and
Si(t) were adjusted to achieve a 15Hz average firing rate for the
excitatory and 60Hz for the inhibitory pools of neurons. This was
achieved via a simple gradient descent procedure. For example,
for a simple oscillator and for the first layer populations X and
Y of the bistable model, if the initial drive to the inhibitory
neurons led to a firing rate higher (lower) than the desired

60 Hz, the inhibitory drive Si(t) was decreased (increased) by
an amount proportional to the mean-squared error of the firing
rate. Simultaneously, if the excitatory pool’s average firing rate
was lower (higher) than desired, the excitatory drive Se(t) was
increased (decreased). The model was then simulated with the
updated driving rates and new firing rates were acquired, new
firing rate errors were computed and the gradient procedure was
repeated until convergence onto the desired firing rate values. In
the bistable multi-column model, once the desired firing rates
were attained for the X and Y populations, the same procedure
was applied to adjust the connection probabilities from Xe and
Ye onto Ze and Zi, pZe and pZi .

4.6. PRC and State Switch Collection
Details
To collect the PRC curve data, we simulated 2,500 runs of
1 s duration across all the possible conditions (noise level,
pulse strength, which population pulsed). In each run, the
perturbation occured at 0.5 s, providing us with enough
signal before and after the pulse to extract the relevant phase
information. In addition, we added a control group where
the pulse magnitude is set to 0—no pulse. For each run, we
computed the offline phase across the entire trial. In addition,
we determined the instantaneous phase at stimulation onset
ϕ by using the AR signal prediction procedure to avoid any
artifacts caused by the pulse. By pairing up the appropriate
trials between the pulsed and the control groups, we calculated
the phase difference 18 between the unpulsed and pulsed
runs at time τ after tonset . In the independent oscillator case,
the pairing process was only concerned with putting trials
together with a minimal difference between their corresponding
values of ϕ at pulse onset. In the bistable columnar network,
the AR procedure was used to evaluate both the onset phase
of the pulsed population as well as the phase-state difference
Z-X and Z-Y at pulse onset, with the pairing procedure
accounting for both, the network state and the stimulation pulse
onset phase.
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