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In natural conditions the human visual system can estimate the 3D shape of specular

objects even from a single image. Although previous studies suggested that the

orientation field plays a key role for 3D shape perception from specular reflections, its

computational plausibility, and possible mechanisms have not been investigated. In this

study, to complement the orientation field information, we first add prior knowledge that

objects are illuminated from above and utilize the vertical polarity of the intensity gradient.

Then we construct an algorithm that incorporates these two image cues to estimate

3D shapes from a single specular image. We evaluated the algorithm with glossy and

mirrored surfaces and found that 3D shapes can be recovered with a high correlation

coefficient of around 0.8 with true surface shapes. Moreover, under a specific condition,

the algorithm’s errors resembled those made by human observers. These findings show

that the combination of the orientation field and the vertical polarity of the intensity

gradient is computationally sufficient and probably reproduces essential representations

used in human shape perception from specular reflections.

Keywords: 3D shape perception, specularity, gloss, orientation field, illumination prior

INTRODUCTION

Specular reflections, which are seen in many daily objects, provide information about their material
and surface finish (Adelson, 2001; Motoyoshi et al., 2007; Fleming, 2014), enhance the reality of
animation and computer graphics, support 3D shape perception (Blake and Bülthoff, 1990; Norman
et al., 2004; Khang et al., 2007), and increase the 3D appearance of images (Mooney and Anderson,
2014). A specular reflection component in a single image can be regarded as a marking that is
pasted on an object’s surface. However, the human visual system solves inverse optics, and we
intuitively recognize that an image pattern is generated by a specular reflection (Todd et al., 2004).
The regularity of the image patterns of specular reflections is closely related to 3D shape, and the
human visual system perceives and evaluates specular reflection through coupled computation with
3D shape perception (Anderson and Kim, 2009; Marlow et al., 2011, 2015).

A previous psychophysical study showed that humans could recover 3D shapes from a single
mirrored surface image under unknown natural illumination (Fleming et al., 2004). Furthermore,
they hypothesized that the human visual system uses the orientation field for 3D shape perception
from specular reflection and texture (Breton and Zucker, 1996; Fleming et al., 2004, 2011).
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The orientation field is a collection of dominant orientations
at every image location (Figure 1A), and this information is
represented in the primary visual cortex (V1), which contains
cells tuned to specific orientations (Hubel and Wiesel, 1968).
In support of their hypothesis, they showed that 3D shape
perception is modulated by psychophysical adaptation to specific
orientation fields (Fleming et al., 2011). However, how 3D shapes
are reconstructed from the orientation field, and whether it
is adequate for 3D shape recovery remains unknown. Tappen
(2011) proposed a shape recovery algorithm and recovered the
3D shape of simple mirrored surfaces with curvature constraints
by an orientation field from a single image under an unknown
natural illumination. This suggests a possible mechanism of 3D
shape perception from specular reflections. However, since the
method is limited to convex shapes, it only explains a small part of
human shape perception, which can recover more general shapes
including both convex and concave regions (Fleming et al., 2004).

Other algorithms have also been proposed to recover 3D
shapes from specular images. They employed either a known
calibrated scene (Savarese et al., 2005; Tarini et al., 2005; Liu et al.,
2013) or multiple images such as specular flows (Adato et al.,
2010), motions of reflection correspondences (Sankaranarayanan
et al., 2010), or line tracking (Jacquet et al., 2013). Although they
are useful in some situations, they cannot recover 3D shapes
from a single specular image in an unknown scene. Li et al.
recovered shapes using reflection correspondences extracted by
SIFT (Li et al., 2014) just using a single image under an unknown
illumination environment like our proposed algorithm.However,
their method is limited because it requires the known surface
normal values of several surface points to constrain their results.

In this study, we recover general shapes containing both
convex and concave surface regions using the orientation field.
However, an innate problem prevents the recovery of general
shapes from it. Here, we briefly explain the information of 3D
shapes contained in the orientation field and its limitation as well
as a strategy to overcome that limitation.

Figure 1 shows the relationship between the orientation
field and the second order derivatives of the surface depth,
which can be decomposed into two orthogonal orientations
(left side of Figure 1A). These decomposed second derivatives
are closely related to the principal curvatures, but these
are not strictly the same (see Materials and Methods). The
right side of Figure 1A represents the orientation field. In
specular reflection, the illumination environment is reflected
and appears in the image. At that time, the illumination
environment is compressed toward a strong surface second
derivative orientation and elongated along a weak surface
second derivative orientation (Fleming et al., 2004, 2009). As
a result, image orientation θ is generated along small surface
second derivative orientation θs. Moreover, the image anisotropy
(the degree of the image orientation’s clarity, see Materials
and Methods) also approximates the surface anisotropy (the
ratio of the large and small surface second derivatives, see
Materials andMethods; Fleming et al., 2004, 2009). The proposed
algorithm uses this relationship for 3D surface recovery. Here
the problem is whether the shape is concave or convex is
ambiguous (Figure 1). The image orientations are identical

among Figures 1A–D at the mid-point because the surface
orientations are identical for all the images. However, the two
signs of the surface second derivatives are different across these
images. The orientation field cannot distinguish among these
four types.

We overcome the problem of concave/convex ambiguity by
imposing a prior that light comes from above (Ramachandran,
1988; Sun and Perona, 1998; Gerardin et al., 2010; Andrews
et al., 2013) (hereafter called the “light from above prior”). In
utilizing this prior knowledge, we actively use both a diffuse and
a specular reflection component. Since most objects that give
specular reflection also give diffuse reflection, a natural extension
is to combine the features of both reflection components.
Note that this prior also works for mirrored surfaces (see the
Results section) and the human performance to resolve the
concave/convex ambiguity from a mirrored surface increased
when the illumination environment was brighter in the upper
hemisphere (Faisman and Langer, 2013).

We propose using the vertical polarity of the intensity gradient
(hereafter vertical polarity) as an image cue (Figure 2; see
also Appendix A) to realize the prior knowledge. As with the
orientation field, the polarity of the intensity gradient can be
obtained by a V1-like filter (DeAngelis et al., 1995) and its
relation with 3D shape perception was reported (Sawayama and
Nishida, 2018). Neurophysiological studies also showed that the
activity amplitudes of human early visual areas to the oriented
shading gradients differed between the vertical and horizontal
directions (Humphrey et al., 1997), and the unidirectional
tuning of monkey V4 cells was biased toward vertical directions
(Hanazawa and Komatsu, 2001), suggesting the significance of
vertical polarity among other directions in the visual system.
Assuming lighting from above and Lambert reflectance, vertical
polarity corresponds to the surface second derivative sign of
vertical orientation (see Materials and Methods). This prior is
used only as an initial value for the optimization for 3D shape
recovery. Because physically possible shape patterns given the
orientation field are restricted (Huffman, 1971; Malik, 1987), it
is expected that the remaining ambiguity (i.e., the surface second
derivative sign of the horizontal orientation) is implicitly resolved
and erroneous initial values are corrected through optimization.

Our proposed algorithm, which can recover general shapes
including both convex and concave regions under an unknown
natural illumination, is based on the information used by the
human visual system. Therefore, it makes a critical contribution
to understanding the mechanism of 3D shape perception from
specular reflections.

RESULTS

Flowchart of Proposed Algorithm
Figure 3 shows the flowchart of the proposed algorithm that
recovers the 3D surface depth from a single specular image.
The main procedure is as follows. First, the orientation
field is extracted from an image; second, the cost function
is formulated based on the orientation field; finally, the
3D shape is recovered by minimizing the cost function.
Additionally, we extracted the vertical polarity from the image
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FIGURE 1 | Orientation field of mirrored surface patches. Orientation fields are depicted on right side of images. Hue represents image orientation to which V1-cell-like

oriented filter maximally responds at each location. Saturation represents degree of clarity of the image orientation (i.e., image anisotropy). (A) Surface second

derivatives’ orientations of surface patch are explained in red on the mirrored surface. kmax and kmin represent large and small surface second derivative. θs

represents surface orientation. σmax and σmin represent signs of kmax and kmin. (B–D) Surface patches have identical magnitude and orientation of surface second

derivatives as (A), but second derivative signs are different.

FIGURE 2 | Relationship between vertical polarity and surface second derivative sign. (A–D) Shaded images of identical surface patches to Figure 1 are shown on

left. Vertical polarity of each shaded image, obtained by extracting a sign of oriented filter response of vertical direction, is depicted on right. White represents positive

and black represents negative.

to resolve the concave/convex ambiguity. The initial values
of the surface second derivative signs, σmax and σmin, are
calculated based on the vertical polarity and used to minimize
the cost function. The proposed algorithm outputs not only
the recovered 3D surface depth but also the estimated surface

second derivative signs, σmax and σmin, due to minimizing the

cost function.

Here we briefly explain the cost function (see section
Formulation of cost function for details), which consists of two
terms: second derivative constraint C and boundary condition B:

E = C + B. (1)

C is defined as the sum of the squared differences of the surface
second derivative from the constraint given by the orientation
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FIGURE 3 | Flowchart of proposed shape recovery algorithm. Orientation field

and vertical polarity are extracted from an image. Cost function is formulated

based on orientation field. Initial values of signs of surface second derivative,

σmax and σmin, are obtained by dividing vertical polarity. Estimated surface

depth, σmax, and σmin are obtained by minimizing cost function.

field. Boundary condition B consists of the following three terms:
B0 + B1 + Bc. B0 and B1 were introduced to resolve the solution’s
ambiguity. B0 resolves the translation ambiguity along the depth
direction by making the mean depth value zero at the boundary
region. B1 resolves the ambiguity of the affine transformation
(Belhumeur et al., 1999) by making the solution not slanted
in both the x and y directions. Bc incorporates the knowledge
that, near the boundary, σmax = +1 and σmin equals the sign of
the apparent curvature of the 2D contour (Koenderink, 1984),
assuming that the 3D surface near the boundary is smooth and
differentiable. Thus, we calculated the apparent curvature sign
of the 2D contour to formulate Bc. Cost function E depends on
σmax and σmin because C and Bc depend on them. We optimized
them with the initial values obtained by the vertical polarity (see
Appendix C for details).

Shape Recovery of Glossy Surfaces
We used 12 glossy surfaces to validate our proposed algorithm
(Figure 4). We generated them by computer graphics assuming
both specular and diffuse reflections of the object’s surface.
The 3D shapes of objects #1-6 were randomly generated with
spherical harmonics, whose complexity rose as the number
was increased. The 3D shapes of objects #7-12 were human-
made and used in our previous electrophysiological studies of
gloss perception (Nishio et al., 2012, 2014). The details of the
images and shapes are described in Materials and Methods. The
recovered shapes from these glossy surfaces with the ground-
truth shapes are shown in Figure 4. The depths are represented
in grayscale; nearer surfaces are lighter and more distant surfaces
are darker. Additionally, 15 contour lines are superimposed. The
estimated surface second derivative signs, σmax and σmin, with the
ground-truth signs are shown in Supplementary Figure 1.

We evaluated the image cues (i.e., orientation field and
vertical polarity) and the estimation results as follows. The

orientation field error was quantified by the mean absolute errors
throughout the object region between the image and surface
orientations and between the image and surface anisotropies.
We quantified the error of the vertical polarity by the correct
ratio between the initial and true values of σmax and σmin, where
the initial values exist. The shape recovery performance was
quantified with two measures: global depth correlation rg and
local interior depth correlation rli. The global depth correlation
is simply the correlation coefficient of the recovered and true
depths throughout the object region. The local interior depth
correlation is the averaged value of the correlation coefficients
of the recovered and true depths calculated in the local regions
except near the boundary. The local interior depth correction is
more sensitive to the agreement of the concavity and convexity
inside the object region than the global depth correlation.
Note that both depth correlations are calculated after the affine
transformation so that the slant of the true surface depth becomes
zero, because there is ambiguity about the recovered shape’s affine
transformation (Belhumeur et al., 1999). No values were obtained
of the local interior depth correlation of objects #9 and #11
because most of the object region is near the boundary. The
details of the measures are described in Materials and Methods.
The estimation performance of the surface second derivative
signs, σmax and σmin, was quantified by the correct ratio with true
values throughout the object region.

We evaluated the images cues before the shape recovery. The
average values of the mean absolute error of the orientation and
anisotropy for the 12 objects were 11.3◦ and 0.15. The average
values of the correct ratio of the initial values of σmax and σmin

for the 12 objects were 0.79 and 0.70. The initial values are shown
in Supplementary Figure 1.

The estimation performances of the 12 objects are evaluated
and summarized in Table 1. The average values of global depth
correlation rg and local interior depth correlation rli for the 12
objects were 0.85 and 0.76. As an impression of appearance,
the shape recovery seems successful if both the global and local
interior depth correlations exceed 0.7. The recovered shapes of
objects #1, #2, #5, #6, #7, #8, and #9, where both rg and rli exceed
0.7, resemble the 3D surface impressions received from the
corresponding images in Figure 4. The global depth correlations
of #10 and #11 and the local interior depth correlations of #3,
#4, #10, and #12 were below 0.7. The recovered shapes of #3, #4,
#11, and #12 were roughly good but lacked accuracy. The shape
of object #10 was not well recovered. The average values of the
correct ratios of the estimated σmax and σmin for the 12 objects
were 0.86 and 0.72. The correct ratios of the estimated σmax and
σmin exceeded those of the initial values even though the initial
values exist only in half of the object region.

Shape Recovery of Mirrored Surfaces
The proposed algorithm is applicable to mirrored surfaces
without shading although we assumed that shading exists to
obtain good initial values of the surface second derivative signs
by calculating the vertical polarity. Figure 5 shows the mirrored
surfaces used to validate our proposed algorithm.

The average values of the correct ratio of the initial values
of σmax and σmin for the 12 objects were 0.64 and 0.62. These
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FIGURE 4 | Recovered 3D shapes from glossy surfaces. Glossy surface images were generated by computer graphics assuming both specular and diffuse reflection

on object’s surface. Recovered surface shapes from images and ground-truth shapes are represented by depth maps and contour lines.

TABLE 1 | Estimation performance of each glossy surface.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 Average

rg 0.98 0.91 0.87 0.82 0.89 0.88 0.90 0.95 0.89 0.65 0.65 0.80 0.85

rli 0.97 0.71 0.67 0.66 0.91 0.86 0.84 0.95 – 0.45 – 0.60 0.76

σmax 0.90 0.90 0.80 0.81 0.79 0.86 0.87 0.93 0.99 0.86 0.98 0.70 0.86

σmin 0.77 0.74 0.63 0.68 0.64 0.68 0.69 0.82 0.82 0.75 0.78 0.60 0.72

Global and local interior depth correlations of recovered shapes and correct ratios of estimated signs of surface second derivative.

correct ratios were substantially lower than those of the glossy
surfaces, but still higher than a chance level of 0.5. The initial
values and the correct ratios of all the objects are shown
in Supplementary Figure 2. The average values of the mean
absolute error of the orientation and the anisotropy for the 12
objects were 10.9◦ and 0.13. These orientation field errors were
slightly lower than those of the glossy surfaces, suggesting that the
shading component slightly disturbed the relationship between
the orientation field and the surface second derivative based on
specular reflections.

The recovered shapes from the mirrored surfaces with the
ground-truth shapes are shown in Figure 5. The estimation
performances of the 12 objects are summarized in Table 2. The
average values of global depth correlation rg and local interior
depth correlation rli for the 12 objects were 0.84 and 0.75.
Although the appearances of the recovered shapes from the
mirrored surfaces look noisier than those from the glossy surfaces
(e.g., #1 and #8), the averaged global and local interior depth
correlations differ by only 0.01 and 0.01, indicating that the

proposed shape recovery algorithm is applicable to bothmirrored
and glossy surfaces. The average values of the correct ratios of the
estimated σmax and σmin for the 12 objects were 0.80 and 0.70.
The noisier appearance of the recovered shapes of the mirrored
surfaces is related to the lower correct ratio of the estimated σmax

than that of the glossy surfaces. The estimated surface second
derivative signs, σmax and σmin, with the ground-truth signs are
shown in Supplementary Figure 2.

Estimation Accuracy in Different
Conditions
We tested the proposed algorithm in four different conditions.
The first and second conditions are the shape recoveries from
the glossy and mirrored surfaces shown in Figures 4, 5 (denoted
as glossy and mirrored conditions). In the third condition,
the shapes were recovered from the glossy surfaces shown in
Figure 4, but the light from above prior was not used (denoted
as the noLFAP condition). And in the fourth, the shapes were
recovered from the shape orientation fields that were obtained
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FIGURE 5 | Recovered 3D shapes from mirrored surfaces. Mirrored surface images were generated by computer graphics assuming only specular reflection on

object’s surface. Recovered surface shapes from images and ground-truth shapes are represented by depth maps and contour lines.

TABLE 2 | Estimation performance of each mirrored surface.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 Average

rg 0.95 0.93 0.78 0.81 0.89 0.89 0.81 0.93 0.91 0.66 0.66 0.86 0.84

rli 0.96 0.74 0.60 0.67 0.90 0.85 0.67 0.91 – 0.55 – 0.65 0.75

σmax 0.74 0.85 0.74 0.72 0.74 0.79 0.80 0.84 0.97 0.77 0.99 0.68 0.80

σmin 0.67 0.73 0.64 0.68 0.63 0.67 0.68 0.79 0.83 0.70 0.79 0.61 0.70

Global and local interior depth correlations of recovered shapes and correct ratios of estimated signs of surface second derivative.

from the true 3D shapes (denoted as the shapeOF condition).
Note that in the shapeOF condition, the same initial values
of σmax and σmin were used as the glossy condition. Tables 3,
4 summarize the errors of the image cues and the estimation
performances of the four conditions. Additionally, we tested the
algorithm in three more conditions to investigate the effect of the
contour constraint, the illumination environment, and the image
resolution. These results are shown in Supplementary Note 1.

In the noLFAP condition, the shapes were recovered from the
glossy surfaces without the light from above prior to check its
necessity. In this condition, the initial values of σmax and σmin

were all set to+1 based on the convex prior possessed by humans
(Langer and Bülthoff, 2001; Liu and Todd, 2004). The average
values of the correct ratio of the initial values of σmax and σmin for
the 12 objects were 0.85 and 0.67. First, the shapes were recovered
with the same algorithm that was used with the other conditions.
As a result, the estimated σmax and σmin were almost the same
as the initial values; 98 and 88% of the estimated σmax and σmin

were +1. This means that the distinction between convex and

TABLE 3 | Errors of image cues of four conditions.

Mean absolute error Correct ratio

Orientation Anisotropy Initial σmax Initial σmin

Glossy 11.3◦ 0.15 0.79 0.70

Mirrored 10.9◦ 0.13 0.64 0.62

noLFAP (11.3◦) (0.15) 0.85 0.67

shapeOF 0◦ 0 (0.79) (0.70)

Orientation field errors and correct ratios of initial values of σmax and σmin, which are

averaged values of 12 objects. Values of orientation field errors of noLFAP condition and

correct ratios of initial values of shapeOF condition are parenthesized because these are

identical as glossy condition.

concave failed without the light from above prior, although the
distinction was successful with it. The average values of the global
and local interior depth correlations for the 12 objects were rg
= 0.74 and rli = 0.48. These estimation performances are not
summarized in Table 4, because the estimation completely failed.
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TABLE 4 | Estimation performances of four conditions.

Shape recovery accuracy Correct ratio

rg rli Estimated σmax Estimated σmin

Glossy 0.85 0.76 0.86 0.72

Mirrored 0.84 0.75 0.80 0.70

noLFAP 0.77 0.52 0.80 0.67

shapeOF 0.87 0.88 0.92 0.80

Global and local interior depth correlations of recovered shapes and correct ratios of

estimated signs of surface second derivative. These are averaged values of 12 objects.

Next we altered the temperature parameter of the mean field
algorithm (see Appendix C for details) from β0 = 10 to β0 = 1
to extend the search range (Parisi, 1988), since the initial values
were not reliable in this condition. As a result, we obtained
better shape recovery results. The average values of the global
and local interior depth correlation for the 12 objects were rg
= 0.77 and rli = 0.52. The average values of the correct ratio
of the estimated σmax and σmin for the 12 objects were 0.80
and 0.67. The estimation performances of objects #1, #8, and #9
were high despite the noLFAP condition. However, most of the
recovered shapes look noisy, probably because of the alternation
of the temperature parameter, and the estimation performance
was lowest in the four conditions. This result suggests again
that shape recovery is difficult without the light from above
prior. The recovered shapes and the estimated signs of the
surface second derivative of the noLFAP condition are shown in
Supplementary Figure 3 (see also Supplementary Table 1).

In the shapeOF condition, the shapes were recovered from
the surface orientations that were obtained from the true 3D
shapes instead of the image orientations to investigate the effect
of the orientation field errors on the shape recovery errors. In
this condition, the vertical polarity of the glossy surfaces was
used to resolve the concave/convex ambiguity. The average values
of the global and local interior depth correlations for the 12
objects were rg = 0.87 and rli = 0.88. The average values of the
correct ratio of the estimated σmax and σmin for the 12 objects
were 0.92 and 0.80. The estimation performances of the shapeOF
condition were very high, except for objects #9 and #10, and
substantially higher than the other conditions. The recovered
shapes and the estimated signs of the surface second derivative
of the shapeOF condition are shown in Supplementary Figure 4

(see also Supplementary Table 2).

Consistency With Human Shape
Perception
Finally, we conducted a psychophysical experiment to investigate
the linkage between the shape recovery algorithm and human
shape perception. We prepared a glossy surface image that
evokes 3D shape misperception (Figure 6A) by using another
illumination environment (Galileo’s Tomb of the Devebec
dataset). This illumination environment was taken indoors with
a dark ceiling against the light from above prior. Figure 6B is an
image of the same object rendered under identical illumination

FIGURE 6 | Images used for psychophysical experiment. (A) Glossy surface

rendered in indoor environment. Red crosses indicate position where

misperception likely occurs. (B) Glossy surface of identical object as (A)

rendered in outdoor environment. (C) Depth map of true 3D shapes of (A) and

(B). (D) Recovered shape from image in (A). (E) Recovered shape from image

in (B).

environments as Figures 4, 5 (Eucalyptus Grove of the Devebec
dataset), which was taken outdoors and is consistent with the
light from above prior. Figure 6C represents the depth map of
the true 3D shapes. The red cross indicates where the surface
looks concave from Figure 6A, although the surface looks convex
from Figure 6B and the true surface is convex. In Figure 6A, the
dark ceiling of the illumination environment caused a negative
value of the vertical polarity around the red cross mark despite
its convex 3D shape, and humans can perceive the concave
shape, assuming that the light comes from above. We carefully
made the 3D object’s shape so that the image clearly evokes
the misperception and the evoked misperceived shape region
is consistent with the surrounding information. Figures 6D,E
indicate the recovered shapes from the images of Figures 6A,B.
In accordance with the appearance, the recovered shape from
Figure 6A is concave and that from Figure 6B is convex around
the red cross mark. The estimation performances (rg, rli, correct
ratio of estimated σmax and correct ratio of estimated σmin)
of Figures 6D,E were (0.91, 0.76, 0.73, 0.60) and (0.98, 0.99,
0.90, 0.84).

In psychophysical experiments, five subjects were asked
whether the local 3D surface around the red crosses in
Figures 6A,B looks convex or concave. Four perceived the
incorrect concave shape from Figure 6A as consistent with the
recovered shape by the proposed algorithm (Figure 6D), and all
five perceived a convex shape from Figure 6B (see Appendix B
for detailed results).

DISCUSSION

We developed an algorithm that estimates 3D shapes from a
single specular image to investigate a possible mechanism of
human 3D shape perception from specular reflections. This
algorithm mainly relies on the orientation field suggested
by a previous psychophysical study (Fleming et al., 2004).
However, since the orientation field cannot resolve the local
concave/convex ambiguity, the 3D shape recovery from it alone

Frontiers in Computational Neuroscience | www.frontiersin.org 7 March 2019 | Volume 13 | Article 10

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Shimokawa et al. Shape From Specularity

was difficult (see the noLFAP condition, Table 4). To resolve
the concave/convex ambiguity, we added the prior knowledge
that objects are illuminated from above. The vertical polarity
of the intensity gradient is an image cue to utilize this prior
knowledge. We evaluated the developed algorithm with the
glossy and mirrored surfaces of 12 complex shapes. The depth
correlations between the recovered and the true shapes were
as high as around 0.8. To further confirm the necessity of the
vertical polarity information, we also conducted a psychophysical
experiment with an image that caused human misperception
due to the inconsistency with the light from above prior. The
human-misperceived and recovered shapes were consistent in
most subjects. These findings show that the vertical polarity of
the intensity gradient as well as the orientation field are related
to 3D shape perception and the combination of both enables 3D
shape recovery from a single specular image.

Shape Recovery of Mirrored Surfaces
The shape recovery performance of the mirrored condition
was almost as high as the glossy condition (Table 4), although
the relationship between the vertical polarity and the surface
second derivative sign was only proved in the diffuse reflection
component (see Materials and Methods). The present result
indicates that vertical polarity of the specular component was
also useful for the initial second derivative signs for the following
reason. The diffuse reflectance component in Figure 2 shows
a relationship where the luminance is high in the upper side
and low in the lower side when the surface is convex with
respect to the vertical orientation (Figures 2A,B) and vice versa
(Figures 2C,D). The same relationship holds for the mirrored
surfaces of Figure 1. The luminance tends to be higher in the
upper side than the lower side when the surface is convex
(Figures 1A,B) and vice versa (Figures 1C,D). Thus, the vertical
polarity of the mirrored surface at low frequencies is related
to the surface second derivative sign of the vertical orientation,
although the high-frequency component is not related to it.
When the vertical polarity is calculated, a relatively low-
frequency image component is extracted and further smoothed to
remove the high-frequency component of the specular reflection
(see Materials and Methods). Therefore, it provides meaningful
information about second derivative signs even from mirrored
surfaces, although the correct ratio of the initial sign values of
the mirrored condition is actually worse than that of the glossy
condition (Table 3).

Representation of Surface Curvatures
In this study, the sign and magnitude of the surface second
derivatives are separately described. Similar representation can
be seen in some psychophysical experiments (Koenderink
et al., 2014; Dövencioglu et al., 2015), in which subjects
classified 3D shapes based on curvature signs. Furthermore,
the neural representation of surface curvatures was studied
in electrophysiological experiments. Srivastava et al. showed
that the neurons in the inferior temporal cortex (the area for
object recognition) of macaques are mainly sensitive to the
curvature sign, but the neurons in the anterior intraparietal area
(the area for motor planning) are sensitive to the curvature

magnitude as well as the sign (Srivastava et al., 2009). This might
suggest that the curvature sign’s representation is important
for object recognition, and its magnitude is also required for
motor planning. It is also interesting to note that humans are
more sensitive to concavity (negative curvature) than convexity
(positive curvature) in change detection and object recognition
(Cohen et al., 2005; Leek et al., 2012; Davitt et al., 2014).
These and other psychophysical and electrophysiological studies
(Yamane et al., 2008; Orban, 2011) provide hints to develop more
efficient and human-like shape recovery algorithms.

The estimation of a small surface second derivative sign, σmin,
was more difficult than that of a large surface second derivative,
σmax, in all four conditions (see right half of Table 4). A similar
phenomenon can be seen in human shape perception. When
subjects classified local shapes based on the curvature signs,
saddles were often misclassified as ridges or ruts (convex or
concave cylinders; Koenderink et al., 2014; Dövencioglu et al.,
2015), suggesting that humans often neglect the small surface
curvature of saddle shapes. Since the small surface curvature is
less visible in the image, its estimation is intrinsically difficult.
In the proposed algorithm, the small second derivative sign
is forcibly classified as +1 or −1, but it might be better to
treat it ambiguously like the quantum superposition when its
classification is difficult.

Note here that the shape recovery from specular reflections
has much in common with that from line drawings because
lines or specular orientations appear at the high curvature in
both cases (Todd, 2004; Cole et al., 2009). In a line drawing
study, edge-labeling algorithms classified the orientation edges
as either convex or concave (Huffman, 1971; Malik, 1987). This
corresponds to the determination of the large surface second
derivative sign in our study. It would be interesting to find and
utilize the similarities of the shape recovery algorithms from
specular reflection and line drawing (Iarussi et al., 2015).

Origin of Shape Recovery Errors
The orientation field error is a major error factor of the
proposed algorithm, because the shape recovery performance
was very high in the shapeOF condition (Table 4 and
Supplementary Figure 4). In this condition, the surface second
derivative signs were accurately estimated even though the initial
values from the vertical polarity were somewhat incorrect and
absent in half of the region. This result indicates that the
proposed shape recovery algorithm works well at least under
such ideal conditions. Therefore, the error due to the proposed
algorithm’s methodological imperfection is relatively small. It
also indicates that the orientation field is satisfactory for the
3D shape recovery of such curved surfaces examined in this
study with the help of the light from above prior. The difference
of the shape recovery performances between the glossy and
shapeOF conditions reflects errors that originate from the image
orientation field. Compared with the orientation field error, the
effects of the initial second derivative sign errors are limited
because they are expected to be corrected through optimization;
orientation field error inevitably affects the resultant shape
because it is directly incorporated in the cost function. Actually,
the shape recovery performance of the mirrored condition was
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comparable to the glossy condition even though the initial
second derivative sign errors of the mirrored condition were
considerably larger than those of the glossy condition. Of course,
too many initial errors cannot be corrected as suggested by the
poor shape recovery performance of the noLFAP condition. The
orientation field errors probably affect the error corrections of the
initial values through optimization.

Limitations and Future Work
The following are the limitations of our shape recovery
algorithm. First, since it is based on the relationship between
the orientation field and the surface second derivative, large
error occurs when this relationship is invalid. For example, if the
illumination environment is biased to a specific orientation (e.g.,
striped illumination), it biases the image orientation (Fleming
et al., 2009). The orientation error becomes large where the
surface anisotropy is small (Fleming et al., 2009). For example,
if the true shape is a plane (i.e., the surface anisotropy is zero),
the image orientation reflects not the surface second derivative
but only the orientation of the illumination environment and
causes shape recovery errors. Second, images under an unnatural
illumination environment against the light from above prior
could not be properly recovered as it is difficult for humans
(Savarese et al., 2004; Faisman and Langer, 2013). Third, the
proposed algorithm cannot estimate the depth scale as well as
the slant due to the ambiguity about the affine transformation of
the recovered shape (Belhumeur et al., 1999). Humans also have
difficulty estimating the slant (Koenderink et al., 2001; Khang
et al., 2007) and the depth scale (Belhumeur et al., 1999; Khang
et al., 2007) from a single image without prior knowledge of the
object’s shape. Therefore, we evaluated the recovered shapes by
depth correlations after the affine transformation so that the slant
of the true surface depth becomes zero. We did not evaluate
the normal map because it depends on the depth scale. Fourth,
because the proposed algorithm assumes that the surface depth
is second order differentiable, it cannot properly treat bends,
cusps, and self-occlusion inside the object region [occluding
edges or limbs (Malik, 1987)] and generates smoother shapes
than actual shapes. This property may worsen the shape recovery
performance of objects #10, #3, and #4. Note that the limitations
listed above (except for the fourth) are closely related to the
limitations of human shape perception.

Future work has several promising directions. First, further
psychophysical experiments are required to understand human
shape perception from specular reflections in detail and will
help improve the shape recovery algorithm to better simulate
the human shape perception. It would be interesting to use
the image-based shape manipulation method based on the
orientation field (Vergne et al., 2016) to compare the recovered
and human-perceived shapes. It would also be interesting to
model and examine human shape perception from the viewpoint
of surface-based representations hypothesis (Leek et al., 2005,
2009; Reppa et al., 2015). Second, the proposed shape recovery
algorithm will be useful for computer vision methods. By
integrating it with a study that estimates material (BRDF) from
a single image of a known shape (Romeiro and Zickler, 2010), it
might become possible to estimate an unknown shape’s material.

By providing more accurate recovered depth information, we
expect to enhance the reality of the image-based material
editing that is based on shape information (Khan et al., 2006).
For further improvement of the shape recovery performance,
the proposed shape from the specularity algorithm could be
integrated with the shape from shading algorithms (Kunsberg
and Zucker, 2014; Barron and Malik, 2015), where it would be
helpful to use color information to separate diffuse and specular
reflection components (Artusi et al., 2011). Third, it would
be interesting to study whether 3D shapes can be recovered
from translucent images with specularities. A previous study
(Motoyoshi, 2010) argued that an object looks translucent when
images are manipulated so that the diffuse reflection component
is contrast-reversed, but the specular reflection component is
left intact. This result suggests that we must alter how the
specular and diffuse reflection components are combined for
shape recovery from translucent images, such as reversing the
sign of the vertical polarity in the case of translucent images
compared with opaque images.

MATERIALS AND METHODS

As a precondition to 3D shape recovery, we assume that the
image region is known where the object exists. It may be obtained
by an edge detection algorithm or decided by humans.We denote
the object region as �, the number of pixels in � as N�, the
boundary region, which is the region between the boundary of
� and one pixel inside it, as ∂�, and the number of pixels in
∂� as N∂�. The resolution of the 3D shape recovery was 256
× 256 pixels. We set a Cartesian coordinate on the image plane,
where the x and y axes represent the horizontal and vertical axes
of an image plane and the z axis represents the front direction.
We represent the depth of the 3D object surface as z(x,y). The
following notations are used: scalars are represented in normal-
type letters as x; vectors are represented in lower-case boldface
letters as x; matrices are represented in upper-case boldface
letters as X.

Images and Extraction of Image Cues
We used the images of 12 different 3D shapes to evaluate the
proposed algorithm (Figures 4, 5). The images had 1,024 ×

1,024 pixel resolution and were colored, although they were
downsampled to 256 × 256 pixels before the 3D shape recovery
and became achromatic because the proposed algorithm does not
use color information. These images were rendered by Radiance
software (http://radsite.lbl.gov/radiance/). The surface reflection
property was modeled by the Ward-Duer model (Ward, 1992;
Ngan et al., 2005). We set diffuse reflectance ρd, specular
reflectance ρs, and the spread of specular reflection α as ρd =

0.1, ρs = 0.15, α = 0 for the glossy surfaces (Figure 4) and ρd
= 0, ρs = 0.25, α = 0 for the mirrored surfaces (Figure 5). For
the natural illumination environment, we used a high dynamic
range image from the Devebec dataset (http://ict.debevec.org/~
debevec/; Eucalyptus Grove). For the quadratic patch images in
Figures 1, 2, we set ρd = 0, ρs = 0.25, α = 0 for the mirrored
surfaces in Figure 1, and ρd = 0.4, ρs = 0 for the matte images
in Figure 2.
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The 3D shapes of objects #1-6 were randomly generated with
spherical harmonics. To incrementally increase the complexity of
the 3D shapes, the maximum degree of the spherical harmonics
was limited to 5 for objects #1-2, 7 for objects #3-4, and 10
for objects #5-6. The weights of the spherical harmonics were
determined by a random number and normalized so that the
power of each degree is inversely proportional to the degree (pink
noise). Then the maximum amplitude of the spherical harmonics
was normalized to 0.5. The object’s radius of each angle is given
by the sum of 1 and the value of the spherical harmonics.

We extracted the orientation field as follows. The image
orientation θ(x,y) is the angle that maximizes the magnitude
of response p of the oriented filter (first-derivative operator)
as θ

(

x, y
)

= argmaxθ′ p
2
(

θ′
(

x, y
))

. Image anisotropy α(x,y) is
defined by the ratio of the minimum and maximum magnitudes
of the oriented filter response with respect to its angle (Fleming

et al., 2004) as α
(

x, y
)

= 1−

√

p2min(x,y)
p2max(x,y)

. α= 0means that the local

image is isotropic, and α = 1 means that it only consists of one
directional component. The steerable pyramid (Simoncelli et al.,
1992; Simoncelli and Freeman, 1995) (matlabPyrTools, https://
github.com/LabForComputationalVision/matlabPyrTools) was
used to extract the image orientation in accordance with previous
studies (Fleming et al., 2004, 2009, 2011). Responses were
obtained by steering the filter through 120 equal orientation
steps between 0 and 180◦. The orientation responses at the
finest possible spatial scale (1,024 × 1,024 pixel resolution)
were extracted for all the shapes in accordance with a previous
study (Fleming et al., 2004). Then the amplitudes, which are the
squared responses, were downsampled to 256 × 256 pixels and
convolved by a 3× 3 constant filter for noise reduction. Then the
image orientation and the image anisotropy were obtained based
on the above equations.

We obtained the vertical polarity of intensity gradient pv(x,y)
by extracting the sign of the oriented filter response of the
vertical direction (θ = 0◦) as pv

(

x, y
)

= sgn
(

pθ=0◦
(

x, y
))

.
The steerable pyramid was used to extract the vertical polarity.
The responses of the pyramid level of 256 × 256 resolution
were extracted for all the shapes (a relatively low-frequency
component compared to the original image resolution, 1024 ×

1024 resolution). The response values near the boundary are
unreliable because they are affected by the image outside of
the object region. Therefore, we overwrote the response values
within five pixels from the boundary to zeros and smoothed
them by a Gaussian filter whose standard deviation is four pixels
to reduce the noise and the high-frequency components of the
specular reflection.

We derived the signs of the apparent curvature of the image
contour as follows. First, we drew a circle centered at a boundary
point with a radius of 128 pixels (1/8 of the image size); second,
we determined that the curvature sign value at that boundary
point is +1 or −1 when the object region’s area within the
circle is smaller or larger than the area of the outside object
region within the circle; third, for noise reduction, we smoothed
the curvature sign values by convolving a constant circular
filter of a radius of 16 pixels (1/64 of the image size) and
downsampled it to 256× 256 pixels; then we extracted the signs.

The resultant curvature signs of the image contour are shown in
Supplementary Figure 5.

Curvature Formulation
We described the surface shape of objects by Hessian matrix H(z)
of surface depth z(x,y). Because the Hessian matrix is symmetric,
H(z) is diagonalized with rotation matrix R as

H (z) =

(

∂2z
∂x2

∂2z
∂x∂y

∂2z
∂x∂y

∂2z
∂y2

)

= −R (θs)

(

kmin 0
0 kmax

)

R (−θs) , (2)

where kmax and kmin are the eigenvalues of the larger and smaller
magnitudes. θs, which indicates the angle of the small surface
second derivative, is called the surface orientation. There is a
minus at the beginning of the right-hand side of Equation (2)
so that the surface second derivatives become positive in the
case of convex shapes (e.g., sphere). In this study, we described
the surface curvature by Hessian matrix based on the image
coordinate system instead of the standard curvature that is
defined on the object surface’s intrinsic coordinate system. This
difference was previously scrutinized (Fleming et al., 2009). The
reason why we adopted the former is that orientation field
depends on the Hessian matrix, not on the standard curvatures.
For example, in the case of a sphere, the standard curvature is
the same at every point on its surface. In contrast, the second
derivatives are large near the boundary and small at the center,
and correspondingly, the image orientation of the specular
reflectance is clear near the boundary and not clear at the center
(see Figure 16 of Fleming et al., 2009).

Next we introduce other variables and transform the equation.

First, surface anisotropy αs is defined as αs = 1−

√

k2min
k2max

(Fleming

et al., 2004). αs = 0 denotes that the magnitude of the two surface
second derivatives is the same (e.g., a convex sphere, a concave
sphere, or a saddle), and αs =1 means that the small surface
second derivative is zero (e.g., a convex cylinder or a concave
cylinder). Second, variables are introduced so that the surface
second derivative’s sign and magnitude are separately described.
The sign of the large surface second derivative is represented as
σmax ∈ {+1,−1}. +1 and −1 correspond to convex and concave
shapes. The magnitude of the large surface second derivative
is represented as ka =|kmax|. The sign of the small surface
second derivative is represented as σmin ∈ {+1,−1}. Using these
variables, the surface second derivatives are described:

kmax = kaσmax, (3)

kmin = (1− αs) kaσmin. (4)

Relationship Between Vertical Polarity and
Surface Second Derivative Signs
With the prior knowledge that the object is illuminated from
above, we can derive the relationship among the vertical polarity,
pv, and the surface second derivative signs. In the case of the
Lambert reflectance, the surface luminance is proportional to
the inner product of the lighting direction and the surface’s
normal direction. Here we assume that the illumination map is
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stronger as it gets closer to just above (x,y,z)= (0,1,0). As a result,
the surface luminance becomes stronger as the surface slant
(−∂z/∂y) is increased. By taking a derivative of this relationship
with respect to y and taking the sign, the following equation
is obtained:

pv ≈ sgn

(

−
∂2z

∂y2

)

. (5)

Here we described it as approximately equal instead of equal
because the two assumptions of the Lambert reflectance and
lighting from just above do not strictly hold in real situations.
For example, for images taken outdoors, the angle of the sun
(dominant illumination) changes based on time.

We transform Equation (5) into a more available form. The
following equation is derived from Equations (2), (3), and (4)

as − ∂2z
∂y2

= ka
(

σmax cos
2 θs+σmin (1− αs) sin

2 θs
)

. Then we used

the approximation of orientation θ ≈ θs and anisotropy α ≈ αs:

pv ≈ sgn
(

σmax cos
2 θ+σmin (1− α) sin2 θ

)

. (6)

We divided object region � into two regions: cos2 θ ≥

(1− α) sin2 θ holds in �a, but not in �b. Then the following
relationship is obtained:

pv
(

x, y
)

≈

{

σmax
(

x, y
) (

x, y ∈ �a

)

σmin
(

x, y
) (

x, y ∈ �b

) . (7)

The approximation of Equation (7) was evaluated in our
experiment and summarized in the right half of Table 3. All of
the results of the objects in the glossy and mirror conditions are
shown in Supplementary Figures 1, 2.

Formulation of Cost Function
Cost function E consists of two terms: the second derivative
constraint given by orientation field C and boundary condition B:

E = C + B. (8)

We first explain second derivative constraint C and then
boundary condition B, which consists of the following three
terms: B= B0 + B1 + Bc.

The second derivative constraint is based on the relationship
between the orientation field and the surface second derivatives
where the image orientation approximates surface orientation
θ ≈ θs and the image anisotropy approximates surface anisotropy
α ≈ αs (Fleming et al., 2004, 2009). These relationships are
described with error terms as θs = θ + δθ and αs = α + δα.
These errors were evaluated in our experiment and summarized
in the left half of Table 3. For more information, a previous
study (Fleming et al., 2009) assessed the orientation error, which
depends on the surface anisotropy and the difference between
the surface orientation and the illumination map’s orientation.
By substituting these equations into Equation (2), we obtain

R (−θ)H (z)R (θ)+ka

(

(1− α) σmin 0
0 σmax

)

= ka (O (δα) + O (δθ)) .

(9)

To simplify this equation, we introduce the coordinate axes
(u, v) by rotating the original axes (x, y) by image orientation
θ(x,y). Note that the axes (u, v) depend on each position based
on the image orientation in that position. Then this equation is
described as

(

∂2z
∂u2

+ ka (1− α) σmin
∂2z
∂u∂v

∂2z
∂u∂v

∂2z
∂v2

+ kaσmax

)

= ka (O (δα) + O (δθ)) ,

(10)

which indicates that the surface strongly bends toward the v
direction (the orthogonal direction of the image orientation)
by second derivative magnitude ka with sign σmax and the
surface weakly bends toward the u direction by second derivative
magnitude ka(1-α) with sign σmin. Second derivative constraint C
is based on Equation (10) where the left-hand side is small. The
cost is the sum of the squared Frobenius norm of the left-hand
side of Equation (10) throughout the object region:

C =
1

2

∑

x,y∈�

[

(

∂2z

∂u2
+ ka (1− α) σmin

)2

+

(

∂2z

∂v2
+ kaσmax

)2

+ 2

(

∂2z

∂u∂v

)2
]

. (11)

Since this cost function is a quadratic function with respect to
z and ka or with respect to σmax and σmin, it is relatively easy
to optimize.

Here, because the right-hand side of Equation (10) is
proportional to ka, it would be more appropriate to use a cost
function that is the sum of the amplitude of the left-hand side
of Equation (10) after multiplied by 1/ka. We denote this cost
function as C’:

C′ =
1

2

∑

x,y∈�

[

(

1

ka

∂2z

∂u2
+ (1− α) σmin

)2

+

(

1

ka

∂2z

∂v2
+ σmax

)2

+ 2

(

1

ka

∂2z

∂u∂v

)2
]

. (12)

However, cost function C’ is more difficult to optimize.
Therefore, we use the first cost function C to obtain the solution,
and then with the solution as an initial value, we obtain
the improved solution with the second cost function C’. The
summarized formula and the minimization of the second cost
function are described in Appendix D.

Boundary conditions B0 and B1 were introduced to resolve
the solution’s ambiguity. B0 resolves the translation ambiguity
along the z axis by making the mean depth value zero at the
boundary region:

B0 =
1

2





1

N∂�

∑

x,y∈∂�

z





2

. (13)
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Another ambiguity exists about affine transformations
(Belhumeur et al., 1999). B1 is introduced so that the solution is
not slanted in both the x and y directions:

B1 =
1

2





1

N∂�

∑

x,y∈∂�

(x− xCM) z





2

+
1

2





1

N∂�

∑

x,y∈∂�

(

y− yCM
)

z





2

,

(14)
where xCM and yCM are the average values of x and y in boundary
region ∂�. We summarize these boundary conditions as B0 +

B1 = 1
2z

TBz, where z is the column vector of size N� × 1 that
consists of z(x,y) in object region� andB is the coefficient matrix
of size N� × N�.

Next the constraint from the contour was introduced.
Assuming that the 3D surface near the boundary is smooth and
differentiable, the second derivative toward the normal direction
of the contour at the boundary is minus infinity. Therefore,
the surface orientation is parallel to the contour and σmax =

+1. Moreover, a previous study (Koenderink, 1984) proved that
the sign of the 3D curvature parallel to the contour (= σmin)
equals the sign of the apparent curvature of the 2D contour. The
apparent curvature sign of the image contour, which is calculated
and utilized as the initial values of σmin near the boundary, is also
incorporated in the cost function:

Bc = −

(

hTmaxσmax + hTminσmin

)

, (15)

where hmin is a column vector that consists of the contour’s
curvature sign (Supplementary Figure 5), hmax is a column
vector that consists of +1 (near the boundary, where the value
exists in Supplementary Figure 5) and 0 (otherwise) and σmax

and σmin are column vectors that consist of σmax(x,y) and
σmin(x,y). Note that although our constraint from the contour’s
curvature sign does not depend on the contour’s curvature
magnitude, using a non-uniform constraint would be interesting
based on information theories and empirical findings (Feldman
and Singh, 2005; Lim and Leek, 2012).

The cost function is summarized as

E = C + B =
1

2
zTAz+ zT

(

DT
vvKaσmax +DT

uuHKaσmin

)

+
1

2
kTa
(

I+H2
)

ka −
(

hTmaxσmax + hTminσmin

)

, (16)

where ka and α are column vectors that consist of ka(x,y) and
α(x,y); Ka and H are diagonal matrices with diagonal elements
ka and (1-α); D is a matrix that represents the second order
differential operator with respect to subscript variables; A =

DT
vvDvv + DT

uuDuu + 2DT
uvDuv + B; I is an identity matrix of

size N� × N�. Optimal 3D shape zminimizes the cost function.
Therefore, the derivative of the cost function with respect to z
should be zero. The solution is obtained as

z = −A−1
(

DT
vvKaσmax +DT

uuHKaσmin

)

. (17)

Here, matrix A is invertible since A is positive definite, which can
be easily shown. First, the eigenvalue of A is non-negative from

the definition (Equations 8, 11, 13, and 14). Second, there is no
zero eigenvalue because of the boundary condition (Equations 13
and 14). By substituting the solution Equation (17) into Equation
(16), the cost function becomes a function of σmax, σmin, and ka:

E = −
1

2

(

DT
vvKaσmax +DT

uuHKaσmin

)T

A−1
(

DT
vvKaσmax +DT

uuHKaσmin

)

+
1

2
kTa
(

I+H2
)

ka

−

(

hTmaxσmax + hTminσmin

)

. (18)

The procedure for minimizing the cost function is described in
Appendix C.

Evaluation of Recovered Depths
We quantify the shape recovery performance by taking the
correlation between the recovered depth and the true depth.
Note that here we apply the affine transformation so that the
slant of the true surface depth becomes zero before taking
the depth correlations. The proposed algorithm generates a
shape whose slant is zero because of the boundary condition
(Equation 14). Therefore, we compared the recovered shape with
the true depth after the affine transformation. We summarized
the depth correlations without the affine transformation in
Supplementary Note 2.

We used two depth correlations: global and local interior.
The global depth correlation is simply the correlation coefficient
of the recovered and true depths throughout the object region.
However, the global depth correlation tends to become high as
long as the depth around the boundary is small, because the true
depth is generally very small around the boundary and modest
inside the object region. In other words, it is sensitive to the
depth around the boundary and insensitive to the details of the
shapes inside the object region. Therefore, we proposed a local
interior depth correlation, which was calculated as follows. First,
we drew a grid that divided the vertical and horizontal axes of the
image region into eight (at 32 pixel intervals). Second, we drew
a circle centered at an intersection of the grid with a radius of 32
pixels. Third, we measured a depth correlation in the intersection
of the circle and the object area after removing the area near
the boundary (within 24 pixels from the boundary). We did not
measure a depth correlation if the intersection area was smaller
than half of the circle’s area. Fourth, we averaged the depth
correlation values. As a result, the local interior depth correlation
is not affected by the shapes near the boundary and is sensitive
to the agreement of the concavity and the convexity inside the
object region. Note that we did not evaluate the local interior
depth correlation for objects #9 and #11. No depth correlation
values were obtained with the above procedure because most
of the object region is near the boundary, and the global depth
correlation seems sufficient as a measure because there is no fine
shape structure inside these object regions.

Psychophysical Experiment
Five unpaid volunteers participated in the experiment (three
males and two females; age range, 33–58), all of whom had
normal or corrected-to-normal vision and were naïve to its
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purpose. The experiment was approved by the Ethics Committee
for Human Research of National Institute for Physiological
Sciences. The experiment was conducted in accordance with the
principles of the Helsinki Declaration. Written informed consent
was obtained from all participants.

Stimuli were presented on a 58.1 × 38.6 cm flat screen
OLED monitor at a distance of 60 cm in a darkened room.
Each image subtended at about a 10◦ visual angle. The stimulus
images are shown in Figure 6, although the red crosses in
it were not displayed during the experiment. The images of
Figures 6A,B were rendered by Radiance software with the
surface reflection property ρd = 0.1, ρs = 0.15, α = 0 under
illumination environments of the Devebec dataset (Galileo’s
Tomb for Figure 6A and Eucalyptus Grove for Figure 6B).

Subjects performed two tasks. Both were two-alternative
forced choice tasks with no time limits. First, we presented
either the image of Figure 6A (Galileo illumination condition)
or Figure 6B (Eucalyptus illumination condition). Unfilled, 2.7-
cm diameter gray circle centered at the red cross position
was superimposed in the first task. Subjects were asked
whether the local surface indicated by the circle was convex
or concave. Next, we presented the same image and the
recovered depth map by the proposed algorithm and the true
depth map. The image was located in the center, and the
two depth maps were located at the image’s left and right.
The left and right arrangements of the recovered and the
true depth maps were random. Subjects were asked whether
the recovered 3D shape or the true 3D shape more closely
resembled the perceived 3D shape from the image. They
sequentially performed two tasks for two conditions: the
Galileo illumination condition and the Eucalyptus illumination
condition. The order of the conditions was counter-balanced
among the subjects (two subjects performed the Galileo
illumination condition first and three performed the Eucalyptus
illumination condition first). Before the experiment, the subjects
performed a practice trial with sphere images rendered under
another illumination environment (Campus at Sunset of
the Devebec dataset) and were instructed about the depth
map’s meaning.
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