
ORIGINAL RESEARCH
published: 16 April 2019

doi: 10.3389/fncom.2019.00022

Frontiers in Computational Neuroscience | www.frontiersin.org 1 April 2019 | Volume 13 | Article 22

Edited by:

Vito Di Maio,

Institute of Applied Sciences and

Intelligent Systems (ISASI), Italy

Reviewed by:

Andreas Knoblauch,

Hochschule Albstadt-Sigmaringen,

Germany

Christian Tetzlaff,

Max-Planck-Institute for Dynamics

and Self-Organisation, Max Planck

Society (MPG), Germany

*Correspondence:

Joaquín J. Torres

jtorres@onsager.ugr.es

Received: 13 September 2018

Accepted: 26 March 2019

Published: 16 April 2019

Citation:

Millán AP, Torres JJ and Marro J

(2019) How Memory Conforms to

Brain Development.

Front. Comput. Neurosci. 13:22.

doi: 10.3389/fncom.2019.00022

How Memory Conforms to Brain
Development
Ana P. Millán, Joaquín J. Torres* and Joaquín Marro

Institute “Carlos I” for Theoretical and Computational Physics, University of Granada, Granada, Spain

Nature exhibits countless examples of adaptive networks, whose topology evolves

constantly coupled with the activity due to its function. The brain is an illustrative

example of a system in which a dynamic complex network develops by the generation

and pruning of synaptic contacts between neurons while memories are acquired and

consolidated. Here, we consider a recently proposed brain developing model to study

how mechanisms responsible for the evolution of brain structure affect and are affected

by memory storage processes. Following recent experimental observations, we assume

that the basic rules for adding and removing synapses depend on local synaptic currents

at the respective neurons in addition to global mechanisms depending on the mean

connectivity. In this way a feedback loop between “form” and “function” spontaneously

emerges that influences the ability of the system to optimally store and retrieve sensory

information in patterns of brain activity or memories. In particular, we report here that, as

a consequence of such a feedback-loop, oscillations in the activity of the system among

thememorized patterns can occur, depending on parameters, remindingmind dynamical

processes. Such oscillations have their origin in the destabilization of memory attractors

due to the pruning dynamics, which induces a kind of structural disorder or noise in the

system at a long-term scale. This constantly modifies the synaptic disorder induced by

the interference among the many patterns of activity memorized in the system. Such new

intriguing oscillatory behavior is to be associated only to long-term synaptic mechanisms

during the network evolution dynamics, and it does not depend on short-term synaptic

processes, as assumed in other studies, that are not present in our model.

Keywords: brain developing, brain structure and function, synaptic pruning, storage capacity, dynamic memories

1. INTRODUCTION

A complex interrelation between “form” and “function” is known to play an important role in
nature (Gross and Blasius, 2008; Vazquez et al., 2008; Sayama et al., 2013). The idea has been
efficiently developed in the field of adaptive networks, in which a sort of coupling feedback loop sets
in between the network dynamic activity and its topological structure. Outstanding phenomena
then emerge, including self-organization into complex topologies that exhibit robust dynamics,
spontaneous differentiation of the nodes, or complex mutual dynamics in both activity and
topology, in any case mimicking many different conditions in nature (Bullmore and Sporns, 2009;
Sayama et al., 2013; Millán et al., 2018a). This framework has revealed quite useful to understand
fundamental questions concerning mammal brains, e.g., how structural and functional properties
relate to each other both at the level of models involving sets of neurons and synapses and at the
coarse-grained scale of connectomes and functional nets which is captured by imaging techniques
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(Bullmore and Sporns, 2009). A main question that we can thus
address is how an efficient brain develops by synaptic pruning
after a sort of “wild” proliferation of synaptic connections
between neurons following conception (Chechik et al., 1998;
Iglesias et al., 2005; Santos and Noggle, 2011; Presumey et al.,
2017). In humans, for example, synaptic density at birth is
about twice that at puberty, and certain brain disorders, such as
autism spectrum disorder (ASD) and schizophrenia, have been
related to details of synaptic pruning (Keshavan et al., 1994;
Geschwind and Levitt, 2007; Faludi and Mirnics, 2011; Kolb
et al., 2012; Fornito et al., 2015). In particular, ASD has been
associated with a defect of synaptic pruning in certain brain areas
(Tang et al., 2014), whereas schizophrenia could be related to
an excessive pruning (Sekar et al., 2016). In any case, it now
seems clear that such synaptic pruning involves in some way
an optimization process, probably aimed at minimizing both
energy consumption and the genetic information that otherwise
would be needed to build an efficient and robust network
(Chechik et al., 1999; Chklovskii et al., 2004; Johnson et al.,
2010; Knoblauch et al., 2010; Navlakha et al., 2015). In particular,
recent studies on associative memory have shown that this
process could greatly improve memory retrieval under a noisy
environment, such as it is the case in biological systems (Millán
et al., 2018a). Moreover, ongoing structural plasticity in the
adult brain has also been suggested to improve substantially the
storage capacity (Chklovskii et al., 2004; Knoblauch et al., 2010),
and has been related to graded amnesia, catastrophic forgetting,
and the spacing effect (Knoblauch et al., 2014; Knoblauch and
Sommer, 2016). These results are based on the fact that the
number of potential synapses a neuron could develop, i.e., its
potential connectivity, is much greater than the actual number
of synapses, and structural plasticity allows the system to explore
different wiring possibilities (Stepanyants et al., 2002; Fares and
Stepanyants, 2009).

Here, we use an adaptive—sometimes also called co-evolving—
brain network model, which has already been used by us to
describe synaptic pruning in humans (Millán et al., 2018a,b), to
analyze how the dynamical processes of adding and removing
synapses during brain development can affect the ability of
the network to store and optimally retrieve a given set of
memories. Our system combines the auto-associative Amari-
Hopfield neural network (Amari, 1972; Hopfield, 1982) with a
preferential-attachment dynamics for the network evolution in a
way that has been shown to accurately reproduce the observed
variation of neuron connectivity data on human brains during
infancy (Johnson et al., 2010; Millán et al., 2018b). As empirically
observed—see (Holtmaat and Svoboda, 2009) and references
therein—this model assumes that the probabilities of growth and
death of synapses depend on both the mean connectivity in the
system and the neural activity. Previous studies have analyzed the
effect of thermal noise in the system and its emergent behavior,
and they have shown that the coupling between neuronal activity
and connectivity creates a feedback loop between form and
function since the system activity influences its topology and, in
turn, it is affected by the network structure through the synaptic
currents the neurons receive (Millán et al., 2018a). As a matter of
fact, depending on parameters, this system is then able to produce

heterogeneous networks with the presence of hubs, similar to the
ones observed in actual neural systems (Van Den Heuvel and
Sporns, 2011; Crossley et al., 2014; Oh et al., 2014; Stafford et al.,
2014), with high memory retrieval and noise tolerance. Another
recent work has also studied the effect of a transient period
of high connectivity before synaptic pruning begins (Millán
et al., 2018b), as observed in mammal brains (Huttenlocher and
Dabholkar, 1997; Navlakha et al., 2015), demonstrating that it has
beneficial effects for memory recovery and the emergence of an
organized stationary state in the system.

Here we develop on the effect that synaptic (or quenched)
disorder resulting from the interference among many patterns of
activity—stored by Hebbian learning on the synaptic weights—
has on the emergent behavior of the system. We show that, as a
consequence of the interplay between structural (i.e., pruning),
thermal and quenched disorder, oscillations can emerge in the
activity of the model which imply visiting different memorized
patterns, an emergent behavior that had not been reported
before in this model. This intriguing behavior is precisely due
to long-term synaptic mechanisms associated with the network
evolution dynamics, and not to short-term synaptic processes,
such as synaptic depression and facilitation (Pantic et al., 2002;
Marro et al., 2007; Torres et al., 2007, 2008; Torres and Marro,
2015) or spike frequency adaptation (Knoblauch and Palm, 2002;
Ha and Cheong, 2017), which are not present in our model.
These have already been described to induce oscillations among
stored patterns of network activity, however the biophysical
mechanisms behind them are different from the topological
rewiring process considered here, and in particular they act
on shorter time-scales—on the order of ms as opposed to the
time scale of hours or days in which synaptic rewiring operates.
It would be straightforward to extend the present study by
adding short-term mechanisms, and we hypothesize that the
interplay between different neuron and synaptic processes during
learning and brain evolution could give rise to other types of
oscillatory phenomena associated with non-equilibrium phases
not yet reported, a fact that we glimpse could have strong
computational implications.

2. MODEL AND METHODS

Our system consists in a time-dependent, symmetric, undirected,
N-node complex network (Boccaletti et al., 2006) of neurons,
defined at time t by the adjacency matrix eee(t), with elements
eij(t) = {0, 1}, in which each node represents a neuron and each
edge [eij(t) = 1] stands for a synapse. The degree of node i at time
t is defined as

ki(t) =
N∑

j=1

eij(t) (1)

and themean degree of the network is

κ(t) =
1

N

N∑

i=1

ki(t). (2)
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Following a familiar (Amari-Hopfield) prescription (Amari,
1972; Amit, 1989), each neuron i is modeled as a stochastic
binary unit, si(t) = {0, 1} (representing respectively a silent and
a firing neuron), whose state evolves in time according to the
probabilistic dynamics

P
[
si(t + 1) = 1

]
=

1

2

{
1+ tanh

[
T−1 (

hi(t)− θi(t)
)]}

, (3)

where

hi(t) =
N∑

j=1

wijeij(t)sj(t) (4)

is the local field at neuron i quantifying the incoming input from
neighbor neurons and

θi(t) =
1

2

N∑

j=1

wijeij(t) (5)

is the neuron’s threshold for firing. This definition of the threshold
is typically considered, in the case of static networks, when the
more biologically plausible {0, 1} code is used instead of the
canonical {±1} one, since it allows one to recover the phase
diagram of the canonical, fully connected Amari-Hopfield model
(Amit, 1989). Therefore, we maintain it when extending the
model to a time dependent topology, and it naturally leads
to a dynamic threshold. This is not a strong assumption since
dynamic or adaptive thresholds have been widely described in
several neural systems. For instance, they have been shown to
create a nontrivial motion between the attractors of the system
(Horn and Usher, 1989; Itskov et al., 2011) and to have a
major role in stochastic resonance (Mejias and Torres, 2011)
and in the functioning of sensory systems (Fricker et al., 1999;
Azouz and Gray, 2000, 2003; Cardin et al., 2008; Kobayashi
et al., 2009). Mechanisms of threshold adaptation have been
found to help to avoid saturating activity during developmental
changes (Turrigiano et al., 1998), and to be related to homeostatic
regulation mechanisms observed in cortical neurons (Abbott and
LeMasson, 1993; Turrigiano et al., 1998), and to the emergence
of self-organized criticality in neural systems (Uhlig et al., 2013;
Hobbiss et al., 2018). In our context, θi(t) depends only on the
existing synapses, which can be seen as a means of homeostasis
since the response of a neuron is regulated by the number and
strength of its synaptic contacts, thus avoiding silencing low-
degree neurons and saturation of hubs. Furthermore, in our
model the term eijwij in Equation (5) characterizes the intensity
of the synaptic transmission between neurons i and j, so that the
threshold dynamics depends indirectly on the neural activity.

On the other hand, the noise parameter or temperature T (T >

0) sets the level of stochasticity on the activity of the neurons, so
that if T = 0 the evolution of the system is deterministic and the
state of a neuron at time t is completely determined by the states
of its neighbors at time t−1. For T > 0, however, the evolution is
stochastic and, as T is increased, the thermal noise has a stronger
effect. The strength of each synapse, or its synaptic weight, wij,
is a real variable defined by means of a set of P binary patterns of

neural activity, ξµ
i ∈ {0, 1},µ = 1, ..., P, according to the Hebbian

learning prescription (Amit, 1989),

wij = [κ0a0 (1− a0)]−1 ∑P
µ=1

(
ξ

µ
i − a0

) (
ξ

µ
j − a0

)
, i 6= j

wii = 0,
(6)

where κ0 = κ(t = 0) and a0 is the mean activation of the
patterns, i.e., a0 = (NP)−1 ∑P

µ=1

∑N
i=1 ξ

µ
i . This definition of the

synaptic weights makes the patterns ξ
µ
i attractors of the activity

dynamics of the system, and therefore it constitutes the final step
of a process of “learning” or “storing” of a set of activity patterns
by the system in the synaptic weights. Notice also that wij = wji

by construction so that the network is symmetric, in the spirit
of previous studies (Sompolinsky and Kanter, 1986). This is for
simplicity and also as a reference to compare with the canonical
Amari-Hopfield model (Amari, 1972; Hopfield, 1982).

The overlap of the network state with each of these patterns
determines the global state of the system, and it is defined as

mµ(t) =
[
Na0(1− a0)

]−1
N∑

i=1

(
ξ

µ
i − a0

)
si. (7)

It follows from this definition that −1 ≤ mµ(t) ≤ 1. We say
that the system is in a memory state or, equivalently, that it has
retrieved pattern µ, if mµ > 2/3 and mν → 0 ∀ν 6= µ. This
indicates that the activity state of the network strongly resembles
that of pattern µ. In the case of a non-trivial topology, it is also of
interest the degree dependent overlap,mµ(k, t), defined as

mµ(k, t) =
[
Np(k, t)a0(1− a0)

]−1
N∑

i=1

(
ξ

µ
i − a0

)
siδk,ki (8)

where p(k, t) is the degree distribution of the network, which
indicates the probability that a node has degree k at a certain time
t (p(k, t) ≥ 0 ∀k, t,

∑N
k=1 p(k, t) = 1 ∀t). Therefore, mµ(t) =∑N

k=1 p(k, t)m
µ(k, t). Notice also that if the patterns of activity are

not homogeneously distributed through the neurons, mµ(k, t) is
not bounded by±1.

The “canonical” setting of the Amari-Hopfield model, in
the case of a fully connected network and random orthogonal
patterns, exhibits three characteristic phases. In the absence of
thermal noise, T = 0, the patterns ξ

µ
i are stable attractors of

the dynamics of the system for P < Pc = 0.138N, and the
system is in what is called the memory phase. Pc defines the
maximum storage capacity of the network (Amit, 1989), that is,
the maximum quantity of information—or number of patterns—
that can be stored and effectively retrieved from the network.
This phase is (mathematically) equivalent to the ferromagnetic
or ordered phase of interacting spin networks (as in the Ising
model). The storage of a large number of different patterns in
the network gives rise to quenched noise as a consequence of
the interference between them in wij, which can destabilize such
memory phase. Therefore, if P is further increased above Pc there
is a discontinuous phase transition to a spin-glass (SG) phase, in
which there appear metastable states which are combinations of
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the stored patterns (therefore called mixed states) that trap the
dynamics of the system. Similarly, in the case of P = 1 when T >

Tc = 1, there is a continuous phase transition from the memory
phase to a noisy or paramagnetic phase (also called disordered
phase) in which there are no stable attractors, and the dynamics
of the system is driven by noise (Amit, 1989). In the more general
case in which both T > 0 and P > 1, the location of the phase
transitions depends both on T and P. The emergent behavior of
the Amari-Hopfield model has also been studied on non-trivial
network topologies, such as scale-free and small-world networks
(Torres et al., 2004; Boccaletti et al., 2006; Oshima and Odagaki,
2007). Such systems have been shown to present the same phases
as the canonical fully connected model, with transition lines
that depend on the topology. In particular, it has been reported
that, for heterogeneous networks and a single stored pattern, the
overlap reduces for T < Tc, so that memory is recovered but
with more errors than in a fully connected network. However,
the critical temperature diverges, Tc → ∞ as N → ∞, due to
the presence of hubs that retain pattern information. Therefore,
the memory phase expands to much higher values of thermal
noise. On the other hand, the capacity of the network is known
to decrease as the mean connectivity of the network decreases
(Torres et al., 2004).

We here consider an evolving network whose structure,
contrary to the canonical model above, changes constantly in
time subjected to the pruning dynamics, as we shall describe.
Moreover, we consider a highly sparse network, with values
of κ/N ∈

[
10−3, 10−2

]
, which can be homogeneous (i.e.,

every node having roughly the same connectivity degree), or
heterogeneous, with the formation of hubs. Both sparseness and
heterogeneity damage severely the memory retrieval ability of
the neural network that, for such cases, diminishes fast with P
compared with the case of highly connected and homogeneous
neural networks (Stauffer et al., 2003; Castillo et al., 2004; Morelli
et al., 2004; Torres et al., 2004; Oshima and Odagaki, 2007; Akam
and Kullmann, 2014) However, there is experimental evidence
that the configurations of neural activity related to particular
memories in the animal brain involve many more silent neurons,
ξ

µ
i = 0, than active ones, ξ

µ
i = 1 (Chklovskii et al., 2004;

Akam and Kullmann, 2014). Notice that in this case there is
a positive correlation between different patterns due to the
sparseness, since a0 6= 0.5, which is also known to improve
the storage capacity of a neural network (Knoblauch et al.,
2014; Knoblauch and Sommer, 2016), and in particular that of
heterogeneous and sparse neural networks (Morelli et al., 2004).
Consequently, we consider here this kind of activity patterns,
and we further define them as non-overlapping regions of active
neurons, each consisting of N/P neurons, so that they cover the
whole network (and therefore the mean activity of the patterns is
a0 = P−1). This corresponds to a particular definition of sparse
or biased patterns, which in other works have been considered
to be randomly distributed with a given a0 (Knoblauch et al.,
2014; Knoblauch and Sommer, 2016), what allows for a good
visualization of the activity of the network by means of the
raster plots.

Moreover, this scheme allows us to define another measure of
the overlap between the state of the system and the memorized

patterns, considering only the corresponding active neurons as

m
µ
1 (t) ≡

1

N

N∑

i=1

si(t)ξ
µ
i , (9)

with m
µ
1 ∈ [0, 1]. If is also of interest its binearized extension,

m
µ
B , defined as m

µ
B (t) ≡ 1 if mµ

1 (t) > mth and 0 otherwise,
so that mB(t) =

(
m1

B(t),m
2
B(t), ...,m

P
B(t)

)
indicates, in a binary

code, which combination of patterns is recovered at time t.
Equivalently, the decimal variable ds can be defined,

ds(t) ≡
P∑

µ=1

2µ−1m
µ
B (t), (10)

which one can interpret as a one-dimensional variable indicating
the global memory state of the system.

Interestingly, the activity patterns defined here are such that
when a number Pr of them are recovered at the same time, in
a SG-like state, the maximum overlap that they can have is less
than one. In order to see this, one can decompose Equation (7)
in P sums, each over the neurons corresponding to the region
associated with each of the activity patterns, as

mµ =
[
Na0(1− a0)

]−1
P∑

ν=1

N∑

i=1

(
ξ

µ
N ν−N+i − a0

)
sN ν−N+i,

(11)
where N = a0N = N/P is the size of each region and the
time dependency has been dropped for clarity. Here, the first
sum is over the P patterns stored in the network, whereas the
second one goes over the N neurons in the region associated
with each pattern. If the pattern µ is recovered together with
other Pr − 1 patterns, then the sum over ν can be split in
three terms: the region associated with the pattern µ, the ones
corresponding to the other retrieved patterns, and finally those
of the non-retrieved patterns (which do not contribute to the
sum). Therefore, the overlap corresponding to this pattern is

mµ =
(
1− P−1

)−1 [
1− P−1 − (Pr − 1)P−1

]
. This yields

mµ = 1− (Pr − 1) (P − 1)−1 ≤ 1, (12)

which only meets the equality in the case Pr = 1, that is, if only
the pattern µ is retrieved.

The network structure changes in time following a preferential
attachment process. This is characterized by the probability each
node i has to gain or lose an edge at each time t – namely,

P
g
i = u(κ)π(Ii),

Pli = d(κ)η(Ii),
(13)

where Ii =
∣∣hi − θi

∣∣ is the scaled input that each neuron receives
as a consequence of the coupling with its neighbors, a sort of
recurrent current in the network, and the time dependence has
been dropped for clarity. Here, u and d account for global factors
that affect synaptic growth and death, such as the diffusion of
different molecules through large areas of tissue, for which the
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mean degree κ is taken as a proxy. The second terms π and η

introduce a dependence on the pre-synaptic activity of the nodes,
closing the activity-topology coupling. This creates a feedback
loop between the evolution of the structure of the network
(form), mediated by the local currents, and the neural activity on
the network (function).

Taking the local probabilities to be normalized over the
network, the number of edges that are added and removed at
each time t depends only on the global probabilities u(κ(t)) and
d(κ(t)). In this way, they determine the temporal evolution of
the mean connectivity κ(t), whereas the local probabilities π(Ii)
and η(Ii) characterize the second order statistics of the network
structure, such as the variance of the degree distribution or the
degree-degree correlations, as we show below (see also Millán
et al., 2018a). These definitions allow us to simulate the dynamics
of the system via a Monte Carlo method (in particular, we make
use here of the BKL algorithm Bortz et al., 1975) as follows. First,
the number of edges to be created and destroyed at time t is
sorted according to the global probabilities u(κ(t)) and d(κ(t)).
Then, we select as many nodes as indicated with these draws,
independently of each other, according to π(Ii) and η(Ii). This
process is done in a serial manner, and the same node can be
selected more than once. Notice that for each node i that gains
or looses an edge eij, the degree of the second node j to which
that edge links also changes accordingly. Therefore, there are in
fact two paths that can lead to the change of a node’s degree:
either through the primary process with probability π(Ii) for a
gain (or η(Ii) for a loss), or when it is randomly connected to
(or disconnected from) an already chosen node. Therefore, the
effective values of the second factors in Equation (13) are

π̃i =
1
2

[
π(Ii)+

1
N

]
,

η̃i = 1
2

[
η(Ii)+

ki
κN

]
,

(14)

where the 1/2 factor is included to assure normalization.
Following our previous work, we consider

π̃i =
Iαi

〈Iα〉N ,

η̃i = Ii
〈I〉N ,

(15)

which are normalized over the network,
∑N

i=1 π̃i =
∑N

i=1 η̃i = 1.
The power-law relation in π̃i allows us to explore both sub-
and super-linear responses by just modifying a single parameter,
namely α. The probability η̃i, on the other hand, is fixed in a linear
response, which corresponds to edges being chosen at random
for removal, which can be seen as a first order approximation
to the pruning dynamics (Millán et al., 2018a). Therefore, α is
the control parameter for the pruning dynamics. If α < 1,
high degree nodes are more likely to lose edges than to gain
new ones, thus creating a homogeneous network structure. On
the other hand, if α > 1, high degree nodes are more likely
to continue to gain edges than to lose them, which gives rise
to a highly heterogeneous, bimodal structure. Finally, the case
α = 1 corresponds to the critical case in which networks develop
a scale-free topology as shown in previous works (Johnson et al.,
2010) that reproduces the scaling behavior observed in the long-
range connections of the human brain (Gastner and Ódor, 2016)

and in protein interaction networks (Albert, 2005), which decay
as a power-law with exponent µ ≈ 2.5.

The local probabilities are then given by

π (Ii) = max
{
2

Iαi
〈Iα〉N − 1

N , 0
}
,

η
(
Ii, ki

)
= max

{
2 Ii
〈I〉N − ki

κN , 0
}
,

(16)

which hold that π(Ii), η(Ii, ki) > 0 ∀i and normalization,∑N
i=1 π(Ii) =

∑N
i=1 η(Ii, ki) = 1.

We impose further restrictions on the network. First of all,
eij is a binary matrix, so that only one edge per pair of nodes
is allowed and the strength of the connection between two
neurons, resembling the number of multiple contacts between
actual neurons (Fares and Stepanyants, 2009), is considered to
be given by wij. Moreover, we set the minimum degree of the
network, ki = 1, so that there cannot be any disconnected nodes,
and we forbid self-connections, eii = 0 ∀i. The maximum degree
a node can have is therefore N − 1. We do not impose a hard
bound on it as other works have done (Knoblauch et al., 2014;
Knoblauch and Sommer, 2016). This would exclusively affect
hubs, which only appear for α > 1, as discussed above (Johnson
et al., 2010; Millán et al., 2018a), reducing their connectivity. This
might affect the memory capabilities of the network in the limit
P → ∞ but, since we do not work on this limit, we do not
expect any changes on the qualitative behavior and main findings
of our model.

Under this framework, the evolution of the mean degree is

dκ(t)

dt
= 2

[
u

(
κ(t)

)
− d

(
κ(t)

)]
. (17)

For a careful derivation of this equation, we direct the reader
to Johnson et al. (2010). Intuitively, u

(
κ(t)

)
and d

(
κ(t)

)
set the

number of edges that are created and destroyed at every time step,
so that u

(
κ(t)

)
− d

(
κ(t)

)
gives the net change in the number

of edges. Since for each of these edges two nodes change their
degree, there is a factor 2 in the variation of the mean degree. The
simplest way to approximate the pruning dynamics is to consider
an exponential decay of κ(t) from κ0 to κ∞, where κ0 = κ(t = 0)
is the initial mean degree of the network and κ∞ = κ(t → ∞)
the stationary mean degree after synaptic pruning has occurred,
so that κ0 ≥ κ∞. This is achieved by defining

u(κ(t)) = max
{

n
N

(
1− κ(t)

2κ∞

)
, 0

}

d(κ(t)) = n
N

κ(t)
2κ∞

,
(18)

where the parameter n sets the timescale for the pruning
dynamics. Notice also that Equation (18) assures that u(κ) ≥

0 ∀κ . By substituting these definitions into Equation (17), we
obtain the time evolution of κ(t),

κ(t) = κ∞
[
1− (1− κ0/κ∞) e−t/τp

]
, (19)

where τp = Nκ∞/(2n). This set-up has been previously used to
reproduce experimental data on the connectivity of the human
pre-frontal cortex using values of κ0 ∈ (60, 80) and κ∞ ∈
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(30, 50), depending on the region, and also of the mouse somato-
sensory cortex, with κ0 = 3.10 and κ∞ = 1.64 (for the
other parameters see Johnson et al., 2010; Millán et al., 2018a).
The definitions in Equation (18) take into account that synaptic
growth and death relay in some way on the concentrations
of various molecules (that can have an important role in
synaptogenesis, as axonal growth factors), which can diffuse
through large areas of tissue and therefore cannot in general be
considered local (Klintsova and Greenough, 1999), and here we
consider κ(t) as a proxy for the amount of resources consumed
by the existing synapses in the network. In an environment
with a finite presence of nutrients, it is reasonable to think
that there is a competition for the existing resources, and that
neurons are sensitive to the amount of nutrients available to
them, so that synapses are less likely to grow, and more likely to
atrophy, when the connectivity is high, and viceversa, as assumed
by Equation (18).

Finally, the network macroscopic state is described via the
degree distribution p(k, t) and its homogeneity, defined as

g(t) = exp(−σ 2(t)/κ2(t)), (20)

where σ 2(t) = 〈k2(t)〉 − κ2(t). For homogeneous networks,
in which all nodes have similar degrees, σ (t) is small and the
homogeneity approaches one, with the trivial case of g = 1 if
p(k, t) = δk,k1 . For heterogeneous networks, on the other hand,
there are big fluctuations in the degrees of the nodes and g(t) →
0.

The timescale for structure changes is set by the parameter
n, whereas the time unit for activity changes, hs, is the
number of Monte Carlo Steps (MCS) that the states of all
neurons are updated according to the Amari-Hopfield dynamics
between each structural network update. Our studies show a low
dependence on these parameters in the cases of interest, so we
only report here results for hs = 10 MCS and n = 10. Measures
on the stationary state of the system are carried out by temporal

averages of the macroscopic variables, f̄ = 1
∑t0+1

t=t0
f (t).

A recent work (Millán et al., 2018a) showed that, within this
framework, three phases emerge: a homogeneous memory phase
when both α and T are low (T,α < 1), in which the network is
capable of memory retrieval and the topology dynamics keeps a
homogeneous configuration; a heterogeneous memory phase for
high α (α > 1) in which the dynamics leads to bimodal networks
(with the appearance of hubs or highly connected nodes); and
a homogeneous noisy phase for high noise T. However, as we
will depict in the next section, the combination of thermal noise
together with the introduction of a larger number of patterns
of activity—which induces interference among them—induces
other non-reported non-equilibrium phases characterized by the
emergence of complex oscillations among the activity associated
with the stored patterns.

3. RESULTS

Previous preliminary analysis of the storage capacity of
developing brains under the present framework revealed that the
capacity of the network can be greatly improved if a feedback

loop between structure and function is considered (Millán et al.,
2018a). This is because the interplay between form and function
gives rise to a topological structure that enhances the stability of
the memory attractors which are recovered during the evolution
of the system. In order to explore this interesting picture under
other conditions, here we analyze in detail the phase diagram of
the system with respect to four relevant parameters in the model,
namely, α, κ∞, T, and P. The first two characterize the network
structure dynamics, whereas the temperature, T, and the number
of stored patterns, P, account respectively for thermal and
quenched disorder. As already said, the latter is a consequence of
the interference amongmany stored patterns, and it can affect the
recall process. Other parameters, such as the initial connectivity
κ0 or the speed of the pruning, n, where shown to have little or no
effect on the dynamics (Millán et al., 2018a,b).

3.1. Steady State Solutions for T = 0
We first analyze the behavior of the system at T = 0, that is,
in absence of thermal fluctuations that can affect the stability
of the fixed point solutions of the system dynamics. As stated
above, there are, however, other sources of noise in our system
which can have a prominent influence in its behavior. One is
the interference among stored patterns, which can significantly
reduce the memory retrieval ability of the system (Amit, 1989).
Another is the pruning dynamics that adds a second source of
noise; this is an intrinsic, structural noise that emerges due to
the stochastic adding and removal of synapses associated with
the network dynamics during brain development, and which can
dynamically affect the performance of the system duringmemory
acquisition and consolidation.

In Figure 1 we show the corresponding phase diagrams of
the system (depicting different phases or kinds of behavior) for
different values of κ∞ = 20, 40, and 60, respectively from left
to right. These depict some non-equilibrium phases associated
with different computational abilities during memory recall. The
top panels show, in the steady state, the ratio of patterns that can
be retrieved with high overlap (mµ ≥ 0.66), namely gP ≡ Pr/P
(where Pr is the number of retrieved patterns), as a function of α
and P. A value gP = 1/P indicates a pure memory state, whereas
larger values correspond to mixtures and SG-like states (Amit,
1989), and gP = 0 corresponds to the noisy or non-memory
state. Meanwhile, themiddle panels show themean overlap of the
recovered patterns duringmemory recall, namelymP and, finally,
the bottom panels show the stationary mean homogeneity, ḡ.

These diagrams show up different types of dynamical
behavior. In order to illustrate the characteristics of each one,
in Figure 2 we depict the time series mµ(t) (top graph of
each panel), raster plots showing the whole activity of the
system (bottom graph of each panel) and the steady-state degree
distribution (inset of each panel) for some particular values of α

and P corresponding to different characteristic behaviors in the
phase diagrams in Figure 1. For a given stationary connectivity
(e.g., κ∞ = 60, Figures 1C,F,I) we find that, for P = 1, the system
is able to retain memory for almost every value of α, as it can be
seen by the yellow region at P = 1 in Figure 1F, which indicates
an overlap equal to 1. For small P and small α, SG-like states,
or mixture states (in which some of the memories are partially
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FIGURE 1 | Phase diagrams depicting the steady-state of the system with respect to P and α at T = 0. The first row of panels (A–C) shows the fraction of patterns,

gP, retrieved after a given transient; the second one (D–F) shows the average overlap with the recovered patterns, mP; and finally the third one (G–I) shows the

stationary homogeneity ḡ. Each column is for a different value of κ∞, with κ∞ = 20, 40, and 60, respectively from left to right. The network size was set here to

N = 1, 600 and each point has been averaged over 10 realizations of the system. In this figure a memory phase appears as a blue region in the diagram of gp and a

high value of mp, indicated by a yellow color. A SG phase appears as a blue region in gp and a lower value of mp, indicated by a green color, whereas a noisy phase

appears as black in gp and mp. Similarly, homogeneous structures take place for high values of ḡ, indicated by a yellow region in the corresponding diagram, whereas

heterogeneous structures are for low values of ḡ, indicated by a black region. Finally, the pink stars in diagrams (C,F,I) indicate the (P,α) points corresponding to the

time series shown in Figure 2.

retrieved at the same time), start to emerge as it is illustrated in
Figure 2A, which corresponds to the point α = 0.5, P = 10.
As a consequence, both gP and mP take intermediate values;
the former since only a finite number of patterns is retrieved,
gp < 1 (light blue region of the diagram in Figure 1C), the later
because these are retrieved at the same time, and therefore the
overlap is reduced, mp < 1 (green and light-blue region of the
diagram in Figure 1F). In general, however, the observed SG-like
states present high values of the overlap with all the recovered
patterns due to the high correlation between memories we have
considered in this work. Moreover, in this region the network
structure is homogeneous since α < 1, so that ḡ approaches
1 and the degree distribution resembles a Poisson distribution
(see Figure 1I and the inset of Figure 2A). In these conditions,
when P is increased the memories lose stability until there is
a transition from the SG-like state to the noisy one, where the
network structure remains homogeneous, as shown in Figure 2B

for the point α = 0.5 and P = 30. This is indicated by gP → 0
(black region in Figure 1C),mP → 0 (black region in Figure 1F),
and ḡ → 1 (yellow region on the bottom-right side of Figure 1I).

On the other hand, for high α (α > 1), just one (or very few)
pattern is retrieved, with mP ≈ 1, and the network structure
becomes heterogeneous since α > 1 (see inset of Figure 2C).
As a consequence, gP → 1/P, (dark-blue region in Figure 1C),
mP approaches 1 (yellow region in Figure 1F), and ḡ → 0 (black
region in Figure 1I). Memory is achieved due to heterogeneity
and the presence of hubs, which can maintain the information

content of the retrieved pattern even in the presence of the strong
noise induced by the interference with other stored patterns
and the dynamic changes of the network structure. Therefore,
when P is increased the recovered patterns remain stable, so
that mP remains close to 1 (Figure 1F) and gP decreases as 1/P
since only one pattern is retrieved (Figure 1C, see also the inset
of Figure 2D, showing the appearance of hubs, and Figure 1I,
indicating ḡ → 0).

The stationary mean connectivity of the network, κ∞, also
affects the behavior of the system, as it determines location of the
phase transition from the SG phase to the noisy one for α < 1.
As the diagrams in Figure 1 show, larger values of κ∞ increase
the tolerance of the system to quenched disorder, so that a bigger
number of patterns can be stored. This is in line with the known
result that the information is stored in the synaptic weights, and
therefore increasing the number of synapses also increases the
amount of information that the system can store (Amit, 1989).

Notice also that the qualitative state of the system is
approximately independent of P for P > 20, as shown in Figure 1
where one can see that gp,mp and ḡ remain essentially constant as
P is increased with constant α above P = 20, in agreement with
previous studies (Millán et al., 2018a). Therefore, in the following
we restrict our analysis to the most interesting region P < 20 and
do not analyze the large storage limit of the system (Knoblauch
et al., 2014; Knoblauch and Sommer, 2016). This is because our
interest here is in characterizing the dynamic behavior arising as
a consequence of the interplay between structure and function
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FIGURE 2 | Time evolution of the system at T = 0 and κ∞ = 60 in four typical cases corresponding to different values of α and P as marked with pink stars in the

phase diagrams of Figure 1. Each composite panel illustrates the overlap time series, mµ (t), (top graph), raster plots of neuron activity (bottom graph) and the

steady-state degree distribution of the network (inset), computed at t = 106 Monte Carlo Steps and averaged over 10 realizations of the system. The panels

correspond respectively to α = 0.5 and P = 10 (A), α = 0.5 and P = 30 (B), α = 1.5 and P = 10 (C), and α = 1.5 and P = 30 (D). In all presented simulations we set

N = 1, 600.

under the presence of thermal and quenched noise, rather than its
storage capacity. Similarly, the inclusion of a hard bound on the
maximum degree of the nodes would primarily affect the degrees
of the hubs of bimodal networks. However, these typically form a
highly connected core in the network, so the average path length
between nodes would not increase heavily. Therefore, we expect
that this bound would not have an important effect in the regime
P≪ N in which we set the system here.

In summary, for T = 0, that is, when there are only two
sources of noise in the system (structural and quenched disorder),
the stationary state for a given P depends strongly on the network
structure, determined by α. As so, for α > 1, the network
develops heterogeneous structures in which hubs arise. These
are very densely connected with the rest of the network, and
can maintain information about the memories even when P is
very high. For α < 1, on the other hand, the network is always
homogeneous, with every node having similar, low degree, and
a SG-like phase soon arises, which is then suddenly lost as the

quenched disorder becomes too strong and finally the system falls
into the noisy state.

3.2. Behavior of the System for T > 0
Our previous analysis has determined the phase diagram of the
system at T = 0, which characterizes the effect of the dynamical
topological structure on the memory capabilities of the system.
In this section, we consider the effect of thermal noise in our
system’s emergent behavior. In order to do so, we analyze in
Figure 3 the phase diagrams of the system with respect to α and
T, for some representative numbers of stored patterns, namely
P = 5, 10, 15, and 20 (each column of the figure corresponds to
a different P), and for three values of κ∞ = 20, 40, and 60, as
before. The selected values of P correspond to the left region of
diagrams in Figure 1, where the phase transitions from memory
to the SG and noisy states takes place. In order to illustrate
better the behavior of the system in the cases of interest, we also
include in Figure 4 the time series of mµ(t) is some exemplary
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FIGURE 3 | Phase diagrams of the system with respect to α and T for four different values of P, in particular for P = 5, 10, 15, and 20, respectively from left to right,

and for three values of κ∞ = 20, 40, 60, respectively from top to bottom (A–L). In each panel we show three diagrams: gp, mp, and ḡ, as indicated in the label of the

color bar. Pink stars in (A–D) indicate the (T,α) point of the corresponding time series in Figure 4. Results are for N = 1, 600 and have been averaged over 5

realizations of the system dynamics. In this figure a memory phase appears as a blue region in the diagram of gp and a high value of mp, indicated by a yellow or

green color. A SG phase appears as an orange region in gp and a lower value of mp, indicated by a green or blue color, whereas a noisy phase appears as black in gp
and dark-blue in mp. Finally, the oscillatory phase appears for high values of gp, (light yellow regions in the corresponding diagrams) and relatively low values of mp

(associated blue regions of the corresponding diagrams). Similarly, homogeneous structures take place for high values of ḡ, indicated by a yellow region in the

corresponding diagram, whereas heterogeneous structures are for low values of ḡ, indicated by a black or dark blue region.

points for κ∞ = 20, as indicated in the phase diagrams by a
pink star. Each panel corresponds to a given value of P, and
each graph on them to a point in the (T,α) space. We find that
the combination of thermal and quenched disorder, associated
with the interference among patterns, can give rise to oscillations
among the memorized patterns for α < 1—that is, when the
networks are homogeneous—and T < 1, which are correspond
to the yellow regions in the gp panels of Figure 3. Note that the

observed oscillations occur at level of the neuronal population
as measured by the global network parameter mµ(t), and not on
the single neuron level—which appear as small, high-frequency
oscillations ofmµ(t).

In order to illustrate the emergent behavior of the system,
we refer here to Figure 3A, which corresponds to κ∞ = 20
and P = 5. The top graph in the panel represents gP, the
number of patterns visited by the system after the transient
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FIGURE 4 | Time series of the overlap mµ(t) for some representative cases of the system dynamical behavior, corresponding to κ∞ = 20 and to P = 5, 10, 15, and

20, respectively from (A–D). In each composite panel, we illustrate the behavior of the system on for 4 points of the (T,α) space, as indicated by pink starts in the

corresponding phase diagrams of Figure 2. Namely, (A) is for the points (0.7, 0.3), (0.9, 0.3), (0.3, 1.1), (1.1, 1.1); (B) is for (0.3, 0.3), (0.9, 0.3), (0.3, 1.1), (1.1, 1.1); and

finally (C,D) are for the points (0.1, 0.3), (0.9, 0.3), (0.3, 1.1), (1.1, 1.1). We have selected slightly different points for each P so as to show an example of the oscillatory

behavior in each case, and the region of its appearance depends on P. Results are for N = 1, 600.

evolution takes place. For α > 1, we find that this number
remains finite, and greater than zero, up to very high values
of the temperature (T ≈ 2.0) corresponding to the light-
blue region in the top panel of Figure 3A, for instance. This
indicates that the system is in a memory state (or in a SG-like
state in which only a small number of patterns are retrieved),
such as the ones depicted in the bottom graphs of Figure 4A.
The stability of the memory state for T > 1 is possible due
to the emergence of heterogeneous structures (since α > 1),
and consequently hubs, as indicated in the black region of the
bottom plot of Figure 3A, since ḡ → 0 for α > 1. Notice also
in the middle graph of Figure 3A how, as T is increased, the
overlap corresponding to these states, mP, decreases, indicating
that these states are also becoming less stable as the thermal noise
becomes stronger. In these conditions, only the more densely
connected hub nodes are able to maintain information about
the memories, and these are the ones contributing the most to
the overlap.

As α is decreased, however, the behavior shown in the
diagrams becomes more complex and different regions (phases)
start to emerge. We find, as expected, that memory is completely
lost for T ≫ 1, i.e., due to the strong noise the system falls into
the noisy or non-memory state (as indicated respectively by the
black region and by the dark-blue region of the top and middle
diagrams of Figure 3A). In fact, now networks are homogeneous
(α < 1) and there are no hubs that preserve memory (as
indicated by ḡ → 1 in the bottom plot of Figure 3A, indicating
that the degree distribution is homogeneous). A typical time

series of mµ(t) for this situation is shown in the top-right graph
of Figure 4B.

For small values of T and α (T, α < 1) on the other
hand, gP → 1 (orange and yellow region of the top panel
of Figure 3A), indicating that a great number of patterns are
being retrieved (Pr → P) with a moderate value of the
overlap mP, as indicated by the green and blue region in
the middle panel of Figure 3A. Moreover, results in Figure 2

indicate that, at least in some cases, gP actually increases when
T goes from 0 to 1 (see, e.g., the yellow area in the top
panel of Figure 3A). That is, as the temperature increases,
more memories take place in the state of the system, with a
relatively high overlap mP. This is because, for α < 1, there
is a wide region of oscillatory behavior between the SG-like
and the noisy phases corresponding to the yellow region of
the gp diagrams in Figure 3. An exemplary series of oscillations
is illustrated in the top-left graph of Figure 4A. This emerges
as a consequence of the interplay between structural and
thermal noise and the activity of network, since the process
of addition and removal of synapses, that creates a dynamical
network structure, together with the thermal noise, can make
the recovered patterns unstable. Moreover, given that α < 1,
the structure of the networks remains homogeneous and no real
hubs emerge. Notice however that due to the non-trivial interplay
between activity and topology, in the region of oscillatory
behavior the networks display a more heterogeneous structure,
and ḡ < 1. This effect will be discussed in more detail in the
following section.
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As in the previous section, we have also analyzed the role
of the stationary mean connectivity, κ∞, on the phase diagram
of the system for T > 0 (see Figure 3). This parameter holds
physiological interests since it can be taken as a measure of the
extension of the process of synaptic pruning. From this point of
view, a brain that has undergone a more drastic synaptic pruning
would have smaller κ∞ than one that has been less pruned.
This is to be related to recent experiments that have associated
an excessive pruning in certain brain areas with schizophrenia
(Sekar et al., 2016), whereas ASD has been related to a defect of
synaptic pruning (Tang et al., 2014). We find in our model that
the area associated with the oscillatory behavior (for α,T < 1)
for a given κ∞ is maximum at intermediate values of P: for very
small P there is a dominance of stable SG-like states, whereas
for large P the system falls easily on the noisy phase. Similarly,
for a given P the greater extension of the oscillatory phase is
found for an intermediate κ∞. For instance, for P = 10 the
noisy phase extends to T < 1 for κ∞ = 20 (Figure 3B) and
the oscillatory region is small, whereas for κ∞ = 60 (Figure 3J)
there is a combination of stable SG-like states and oscillations
for α,T < 1. Finally for κ∞ = 40 (Figure 3F) the oscillatory
phase is most robust. Consequently, the absence of dynamical
memories in the system could be associated with a defect of the
pruning process that causes κ∞ to be greater than usual, and
could be therefore associated with ASD. Interestingly, it has been
recently reported that short-term memory and episodic memory
are impaired in ASD subjects (Poirier et al., 2011; Lind et al.,
2014), which is consistent with our findings here since, in order
to be able to recall a sequence of memories, it is first necessary
to destabilize the already recalled ones so as to allow the system
to remember new ones. On the other hand, schizophrenia is
typically associated with erratic behavior (Loh et al., 2007), which
could be related to the high frequency memory oscillations found
here for smaller values of κ∞.

3.3. Emergence of Hubs
The appearance of hubs and heterogeneity plays a significant role
in the emergent dynamics of the system. In particular, with a
given level of noise (T > 0), the topological structure of the
network determines whether the system relaxes to a memory
state, wanders among different patterns or falls into a noisy state.
Therefore, here we discuss in more detail the emergence of hubs
during the network evolution and their effect on the emergent
state of the system.

We first notice that, according to the previous analysis,
for α < 1 networks are homogeneous, as evidenced by
the homogeneous degree distributions shown in the insets of
Figures 2A,B. This is also revealed by the high value of the
homogeneity parameter ḡ shown in Figures 1, 3 for α < 1,
indicating that the variance of ki is small. As a consequence,
no real hubs can be defined, since all nodes have similar low
degree (given that κ∞ ≪ N, so that the connectivity of the
nodes is bounded). On the contrary, for α > 1 and in the
case of memory, networks are heterogeneous as evidenced by
ḡ → 0 (black regions in the corresponding diagrams ḡ(α, P) and
ḡ(α,T) respectively in Figures 1, 3). This indicates that there are
nodes with very different degrees and, in particular, the degree

distribution p(k, t) is bimodal and it splits in two, as shown in the
insets of Figure 2C,D, with the emergence of hubs. Therefore,
one can set the connectivity threshold kth—that defines the
minimum node’s degree to characterize it as a hub—at the value
of k at which p(k, t → ∞) presents a local minimum between the
two modes. This establishes a clear separation between high and
low degree nodes. In particular, in all cases studied here, we find
that a threshold kth = 2κ∞ also suffices to differentiate between
homogeneous and heterogeneous structures, since for α < 1
(homogeneous case) the maximum degree of a network is always
below 2κ∞.

Interestingly, due to the underlying stochastic rewiring
process and to the system’s finite size, there is always some
variability in the degrees of the nodes and, particularly in the
region of oscillatory behavior, there is a relative increase in
the variability of ki with respect to the SG phase (as evidence
by a decreased ḡ in the corresponding diagrams of Figure 3).
We argue that this is due to the intrinsic coupling between
activity and topology, and to the combination of thermal (since
T > 0), topological (due to the ongoing rewiring process) and
quenched (due to the learning of different patterns) disorder in
the system. In the region of oscillatory behavior, the instability
of the memories influences the synaptic currents Ii creating
variability, thus causing the observed increased heterogeneity.
This causes the emergence of relatively-high degree nodes that
correspond to the tail of the homogeneous distribution p(k, t →
∞) and which might have an important effect on the system.
Therefore, in order to explore as well the dynamics of these
relatively-high degree nodes, we have selected a lower threshold,
kth = 1.75κ∞, for the analysis of hub dynamics.

Hubs (and relatively-high degree nodes for the homogeneous
case) dynamics is investigated in Figure 5, where we compare two
different cases for P = 5 and κ∞ = 20. The first one, shown in
Figures 5A,B, corresponds to the region of oscillatory behavior
for homogeneous networks (α < 1) and it is for T = 0.7 and
α = 0.3, corresponding to the bottom-left graph of Figure 4A.
The second one, shown in Figures 4C,D, corresponds to the
heterogeneous-memory phase for α > 1, and it is for T = 0.3
and α = 1.1, corresponding to the top-left graph of Figure 4A.
In particular, we analyze in Figures 4A,C the temporal evolution
of the system as given by the overlap mµ(t), the homogeneity
g(t) and the hub raster plots, where we represent the existing
hubs at each time t, in different colors according to their active
or inactive state (respectively pink and green). Furthermore, in
Figures 4B,D we show the degree-dependent overlap mµ(k, t0)
[defined in Equation (8)] and the degree histogram N(k, t0) =

Np(k, t0), for a particular time, t0 = 5 · 106MCS, corresponding
to the systems respectively depicted in Figures 4A,C.

We observe, for α > 1 (Figure 5C), that a great number of
hubs emerge in the system, and that almost all hubs correspond
to the active nodes of the retrieved pattern. Moreover, in this
case mµ(k, t0) of the recovered pattern µ is larger for high-
degree nodes (Figure 5D), indicating that they contribute most
to the overlap mµ(t0). On the contrary, for the non-recovered
patterns ν, mν(k, t0) remains small for all k. On the other hand,
for α < 1, no real hubs emerge and only transient relatively-
high degree nodes are observed in Figure 5A. These do not
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FIGURE 5 | Emergence and effect of hubs in the system. (A,C) Show the temporal evolution of the system in two representative cases of the dynamics for P = 5 and

κ∞ = 20, corresponding to the emergent oscillatory behavior for T = 0.7 and α = 0.3 (A) and to the heterogeneous memory phase for T = 1.1 and α = 1.1 (C). In

these panels, the top plots represent mµ(t), the middle ones the homogeneity parameter g(t), and finally the bottom ones show the existing hubs in the network at

each time t, where active and inactive hubs are plotted in different colors (respectively, pink and green). (B,D) Show a snap-shot of the state of the system in (A,C),

respectively, at time t0 = 5 · 105, as represented by the degree-dependent overlap mµ(k, t0) and the number of nodes with degree k, N(k, t0) = Np(k, t0). Results are

for N = 1, 600.

only correspond to the recovered patterns but are scattered
throughout the network, and no significant correlation can
be measured between the pattern oscillations and the hubs
dynamics. This causes instabilities that ultimately lead to the
oscillatory behavior (see Figure 5B, indicating that relatively
high-degree nodes contribute more to mµ(k, t) of the recovered
patterns but not only).

In summary, Figure 5 shows that for α > 1 there are active
hubs in the system that correspond to the recovered pattern,
making it stable. On the other hand, for α < 1 no real
hubs can emerge in the system, and the transient relatively-
high degree nodes are scattered throughout the network, not
only corresponding to the recovered pattern, thus inducing the
observed oscillatory behavior.

3.4. Analysis of the Oscillatory Behavior
In the previous sections we have shown the emergence of
oscillations for α < 1 and T > 0 and their relation to
the existence of transient relatively-high degree nodes on the
network. Here, we develop further on the structure and patterns
of these oscillations. For simplicity, we focus on the case of
κ∞ = 20 and P = 5 as before, and in Figure 6 we show a long
time series corresponding to this oscillatory phase (T = 0.7 and
α = 0.3 as in the top graph of Figure 4A and in Figure 5A).
Plots of the active-overlap parameter mµ

1 (t) (Figure 6A) defined
in Equation (9), its binearized versionm

µ
B (t) (Figure 6B) and the

global memory state parameter ds(t) defined in Equation (10)
(Figure 6C) indicate that the state of the system corresponds to
oscillations between SG-like states in which either 2 or 3 patterns
are transiently retrieved. These plots also evidence that the
oscillations do not follow any clear periodic or regular pattern.

In order to analyze the pattern of oscillations, we show the
power spectra of mµ

B (t), Sµ(f ), and of ds(t), Ss(f ), in Figure 6F,
which displays a power-law decay with an exponent equal to
−0.9, indicating that there is not a dominant frequency of the
oscillations, but that jumps between different patterns occur
at all time scales. This is in accordance with previous studies
that have repeatedly reported 1/f -type noise in brain activity
under healthy conditions. It has been reported, for instance, in
electroencephalogram (EEG) and functional magnetic resonance
(fMRI) measures of human brain activity (Linkenkaer-Hansen
et al., 2001; Voytek et al., 2015) and also in behavioral processes
related to human cognition and motion as well as animal motion
(Chialvo, 2010). 1/f noise indicates the existence of temporal
correlations within the data, and has been related to emerging
self-organized criticality in the brain (Chialvo, 2010).

Moreover, we also investigate the frequency of appearance
of each global state, as seen in Figure 6E, which indicates
that global states have different probabilities of occurrence in
each realization of the system. However, when averaged over
realizations, the mean probability of each state, p̄s, converges to
a uniform distribution p̄s → 1/Ns, where Ns = 20 is the total
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FIGURE 6 | Analysis of the oscillatory behavior of the system in a representative point (T = 0.7, α = 0.3, P = 5, κ∞ = 20). (A–C) Show the temporal evolution of the

system as given by the retrieved patterns at each time, m
µ
1 (t) (A), the binearized variable m

µ
B
(t) indicating whether each pattern is active or not (B), and finally the

global memory state ds(t) (C) as defined in the text, for a total time of 107 MCS. These show that the system wanders through the different attractors without a

periodic order. (D) Shows the power spectra of m
µ
B
(t), Sµ(f ), and of ds(t), Ss(f ), indicating a power-law scaling of Sµ(f ) and Ss(f ) with an exponent of −0.9. Finally, (E)

shows the probability of appearance of each global state, evidencing that only 2− and 3−pattern SG states are recovered, and (F) shows the transition matrix of

global states, that is, the probability of jumping (times 10−3) from a given global state s to another s′. Results are for N = 1, 600, and have been averaged over 20

realizations of the system in (D,F).

number of possible 2− and 3−pattern states (p̄s = 0.054(3) when
averaged over 20 realizations). Similarly, individual patterns may
have different probability of appearance, pµ, in each realization of
the dynamics, but when averaged over realizations p̄µ converges
to 1/P [p̄µ = 0.21(1)]. Finally, we also computed the transition
matrix between global SG-like states (Figure 6F) which indicates
that, in a given realization of the system, some transitions are
preferred by the system depending on the emergent coupling
between activity and topology.

In summary, these results show that the oscillations are
not periodic, but occur at all time scales, and that all SG-
like states are visited in a non-periodic order. Interestingly
however, in a given realization of the system not all transitions
are allowed, but only some of them occur. It could be
interesting to analyze in more detail in further studies
whether the coupling between structure and activity induces
a particular pattern of oscillations, and how the scaling
of the frequency of oscillations depends on the parameters
of model.

4. DISCUSSION

We report here on recent studies of the emergent behavior
of developing brain models in which structure and function
cooperate and influence each other through a feedback loop,
thus affecting the system’s memory storage and retrieval abilities.
This is a prominent example of how inter-synaptic factors at
the network level can affect the processing of information in
developing brains in a nontrivial way. In particular, our study
focuses on the analysis of the conditions under which such
feedback loop can enhance the storage and retrieval of a set
of correlated patterns. Our work also pays attention to the
emerging dynamics of the system, which is a consequence of
the interplay between structural, quenched, and thermal disorder
during its maturation. The results presented here demonstrate
that a heterogeneous network can greatly improve the stability
of the memory patterns, since its structure is optimized to
preserve information about them in the network hubs which,
as we have shown, correspond to the active neurons of the
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retrieved memories during the recall process. Moreover, due to
the structural plasticity, once a pattern is retrieved, the ability
of the system to recall it again increases thanks to pruning
optimization. This illustrates the constructive role of synaptic
pruning to consolidate memories in the “memory phase” of
the system.

Our study also shows that the interplay between thermal
noise, the interference among stored patterns and the dynamics
driving the evolution of the topology creates instabilities on the
memory attractors, which can make the system wander among
different configurations for certain values of the parameters. In
our model, these oscillations among stored patterns are caused
by the topological synaptic plasticity due to the death and birth
of synapses, which change the energy landscape of the system. In
fact, in the absence of this rewiring process, this oscillatory phase
is not present and the model would reduce to an Amari-Hopfield
model on top of a non-trivial fixed topology. This has been shown
to present the same phases as the canonical fully connected
version of the model, with transition lines that depend on the
topology, so that for instance the critical temperature diverges,
Tc → ∞ as N → ∞, due to the presence of hubs that retain
pattern information. Interestingly, in our model the oscillatory
behavior that takes place on the homogeneous networks phase
of the system is also associated with an increased transient
heterogeneity of the underlying structure, in which transient
relatively-high degree nodes (whose degree is however smaller
than typical hubs) emerge and disappear in time. Moreover,
these relatively-high degree nodes do not correspond in general
to the active nodes of the transiently recovered patterns, but
appear distributed throughout the whole network, corresponding
also to active nodes of the rest of non retrieved patterns. This
creates a non-trivial time-dependent competition among the
different patterns which, together with the subsequent removal
of some synapses during brain development, can make the
currently recalled attractor less stable, thus inducing the observed
wandering among the memories.

We have also analyzed the characteristics of the oscillations
and shown that the oscillatory pattern is not periodic but
presents a power spectrum following a power law scaling decay
with an exponent of −0.9, so there are not any preferred
frequencies. This in accordance with previous studies repeatedly
reporting 1/f noise in brain activity under healthy conditions
(Linkenkaer-Hansen et al., 2001; Voytek et al., 2015) and also
in behavioral processes (Chialvo, 2010), which is related to
the existence of temporal correlations within the data, and has
been related to emerging self-organized criticality (SOC) in the
brain (Chialvo, 2010).

Interestingly, the appearance of an oscillatory phase
characterized by dynamical memories could be useful to enhance
the learning and recalling of sequences of patterns of activity,
as in episodic memories, without the necessity of any external
input or current forcing the retrieval of the memories in the
sequence. This type of oscillations has already been reported
for brain models with synapses enduring short-term synaptic
plasticity (STP) (Pantic et al., 2002; Cortés et al., 2006; Marro
et al., 2007; Torres et al., 2007, 2008). This occurs at the synapse
level and depends on the activity of the pre-synaptic neuron
(which therefore depends closely on the synaptic current Ii

used in our model Amit, 1989). However, STP is caused by
biophysical mechanisms controlling the release and recycling of
neurotransmitters at the synapses during synaptic transmission
and operates at short time scales of the order ofms (Tsodyks and
Markram, 1997). The activity dependent topological plasticity
reported here, however, is the result of the interplay between
form and function in a developing brain, and the ongoing
synaptic rewiring in mature brains, which happens at the
time scale of hours or days (Holtmaat and Svoboda, 2009).
Moreover, topological plasticity allows the system to explore
more efficiently its dynamical phase space and it has been shown
to improve the capacity of neural networks by allowing them
to organize in a more efficient structure. Both mechanisms
could happen at the same time in actual systems, together with
neuron level phenomena such as spike adaptation (Knoblauch
and Palm, 2002; Ha and Cheong, 2017). We hypothesize that the
combination of these mechanisms could lead to the extension of
the oscillatory behavior to other regions of the phase diagram,
although results would strongly depend on the relative time
scale between structural plasticity and STP, and it could be an
interesting approach for future works.

It is also worth noting that the reported oscillations in our
system are for the overlap function that is a measure of the
activity of the whole neuron population during memory recall
processes. These occur in actual neural systems at a long time
scale—normally days or even years—as it is the case in our
model. Temporal changes at the single neuron level appear in
our system as high frequency fluctuations in the time dependent
value of the overlap parameter. If the level of stochasticity is low
(low T) and the network size is large enough (N ≫ 1), such
single neuron fluctuations are very unlike to be significant on
mµ(t). In any case, the model output could be easily tuned up
to obtain faster of slower oscillations in the overlap function to
match more realistically actual experiments during learning and
recalling. This could be done by varying some model parameters
to make the recall process more or less efficient in time, or to
allow the system to recall dynamic memories—such as episodic
memories—that are learned and recalled at different stimuli
input frequencies.

We have analyzed in detail how the dynamical behavior of
the system depends on the synaptic factors affecting the addition
and removal of synapses and on the number of stored patterns.
In particular, the stationary mean connectivity of the network,
κ∞, has been shown to have a great effect on the emergent
behavior of the system. For instance, we have found that the
absence of dynamical memories in the system, or the presence
of memory oscillations with long periods, is associated with a
defect of the pruning process. Similarly, we have shown that
high frequency oscillations among patterns and more tendency
to noisy behavior occur when there is a pruning excess. In
particular, the destabilization of recovered memories is necessary
for instance to recall a sequence of memories, each during a short
period of time, so as to allow the system to remember new ones.
One may argue that the induced instability and the associated
oscillatory behavior observed in our system could be positive for
information processing, since it would allow neuronal media to
explore different memories or attractors, for instance following
hetero-clinic orbits, and consequently, to process more complex
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information, such as spatio-temporal patterns of information (see
Rabinovich et al., 2006 and references therein). Such emergent
behavior could also be useful to respond more efficiently to
changing external stimuli, as in episodic memory tasks, as it has
been widely stated in previous works in different neural systems
(Cortés et al., 2006; Marro et al., 2008; Torres et al., 2008).

The different emergent behavior in the model with varying
connectivity could perhaps be associated with cognitive abilities
related to autism spectrum disorders (ASD) and schizophrenia.
In the former, a pruning defect has been observed in some
brain areas (Tang et al., 2014), and it has recently been reported
that short-term memory and episodic memory are impaired in
ASD subjects (Poirier et al., 2011; Lind et al., 2014). Our results
are consistent with these observations since, if the brain is less
pruned, the mean connectivity of the corresponding network is
higher, thus making the memory attractors more stable. This
implies a lower ability of the brain to remember sequences of
patterns as described in episodic memory tasks in ASD patients
because it is harder for the brain to forget the already recalled
pattern due to its strong stability. Results in our model indicate
that a lightly pruned brain could be forced out of the memory
phase into an oscillatory regimewith an increase in the number of
stored patterns (see Figure 3). These observations might provide
an interesting insight for experimental psychologists to design
a cognitive strategy or therapy to learn and recall sequences of
patterns, that might improve the cognitive abilities of patients
with ASD. On the other hand, we have demonstrated that high
frequency oscillations among patterns occur when there is a
pruning excess, and this could be perhaps associated with the
erratic behavior observed in schizophrenia (Loh et al., 2007), in
which case the brain seems to present some areas with an excess
of pruning (Sekar et al., 2016). In this case our results here suggest
that a learning therapy based on increasing the number of stored
memories would not be useful but may in fact be detrimental,
as it would make the memory activity patterns more unstable.
A learning therapy that moves the patient brain state near to its
stable memory phase, for instance, by stabilizing a few old useful
memories, could therefore be more convenient.

Finally, we note also that some drastic assumptions have been
made in order to simplify the relevant scenario. Firstly, our study
is for sparse correlated patterns, as suggested by experimental
studies (Chklovskii et al., 2004; Akam and Kullmann, 2014),
which are also known to improve the memory retrieval
capabilities of the network (Knoblauch et al., 2014; Knoblauch
and Sommer, 2016) and particularly so in the case of highly sparse
and heterogeneous networks (Morelli et al., 2004). Moreover,
we have selected the patterns of activity to be non-overlapping
regions of activity, following previous works (Torres and Marro,
2015). This set up corresponds to a particular case that allows
for a better visualization of the network dynamics and that has
proven out to be useful to investigate the interplay between
structure and dynamics, i.e., between form and function, together
with the presence of thermal and quenched disorder, on a
developing neural network. Similarly, results are for the low
storage regime of the neural network, P ≪ N, what allows us to
study in detail the dynamical behavior of the system that gives
rise to memory wandering. However, given that our qualitative

results depend little on P for P > 20, we expect them to hold
when P is increased.

Further extensions of this work could also include the
consideration of different details of the synaptic pruning process,
including for instance the growth of synapses taking place after
birth (Millán et al., 2018b), multiple synaptic contacts between
neurons (Knoblauch et al., 2014; Knoblauch and Sommer,
2016), or a hard bound on the maximum degree of the nodes
(Stepanyants et al., 2002; Fares and Stepanyants, 2009).Moreover,
more elaborated definitions of the probabilities of growth and
death of synapses (Equations 16 and 18) could also be considered,
such as a mechanism of self-organization toward the stationary
mean connectivity (Chechik et al., 1999; de Arcangelis et al.,
2006; Lewis and Todd, 2007; Tetzlaff et al., 2010) or by explicitly
including a dynamics for the available nutrients (Tetzlaff et al.,
2010). However these definitions would still need to reproduce
the basic characteristics of brain development and synaptic
pruning, that is, an initial fast decay of connectivity and an
ongoing rewiring of edges after the stationary mean connectivity
has been reached. We expect that our main results (existence of
a feed-back loop between structure and activity, bistability, and
emergence of oscillations) would still hold, at least qualitatively,
with these modifications, in accordance with previous studies
(Millán et al., 2018b). Similarly, the local probabilities in Equation
(16) could also consider more detailed functions, to characterize
for instance a specific dependence on the concentration of
different proteins and growth factors controlling synaptic
growth. These could be obtained experimentally, although to
the best of our knowledge it has not yet been done. Our work
could thus motivate neurobiologists to design experiments to
describe the exact probabilities involved in synaptogenesis and
pruning, information that could be easily incorporated in our
theoretical framework. Similarly, it could also be particularly
interesting to include a learning dynamics that is also coupled
to the development of the neural network, thus modeling
learning during infancy, or to include an external current
on the system, that could certainly be time dependent, to
analyze the effect of external inputs on associative memory and
memory wandering.
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