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Brain models music as a hierarchy of dynamical systems that encode probability

distributions and complexity (i.e., entropy and uncertainty). Through musical experience

over lifetime, a human is intrinsically motivated in optimizing the internalized probabilistic

model for efficient information processing and the uncertainty resolution, which has

been regarded as rewords. Human’s behavior, however, appears to be not necessarily

directing to efficiency but sometimes act inefficiently in order to explore a maximum

rewards of uncertainty resolution. Previous studies suggest that the drive for novelty

seeking behavior (high uncertain phenomenon) reflects human’s curiosity, and that the

curiosity rewards encourage humans to create and learn new regularities. That is to

say, although brain generally minimizes uncertainty of music structure, we sometimes

derive pleasure from music with uncertain structure due to curiosity for novelty seeking

behavior by which we anticipate the resolution of uncertainty. Few studies, however,

investigated how curiosity for uncertain and novelty seeking behavior modulates musical

creativity. The present study investigated how the probabilistic model and the uncertainty

in music fluctuate over a composer’s lifetime (all of the 32 piano sonatas by Ludwig van

Beethoven). In the late periods of the composer’s lifetime, the transitional probabilities

(TPs) of sequential patterns that ubiquitously appear in all of his music (familiar phrase)

were decreased, whereas the uncertainties of the whole structure were increased.

Furthermore, these findings were prominent in higher-, rather than lower-, order models of

TP distribution. This may suggest that the higher-order probabilistic model is susceptible

to experience and psychological phenomena over the composer’s lifetime. The present

study first suggested the fluctuation of uncertainty of musical structure over a composer’s

lifetime. It is suggested that human’s curiosity for uncertain and novelty seeking behavior

may modulate optimization and creativity in human’s brain.
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INTRODUCTION

Statistical Learning and Uncertainty in
the Brain
The brain models external phenomena as a hierarchy of
dynamical systems that encode probability distributions
and complexity (i.e., entropy and uncertainty) over states
in the world. Based on the internalized hidden model,
it can predict a future state and optimize behavior and
action to resolve the uncertainty (Friston, 2010). Within
predictive-coding framework, this behavior mandates the
suppression of prediction errors (prediction of content)
and uncertainty (prediction of the context or precision of
predictability and uncertainty) through updating internal
model that generates predictions and the belief (Kanai et al.,
2015). It has been considered that aesthetic appreciation of
music can be modulated by these brain function: Through
musical experience over lifetime, a human is intrinsically
motivated in optimizing the internalized probabilistic model
for efficient information processing and the uncertainty
resolution, which has been regarded as rewords. For example,
previous studies demonstrated that the precise prediction
(Przysinda et al., 2017) and uncertainty perception (Hansen
and Pearce, 2014) in music is stronger in proficient musicians
than non-musicians.

This generative model could cover statistical learning (SL)
theory of brain (Saffran et al., 1996; Cleeremans et al., 1998;
Perruchet and Pacton, 2006). The SL is an implicit process
by which the brain automatically calculates the statistical
distribution of sequential phenomena based on Bayesian
inference (Daikoku et al., 2012, 2014, 2016, 2017a, 2018; Yumoto
and Daikoku, 2016; Daikoku and Yumoto, 2017), grasps the
uncertainty (Hasson, 2017), predicts a future state based on
the internal statistical model, and optimize action for achieving
a given goal (Monroy et al., 2017a,b). By SL, generation of
culture (Feher et al., 2016), individuality of creativity (Daikoku,
2018b) can be originated. Although brain tries to realize
valuable behaviors at the lowest possible informational cost
and uncertainty, it also seeks slightly suboptimal solution if
the solution can be afforded at a significantly low uncertainty
(Tishby and Polani, 2011). In other words, human’s behavior
appears to be not necessarily directing to efficiency but
sometimes act unefficiently to explore a maximum rewards of
uncertainty resolution. Previous studies suggest that the drive for
novelty seeking behavior (high uncertain phenomenon) reflects
human’s curiosity and that the curiosity rewards encourage
humans to create and learn new regularities (Kagan, 1972;
Wittmann et al., 2008; Krebs et al., 2009; Schwartenbeck
et al., 2013). Furthermore, a certain degree of uncertainty
generates excitement and pleasure (Shen et al., 2015) because we
explore a maximum curiosity rewards. Although brain generally
minimizes prediction errors and uncertainty (Friston, 2010),
we sometimes derive pleasure from prediction errors under
conditions such as enjoying music listening due to curiosity and
motivation for novelty seeking behavior by which we anticipate
the resolution of uncertainty. Some literatures propose the
hypothesis that the recurrent resolution of uncertainty activates

reward networks that underwrite pleasure induced by listening
to music (Koelsch, 2014; Salimpoor et al., 2015). It has been
suggested that creativity can be explained as by-products of
such intrinsic curiosity rewards (Schmidhuber, 2006). That is,
human seems to look for some forms of optimality between
uncertain and certain situations through action by which we are
expected a maximum curiosity rewards, and hence our action
gives rise to increasing as well as decreasing uncertainty. Recent
studies imply that the curiosity rewards encourage humans to
create and learn new regularities (Schmidhuber, 2006), and the
fluctuations in uncertainty of predictions could contribute to
aesthetic appreciation of art and music (Koelsch, 2014). Thus, it
is hypothesized that human’s intrinsic curiosity and motivation
may modulate optimization and efficiency of prediction and
action involved in SL. Recent computational studies on music
suggest that, from early to late periods in the composer’s
lifetime, the transitional probabilities (TPs) of familiar phrase
that ubiquitously appears in all of his music were gradually
decreased (Daikoku, 2018d). This suggests that the statistical
knowledge (Daikoku, 2018a) may be susceptible to long-term
experience that modulates brain’s probabilistic model (Hansen
and Pearce, 2014). A neurophysiological study also suggested
that sequences with higher entropy were learned based on
higher-order TP, whereas those with lower entropy were learned
based on lower-order TP (Daikoku et al., 2017b; Daikoku and
Yumoto, 2019). Another study suggested that certain regions
or networks perform specific computations of entropy (i.e.,
uncertainty), which are different fromTP (i.e., prediction) of each
content (Hasson, 2017). Thus, interaction between prediction
and uncertainty in perceptive systems is an important topic to
understand whole process of brain SL in both computational and
neurophysiological areas (Daikoku, 2018c; Yumoto andDaikoku,
2018). Nevertheless, to our knowledge, few study examined
relationships between SL, uncertainty and musical creativity
and how curiosity for uncertain and novelty seeking behavior
modulates musical creativity. The present study investigated how
the probabilistic model and the uncertainty in music fluctuate
over a composer’s lifetime (all of the 32 piano sonatas by Ludwig
van Beethoven).

Computational Model
The computational model and simulation have been used
to understand SL systems (e.g., Pearce and Wiggins, 2012;
Rohrmeier and Rebuschat, 2012; Daikoku, 2018a; Wiggins, 2018;
Daikoku and Yumoto, 2019). Although experimental approaches
are necessary for understanding the real-world brain’s function,
the modeling approaches partially outperform experimental
results under conditions that are impossible to replicate in
an experimental approach (e.g., long-term statistical variation
over the decades within a person and across cultures) and
serves an important dual role in providing a quantitative
account of observed empirical effects and in generating novel
predictions to guide empirical research (e.g., Elman, 1990;
Thiessen et al., 2013; Carreiras et al., 2014). Computational
modeling can also express the relevant neural networks and
neural hardware of sensory cortices (Turk-browne et al., 2009;
Roux and Uhlhaas, 2014). For example, simple recurrent
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network (SRN), which is classified as a neural network and
was firstly devised by Elmer Elman (1990), learns sequential
co-occurrence statistics by error-driven learning in which the
gap between the prediction of a next input and the actual
input drives changes to the weights on its internal connections.
The SRN (Rogers and McClelland, 2004) and a modified SRN
(Altmann, 1999; Dienes et al., 1999) implement a similarity
space in which words referring to similar objects or actions
were located more closely to one another than to words
referring to dissimilar objects or actions. The neural network
and deep learning such as Long-Short Term Memory (LSTM)
(Hochreiter and Urgen Schmidhuber, 1997), on the other hand,
is not intended to be a model of the relationship between
human episodic and semantic memory although they proceed
in this direction. Corpus-based approaches such as hyperspace
analog to language (HAL) (Lund and Burgess, 1996), bound
encoding of the aggregate language environment (BEAGLE)
(Jones and Mewhort, 2007), Latent Semantic Analysis (LSA)
(Landauer and Dumais, 1997) are based on abstraction of
episodic memory of input information and encoding in a
multidimensional semantic space as semantic memory. Their
models could also generate semantic similarity spaces in the
similar way. For instance, when a verb of “drink” occurs, the
models predict subsequent words that can be drunken. PARSER
(Perruchet and Vinter, 1998), Competitive Chunker (Servan-
Schreiber and Anderson, 1990), Information Dynamics of Music
(IDyOM) (Pearce and Wiggins, 2012), Information Dynamics
of Thinking (IDyOT) (Wiggins, 2018), and other Markovian
models including the n-gram and nth-order Markov models
(Daikoku, 2018b), can implement chunking hypotheses that
learning is based on extracting, storing, and combining small
chunks. Particularly, information-theoretical models including
Markovian processes have been applied to neurophysiological
studies of SL in human brain as well as computational simulation
(Pearce et al., 2010a; Pearce and Wiggins, 2012; Daikoku
et al., 2014, 2016, 2017a, 2018; Yumoto and Daikoku, 2016,
2018; Daikoku and Yumoto, 2017; Daikoku, 2018c). These
neurophysiological experiments showed consistent evidence:
neural activities for stimuli with high information content (i.e.,
low probability) are larger than those with low information
content (i.e., high probability). Furthermore, these SL effects
were larger when humans are exposed stimulus sequence with
less information entropy (uncertainty), compared with when
they are exposed stimulus sequence with high information
entropy (Daikoku et al., 2017c). The mutual information of
information theory, which has been assumed as the reduction
of uncertainty afforded by observations (see section Mutual
Information of nth-order SL model), is also correlated with
neuronal activity in limbic cortex (Harrison et al., 2006). This
neural phenomenon is in agreement with a Bayesian hypothesis
in theoretical neurobiology that the brain encodes probabilities
(beliefs) about the causes of sensory data, and that these beliefs
are updated in response to new sensory evidence based on
Bayesian inference (Kersten et al., 2004; Knill and Pouget, 2004;
Doya et al., 2007; Friston, 2010; O’Reilly et al., 2012; Parr and
Friston, 2018; Parr et al., 2018). Formulations of self-organization
(Karl Friston, 2013; Kirchhoff et al., 2018) and brain connectivity

(Parr and Friston, 2018) are also expressed using an information-
theoretical concept called Markov blankets (Pearl, 1988). The
blanket of a state is the only knowledge necessary to predict
the behavior of that state and the adjacent state. If we know
everything within a blanket, knowledge about things outside
the blanket becomes uninformative about things inside the
blanket. For example, Parr and Friston (2018) hypothesized that a
neuronal population reflecting a given variable only need receive
connections from those populations representing its blanket and
explained this notion from perception, planning, attention, and
movement. The Markov blanket may also represent in part
chunk formation although it’s not sufficient. Markov decision
process (MDP) (Schwartenbeck et al., 2013; Karl Friston et al.,
2014, 2015; Pezzulo et al., 2015), which has often been used
for reinforcement learning in AI and robotics, extends the
simple perceptive process by adding active process (controlling
predictability by choice, called “policy”) and “rewards” (giving
motivation). The IDyOM is also an extension of Markov model
to precisely modeling SL of musical sequence combining several
concomitant information such as pitch, duration, onset, scale
degree, and so on. The SL based on IDyOM could also be
reflected in neurophysiological responses within the predictive-
coding framework (Pearce et al., 2010b). The IDyOT also takes
advantage of information theory to represent domain-general
SL mechanisms that cover both language and music (Wiggins,
2018). Particularly, this model implements semantic and episodic
memory systems, and captures hierarchical SL process from
lower- to higher-level using boundary entropy: spectrum of
auditory sequence is chunked into phonemes, then morphemes,
then words (Wiggins, in press). In summary, information-
theoretical models including Markovian processes can capture
a variety of neurophysiological phenomena on SL such as
prediction, uncertainty, a part of chunk formation, and policy of
action, across domains, and modality.

A previous study reported that SL effects based on TPs
occurs action as well as perception (Monroy et al., 2017c). This
suggests that SL also contributes production of sequences. In
other words, from psychological perspective, TP distribution
sampled from music based on Markov models may also refer
to the characteristics of a composer’s statistical knowledge:
a high-probability transition in music may be one that a
composer is more likely to predict and choose based on the
latest n states, compared to a low-probability transition. Thus,
the Markov model is used in the interdisciplinary realms of
neuroscience, behavioral science, engineering, and informatics.
A computational study using nth-order Markov or n-gram
models suggested that time-course variations of statistics in
music reflect time-course variations of a composer’s statistical
knowledge (Daikoku, 2018d). Neurophysiological studies also
suggested that time-course variations of statistics of auditory
sequence modulate SL effects (Daikoku et al., 2017c) and
that the SL effects of sequences with higher entropy were
lower than those with lower entropy, even when TP itself is
same between these two sequences (Daikoku et al., 2017c).
These studies suggest that time-course variations of TPs and
entropy may partially be able to predict the SL model in
human’s brain.
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FIGURE 1 | Relationship between order of transitional probabilities, conditional entropy, and mutual information illustrated using a Venn diagram. The degree of

dependence on Xi for Xi+1 is measured by mutual information [mutual information (I(X;Y)] = entropy (H(Xi+1))–conditional entropy (H(Xi+1 |Xi ))]. The mutual information

of sequences in this figure is more than 0. Thus, each event Xi+1 in the sequence is dependent on a preceding event Xi .

Mathematical Interpretation of Brain’s
Statistical Learning Based on
Information Theory
Nth-Order Transitional Probability
According to SL theory, the brain automatically computes both
lower- and higher-order TPs in sequences (Furl et al., 2011;
Yumoto and Daikoku, 2016, 2018, grasps uncertainty/entropy
in the whole sequences Hasson, 2017, and predicts a future
state based on the internalized statistical model Friston, 2010.
The TP is a conditional probability of an event B given that
the latest event A has occurred, written as P(B|A). The nth-
order TP distributions sampled from sequential information such
as music and language can be expressed by nth-order Markov
models. The nth-orderMarkovmodel is based on the conditional
probability of an event en+1, given the preceding n events based
on Bayes’ theorem (P(en+1|en)). From psychological perspective,
the conditional probability (P(en+1|en)) can be interpreted as
positing that the brain predicts a subsequent event en+1 based
on the preceding events en in a sequence. In other words,
learners expect the event with the highest TP based on the
latest n states, whereas they are likely to be surprised by an
event with lower TP. Furthermore, TPs are often translated
as information contents (IC) (–log21/P(en+1|en)) of information
theory (Pearce andWiggins, 2006). The lower IC (i.e., higher TPs)
means higher predictabilities and smaller surprising, whereas
the higher IC (i.e., lower TPs) means lower predictabilities and
larger surprising. In the end, a tone with lower IC may be

one that a composer is more likely to predict and choose as
a next tone, compared to tones with higher IC. IC can be
used in computational studies of music to discuss psychological
phenomena involved in prediction and SL.

Entropy and Uncertainty
Entropy as well as TP of each event is used to understand
predictability of a sequence (Pearce, 2005). Entropy (e.g.,
see Figure 1) is calculated from probability distribution,
interpreted as uncertainty (Friston, 2010), and used to evaluate
neurophysiological effects of uncertainty in SL (Harrison et al.,
2006) and curiosity (Loewenstein, 1994). A previous study
reported that neural systems of uncertainty perception were
partially independent of those of prediction of each content
(Hasson, 2017). Some articles, however, suggest that uncertainty
modulates predictability of each content in SL (Daikoku et al.,
2017c). Furthermore, uncertainty of auditory and visual statistics
is coded by modality-general, as well as modality-specific, neural
systems (Strange et al., 2005; Nastase et al., 2014). This suggests
that the neural basis that codes uncertainty as well as prediction,
is a domain-general system. Thus, there seems to be neural
and psychological interactions of perceptions between prediction
and uncertainty.

Mutual Information of nth-order SL Model
Mutual information (MI) and pointwise Mutual information
(PMI) are a measure of the mutual dependence between the
two variables. The PMI refers to each event in sequence (local
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dependence), whereas MI refers to the average of all events
in the sequence (global dependence). In the framework of SL
based on TPs (P(en+1|en)), MI explains how an event en+1

is dependent on the preceding event en. Thus, MI is a key
to understanding order of SL. For instance, conventional
oddball sequence, which consists of a frequent stimulus with
high probability of appearance and a deviant stimulus with
low probability of appearance, has weak dependence between
two adjacent events (en, en+1) and shows low MI, because
event en+1 appears independently of preceding events en. In

contrast, SL sequence based on TPs, but not probabilities of
appearance, has strong dependence between two adjacent events
and shows larger MI. For example, typical SL paradigm that
consists of concatenation of pseudo-words with three stimuli
has large MI until 2nd-order Markov or tri-gram models [i.e.,
P(C|AB))], whereas it has low MI from 3rd-oder Markov or
four-gram models [i.e., P(D|ABC))]. Thus, MI is sometimes
used to evaluate hierarchical SL in both neurophysiological
and computational studies (Harrison et al., 2006;
Pearce et al., 2010b).

FIGURE 2 | Representative sequences of [0,−2,−3,−5,−7], [0,−2,−4,−5,−7], and [0,−1,−3,−5,−6] in Beethoven’s piano sonatas in the early period.
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In this section, the three types of information-theoretical
evaluation of SL models (i.e., IC, entropy, and MI) were
explained from psychological aspects. In sum, (1) IC reflects
surprising/predictability. A tone with lower IC (i.e., higher TPs)
may be one that a composer is more likely to predict and
choose as a next tone, compared to tones with higher IC.
(2) Entropy reflects uncertainty of whole sequences. (3) MI
reflects hierarchy of statistics and is interpreted as dependence
of preceding sequential events in SL. Using them, the present
study investigated how prediction, uncertainty, and the depth of
implicit knowledge in music vary over a composer’s lifetime (all
of the 32 piano sonatas by Ludwig van Beethoven).

Ludwig Van Beethoven’s Piano Sonata
The German composer and pianist Ludwig van Beethoven
(1770–1827) remains one of the most famous and influential of
all composers. It is believed that his music strongly expresses
the psychological variations and visions of his life (Sullivan,
1927; Boucourechliev, 1963). Beethoven’s compositional career
is often divided into the early (around 1802), middle (around
1802–1814), and late periods (from about 1814) (Dahlhaus,
1991; Adorno-Wiesengrund, 1993). It is generally thought that
his works in the early period were strongly influenced by his
predecessors in classicism, such as Wolfgang Amadeus Mozart
(1756–1792) and Franz Joseph Haydn (1732–1809), whereas
his works in the late period show his personal character and
experience (Sullivan, 1927) and accompanying intellectual depth
and personal expression (Dahlhaus, 1991; Adorno-Wiesengrund,
1993). Thus, his psychological variations on thinking and
experience may form the statistical characteristics of his music
that may reflect a composer’s statistical knowledge (Johnson
et al., 1985). It is believed that he always explored new
directions of musical composition and gradually expanded his
scope of music over his lifetime (Dahlhaus, 1991; Adorno-
Wiesengrund, 1993). Using Beethoven’s piano sonatas over his
lifetime, the present study examined time-course variations
of three types of statistics in music: TPs (ICs) of sequential
patterns that appear in all 32 sonatas, entropy of whole TP
distribution, and the MI. It was hypothesized that, because
of his exploration of new directions in musical composition
over his lifetime, TP of phrases that frequently appear
in the early period (i.e., sequences with high TP) might
decrease in the late period (i.e., decreasing TP), whereas
entropy might increase in the late period. It would be very
interesting if the psychological variations in which Beethoven
explored new directions and gradually expanded his scope of
music over his lifetime were reflected in the SL models of
his music.

METHODS

The Piano Sonata with all of its movements by Ludwig van
Beethoven (No.1 in F minor, Op.2-1 to No.32 in C minor,
Op.111, composed 1795–1822) was used in the present study.
Using a scorewriter (Finale version 25, MI Seven Japan, Inc.),
electronic scoring data of the sequences of highest pitch were
extracted from the XML files. The highest pitches were chosen

based on the following definitions: the highest pitches that
can be played at a given point in time, the pitches with slurs
can be counted as one, and the grace notes were excluded.
Although melody is sometimes not highest pitches e.g., bass
melodies), the present study only analyzed the highest pitch
because different melodies could concurrently appear in some
titles of music, and melody is often played in highest pitches.
Using all the sequences of highest pitches in a movement of a
Sonata, sequential patterns based on uni- to four-grams were
extracted. For each type of the sequential patterns, all pitches
were numbered so that the first pitch was 0 in each transition, and
an increase or decrease in a semitone was 1 and −1 based on the
first pitch, respectively. The representative examples were shown
in Figure 2. This revealed interval patterns but not pitch pattern.
This procedure was employed to eliminate the effects of the
change of key on transitional patterns. The interpretation of the
change of key depends on musicians, and it is difficult to define
in an objective manner. Thus, the results in the present study
may represent a variation of statistics associated with relative
pitch rather than absolute pitch. Then, the TPs of the sequential
patterns were calculated based on 0th- to 3rd-order Markov
chains. Furthermore, TPs of all the movements in each piece
of sonata (No.1 to No.32) were weighted averaged: an average
in which probability of each phrase is multiplied by a weight
before summing to a single average value. That is weightings
are the equivalent of having that many like items with the same
value involved in the average. The nth-order Markov chain is
the conditional probability of an event en+1, given the preceding
event en:

P (en+1|en) =
P(en+1 ∩ en)

P(en)
(1)

The ICs (I) and conditional entropy (H) in the nth-order TP
distribution (hereafter, Markov entropy) were calculated using
TPs in the framework of information theory:

I (en+1|en) = − log2 P (en+1|en) (bit) (2)

H (B|A) = −
∑

i

∑

j

P(ai)P
(

bj
∣

∣ai
)

log2 P
(

bj
∣

∣ai
)

(bit) (3)

where P(bj|ai) is a conditional probability of sequence “ai bj.”
Then, MI (I(X;Y)) were calculated in 1st-, 2nd-, and 3rd-order
Markov models. MI is an information theoretic measure of
dependency between two variables. From entropy values, the MI
can also be expressed as

I (X;Y) =
∑

x,y

p
(

x, y
)

log (
p(x, y)

p(x)p(y)
)

=
∑

x,y

p
(

x, y
)

log (
p(x, y)

p(x)
)−

∑

x,y

p
(

x, y
)

log p(y)

=
∑

x,y

p (x) p(y|x) log p(y|x)−
∑

x,y

log p
(

y
)

p(x, y)

=
∑

x

p (x)





∑

y

p
(

y
∣

∣x
)

log p
(

y
∣

∣x
)




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−
∑

y

log p(y)(
∑

x

p(x, y))

= −
∑

x

p (x)H (Y|X = x) −
∑

y

p
(

y
)

log p(y)

= −H (Y|X) + H (Y)

= H (Y) −H (Y|X)
(

bit
)

(4)

where p(x,y) is the joint probability function of X and Y, p(x),
and p(y) are the marginal probability distribution functions of X
and Y respectively, H(X) and H(Y) are the marginal entropies,
H(X|Y) and H(Y|X) are the conditional entropies, and H(X,Y)
is the joint entropy of X and Y (Figure 1) (Daikoku, 2018a).
Based on psychological and information-theoretical concepts,
the Equation (4) can be regarded that the amount of entropy
(uncertainty) remaining about Y after X is known. That is,
the MI is corresponding to reduction in entropy (uncertainty).
In each order of Markov models, the sequential patterns that
ubiquitously appear in all 32 sonatas (hereafter, familiar phrase)
were extracted. Then, TPs of the familiar phrases were averaged
(0th: 20 phrases, 1st: 37 phrases, 2nd: 12 phrases, and 3rd: 3
phrases) (Table 1). The 32 sonatas were divided based on the
well-known 3 periods: early (No.1 to 12, No19, and No20),
middle (No.13 to 18 and No. 21 to 27), and late (No. 28 to
32). Then, I conducted analysis of variances (ANOVAs) with a
within-subject factor order (0th vs. 1st vs. 2nd vs. 3rd) and a
between-subjects factor composition period of the sonatas (early
vs. middle vs. late) for the TPs of familiar phrases and entropy of
whole music, and an ANOVA with a within-subject factor order
(1st vs. 2nd vs. 3rd) and a between-subjects factor composition
period (early vs. middle vs. late) for the mutual information.
When we detected significant effects, Bonferroni-corrected post-
hoc tests were conducted for further analysis. Then, in each order
of Markov models, the TPs of familiar phrase and the uncertainty
of whole music were compared by Pearson’s correlation analysis.
Statistical significance levels were set at p= 0.05 for all analyses.

RESULTS

TPs of Familiar Phrases
In the TPs of familiar phrases, An ANOVA with a within-
subject factor order (0th vs. 1st vs. 2nd vs. 3rd) and a between-
subjects factor composition period (early vs. middle vs. late) was
conducted. As a result, the main effect of period was significant
[F(2, 29) = 6.02, p = 0.007, partialη2 = 0.29, early > late, p
= 0.005; middle > late, p = 0.032] (Figure 3D). The period-
order interaction was also significant [F(6) = 6.82, p < 0.001,
partialη2 = 0.32] (Figure 3A). The 3rd-order TPs in late period
were significantly lower than those in early (p < 0.001) and
middle periods (p = 0.003). That is to say, the 3rd-order TPs of
familiar phrases in the late period only decrease during lifetime.
The main effect of order was significant [F(3, 87) = 1108.35, p
< 0.001, partialη2 = 0.98]. The 0th-order TPs were significantly
lower than the 1st-, 2nd-, and 3rd-order TPs (all: p < 0.001). The
1st-order TPs were significantly lower than the 2nd-, 3rd-order
TPs (all: p < 0.001). The 2nd-order TPs were significantly lower
than the 3rd-order TPs (p= 0.007).

TABLE 1 | Sequential patterns that appear in all 32 sonatas (i.e., phrases) in each

order of Markov models.

Order Sequential patterns

0th [−2], [−1], [1], [0], [2], [−3], [3], [5],[−4],[4],[−5], [12], [−7], [7], [9],

[−12], [8], [−6], [6], [−9]

1st [1,1], [−1,2], [−1,−1], [1,−2], [0,1], [3,3], [0,2], [1,−4], [0,3], [0,5],

[1,−1], [−2,2], [−2,5]

2nd [−2,−4,−5], [0,0,0], [−1,−3,−5], [2,4,5], [−2,−3,−5], [1,3,5], [2,3,5],

[2,0,−1], [−2,−3,−2], [−1,0,2], [1,3,1], [−1,0,−1]

3rd [−2,−3,−5,−7], [−2,−4,−5,−7], [−1,−3,−5,−6]

Entropy and Uncertainty
In entropy of whole TP distribution, ANOVA with a within-
subject factor order and a between-subjects factor composition
period of sonatas was performed. The main effect of period was
significant [F(2,29) = 7.58, p = 0.002, partialη2 = 0.34, early <

middle, p = 0.005; early < late, p = 0.002] (Figure 3E). The
period-order interaction was also significant [F(6) = 6.68, p
< 0.001, partialη2 = 0.32] (Figure 3B). The entropies of 0th-
order TPs in late period were significantly lower than those in
the middle periods (p = 0.034). The entropies of 1st-order TPs
in late period were significantly higher than those in the early
(p = 0.004) and middle periods (p = 0.014). The entropies
of 2nd-order TPs in late period were significantly higher than
those in the early (p = 0.001) and middle periods (p < 0.001).
The entropies of 3rd-order TPs in late period were significantly
higher than those in the middle periods (p = 0.017). The main
effect of order was significant [F(1.73, 50.30) = 2329.84, p <

0.001, partialη2 = 0.99]. The entropies of 0th-order TPs were
significantly lower than the 1st-, 2nd-, and 3rd-order TPs (all:
p < 0.001). The entropies of 1st-order TPs were significantly
lower than the 2nd-, 3rd-order TPs (all: p< 0.001). The entropies
of 2nd-order TPs were significantly lower than the 3rd-order
TPs (p= 0.007).

Hierarchy of Statistics: Mutual Information
In the mutual information, an ANOVA with a within-subject
factor order and a between-subjects factor composition period
was conducted. Themain effect of period was significant [F(2, 29)
= 9.08, p= 0.001, partialη2 = 0.39, early> late, p= 0.020; middle
> late, p = 0.001] (Figure 3F). The period-order interaction
was also significant [F(4) = 2.80, p = 0.034, partialη2 = 0.16]
(Figure 3C). The mutual information of 1st- and 2nd-order TPs
in late period were significantly lower than those in the early (1st:
p = 0.004; 2nd: p = 0.012) and middle periods (1st: p < 0.001;
2nd: p < 0.001). The mutual information of 3rd-order TPs in late
period was significantly higher than those in the middle periods
(p = 0.008). The main effect of order was significant [F(1.32,38.16)
= 2350.56, p< 0.001, partialη 2 = 0.99]. The mutual information
of 1st-order TPs were significantly lower than the 2nd-, 3rd-order
TPs (all: p < 0.001). The 2nd-order TPs were significantly lower
than the 3rd-order TPs (p < 0.001).

DISCUSSION

Brain encodes probability distributions and the
entropy/uncertainty of musical information (Koelsch et al.,
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FIGURE 3 | The period-order interactions (A–C) and main effects of period (D–F) in the ANOVA of ICs and TPs of familiar phrases, conditional entropy of TP

distribution, and the depth of implicit knowledge (MI) in the early (opened bars), middle (filled bars), and late (dashed bars) periods. IC, information content; TP,

transitional probability; MI, mutual information.

2018) and mandates the suppression of prediction errors
and uncertainty by updating the internal probabilistic model
of music that generates predictions and the belief (Kanai
et al., 2015). In other words, through musical experience over
lifetime, a human generally tries to optimize the internalized
probabilistic model for efficient information processing and the
uncertainty resolution, which has been regarded as rewords.
On the other hand, to explore the maximum rewards of
uncertainty resolution, human’s behavior appears to be not
necessarily directing to efficiency, but sometimes be drove by
unefficient, uncertain, and novelty information, which is thought
as curiosity (Kagan, 1972; Wittmann et al., 2008; Krebs et al.,
2009; Schwartenbeck et al., 2013). Thus, although brain typically
minimizes uncertainty of music structure, we sometimes derive
pleasure from music with uncertain structure due to curiosity
for novelty-seeking behavior by which we anticipate further
rewords by uncertainty resolution. The present study, using all
the Beethoven’s piano sonatas over his lifetime, examined how
the probabilistic model and the uncertainty in music fluctuate
over a composer’s lifetime. The transitional probability and
information content (TP), information content (IC), conditional
entropy, and mutual information (MI) can be calculated based
on nth-order Markov models. Based on psychological and
neurophysiological studies on SL (Harrison et al., 2006; Pearce
et al., 2010b; de Zubicaray et al., 2013; Daikoku et al., 2015;
Monroy et al., 2017c), these three information can be translated
to psychological indices: a tone with lower IC (i.e., higher TPs)
may be one that a composer is more likely to choose as a next
tone, compared to tones with higher IC, whereas the entropy

and MI are interpreted as uncertainty and the order of the SL,
respectively. It was hypothesized that probability, uncertainty,
and the order of SL models is fluctuated over Beethoven’s
lifetime. If so, it may suggest that his curiosity for uncertain and
novelty seeking behavior modulate optimization and creativity
in human’s brain.

The TPs of familiar phrase (i.e., sequences that appear in
all 32 sonatas) were decreased in the late periods (Figure 3D),
whereas the entropies in music were increased in the late periods
(Figure 3E). In other words, there was no significant difference
between early and middle periods, while there was significant
difference between middle and late periods. Particularly, the 3rd-
order TPs in the late period decrease during lifetime (Figure 3A).
According to musicological studies, his works in the early
period were strongly influenced by his predecessors in classicism
whereas his works in the late period show his personal character
and experience (Sullivan, 1927). It is believed that he always
explored new directions of musical composition and gradually
expanded his scope of music over his lifetime (Dahlhaus, 1991;
Adorno-Wiesengrund, 1993). The findings of the present study
may suggest the hypothesis that the psychological variations
over lifetime are reflected in the statistical structure in music.
The decreasing of the TPs of familiar phrase and increasing of
the entropies may imply that, in the late period, he tried novel
composition strategies in which he avoided familiar sequences
in the early period, and tried various transitional patterns by
which nth-order TPs are broadly distributed. The previous
study detected time-course variation of predictability of familiar
phrases over his lifetime (Daikoku, 2018d). The present study,
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furthermore, suggested that there seems to be interactions
between prediction and uncertainty.

The decreasing of TPs of familiar phrase over Beethoven’s
lifetime was obvious in the higher-, but not lower-, order models
(Figure 3A). This may suggest that a higher-, rather than lower-,
order statistical structure reflects specific statistical knowledge
that is susceptible to experience and novelty seeking behavior.
The entropy (i.e., uncertainty) of TP distribution may also
support the hypothesis (Figure 3B). The entropies of higher-
order (1st to 3rd), but not lower-order (0th) models in late period
increased compared with those in early period. Furthermore, MI
in late periods was lower compared with those early and middle
periods (Figure 3F). This suggests that, in the late period, each
event of tone hardly depends on preceding successive events
of tones. Typical Western-classical music has strict syntactic
rules based on music theory. Therefore, a forthcoming tone can
partially be predicted from preceding successive tones based
on the rules. According to previous studies, syntax of musical
sequences is partially expressed by conditional probabilities
(Rohrmeier and Cross, 2008), although it is not sufficient to
account for all of the music syntax. The findings on MI in this
studymay suggest that, in the late period, the composer avoided a
tone that can easily be predicted based on typical transition rules
involved in music syntax.

In sum, the present study detected time-course variation of
predictability of familiar phrases, uncertainty of whole music,
and the depth of SL in music that were composed over
Beethoven’s lifetime. According to corpus studies, the historical
characteristics of music can be extracted based on the era
(e.g., Albrecht and Huron, 2014; Gjerdingen, 2014; White,
2014). This indicates that strategies of composition and musical
knowledge depend on the era. The present study also suggests
that the characteristics of music can be extracted based on the
periods within a composer’s lifetime. In addition, the higher-
order hierarchical structure showed larger time-course variations
of both predictability of familiar phrases and uncertainty of
whole music. From the psychological perspective, it would be
interesting if the higher- (i.e., deep), rather than lower-order
statistical knowledge was susceptible to experience and novelty
seeking behavior. The present study also suggested that there are
interactions between prediction and uncertainty. It is of note,
however, that the present study did not directly investigate the
composer’s statistical knowledge of music, as only the statistics
of musical scores were analyzed. Furthermore, the present

study only analyzed one composer, therefore could not discuss
universal phenomenon on SL. This suggests that there may be
other possible explanations for the findings of the present study.
For instance, it might have been Beethoven’s plan to compose
the sonatas from familiar and lower entropy to unfamiliar and
larger entropy based on the statistical structure of music. Future
study should investigate SL of music frommany composers using
interdisciplinary approaches in parallel.

CONCLUSION

The present study investigated how predictability of familiar
phrases that was used in all of music, uncertainty of whole
structure, and the order of the probabilistic models in music
fluctuates over a composer’s lifetime, and discussed the results
from psychological perspective within SL framework. The results
suggest that the higher-, rather than lower-order statistical
knowledge may be susceptible to experience and novelty seeking
behavior. The present study also suggested that there might be
interactions between prediction and uncertainty. The present
study first suggested that uncertainty may be increased in
a composer’s lifetime, and that the higher-order probabilistic
model may be susceptible to experience and novelty seeking
behavior over the composer’s lifetime. It is suggested that
human’s curiosity for uncertain and novelty seeking behavior
may modulate creativity in human’s brain, and that the
fluctuations of uncertainty could reflect aesthetic appreciation of
music. To more understand brain’s predictive function, future
study is needed to examine relationships between prediction
of familiar phrases and uncertainty perception, using both
modeling and experimental approaches in parallel.
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