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The brain as a neuronal system has very complex structures with a large diversity

of neuronal types. The most basic complexity is seen from the structure of neuronal

morphology, which usually has a complex tree-like structure with dendritic spines

distributed in branches. To simulate a large-scale network with spiking neurons, the

simple point neuron, such as the integrate-and-fire neuron, is often used. However,

recent experimental evidence suggests that the computational ability of a single neuron

is largely enhanced by its morphological structure, in particular, by various types of

dendritic dynamics. As the morphology reduction of detailed biophysical models is a

classic question in systems neuroscience, much effort has been taken to simulate a

neuron with a few compartments to include the interaction between the soma and

dendritic spines. Yet, novel reduction methods are still needed to deal with the complex

dendritic tree. Here, using 10 individual Purkinje cells of the cerebellum from three

species of guinea-pig, mouse and rat, we consider four types of reduction methods

and study their effects on the coding capacity of Purkinje cells in terms of firing rate,

timing coding, spiking pattern, and modulated firing under different stimulation protocols.

We found that there is a variation of reduction performance depending on individual

cells and species, however, all reduction methods can preserve, to some degree, firing

activity of the full model of Purkinje cell. Therefore, when stimulating large-scale network

of neurons, one has to choose a proper type of reduced neuronal model depending

on the questions addressed. Among these reduction schemes, Branch method, that

preserves the geometrical volume of neurons, can achieve the best balance among

different performance measures of accuracy, simplification, and computational efficiency,

and reproduce various phenomena shown in the full morphology model of Purkinje cells.

Altogether, these results suggest that the Branch reduction scheme seems to provide

a general guideline for reducing complex morphology into a few compartments without

the loss of basic characteristics of the firing properties of neurons.

Keywords: Purkinje cell, neuronal morphology, dendritic model, rate coding, temporal coding, multi-
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1. INTRODUCTION

A single neuron is thought to be the basic computation unit in

the complex neuronal system. Understanding the computations
and dynamics of single neurons is an integral part of explaining
their functional roles within a large neural network. However,
there is a complex dendritic structure for a single neuron’s

morphology. The question is, what are the key properties of
neuronal morphology for understanding a complex process such
as information processing and dynamic behavior that emerges

from a network of neurons? How can one reduce the whole
morphology, but still keep these essential dynamics? To address
these questions, a number of methods and models have been
developed to describe firing properties of single neurons at
different levels of abstractions and reductions. A simple, perhaps
the most compact version of a neuronal model, is the so-

called integrate-and-fire (IAF) model (Lapicque, 1907). The
IAF model of neuronal dynamics is considered to be a simple
way to explain certain aspects of neuronal behaviors (Burkitt,
2006a,b). In particular, it has been used mostly for the
simulation of large-scale neuronal networks. However, with the
advancement of experimental techniques in characterizing fine
dynamics of neurons, there is an increasing volume of evidence
showing that the IAF approach cannot capture the dynamics
and computations of real neurons (Mainen and Sejnowski,
1996; Koch, 1999; Poirazi et al., 2003; Ostojic et al., 2015;
Amsalem et al., 2018), in which neuronal morphology, ion
channels, and synapse distributions, all affect the activity of
neurons (Herz et al., 2006). The classical Rall cable theory is
useful to help understand the contribution of the neuronal
spatial structure in its function and dynamics (Rall, 1959). By
extending the Rall cable theory, the real neuronal morphology
can be reconstructed based on the anatomy to ensure that its
electrophysiological characteristics are unchanged. Although the
detailed model can describe the dynamics of individual neurons
very well, their high dimensionality and complex spatial structure
makes the calculation expensive and unsuitable for large-scale
network simulations.

The classical Hodgkin-Huxley single-compartment model
ignores the spatial structure of neurons to mainly explain the
ionic mechanisms and how action potentials are initiated and
propagated in neurons (Hodgkin and Huxley, 1990). However,
recent theoretical work shows that the single somatic point
neuron is not enough to capture the detailed firing activities
of Purkinje cells observed in experiments (Ostojic et al., 2015).
The neuronal model with at least two compartments of soma
and dendrite is necessary. Similarly, the reduced model with
only one or a few dendritic compartments is usually sufficient
to understand detailed neuronal activities (Brown et al., 2011;
Armin et al., 2012; Marasco et al., 2013; Amsalem et al.,
2018). For large-scale network studies, reduced models provide
a good balance between biological activity and computational
efficiency (Herz et al., 2006). However, what reduction schemes,
that simplify the whole dendritic morphology, is still not well
understood (Marasco et al., 2013; Amsalem et al., 2018)?

Here we address this question by focusing on the Purkinje
cells (PCs) of the cerebellum. The cerebellum, as one of the most

well-studied brain areas, traditionally plays an essential role in
motor control (Ito, 1984; Zeeuw et al., 1997; Amir and Zee, 2011;
Manto et al., 2012) and learns of vestibular-ocular reflex (Du
et al., 1995; Blazquez et al., 2004; Hirata et al., 2012) and eyelid
reflex regulation (Koekkoek et al., 2003; Jiménezdaz et al., 2004).
In recent years, a large number of studies have shown that the
cerebellum is also involved in the processing of information such
as cognition, language, attention, and memory (Ito, 2008; Strick
et al., 2009; Wolf et al., 2009; Tsai et al., 2012; Wagner et al., 2017;
Bostan and Strick, 2018; Raymond and Medina, 2018).

PCs, as the only output neurons in the cerebellum, is an
indispensable component in the mechanism of synaptic plasticity
in cerebellar learning. PCs receive parallel fiber (PF) input that
generates high-frequency simple spikes (SSs) to predict ongoing
movements (Loewenstein et al., 2005). The high-frequency
SS discharge of PCs encodes information about movement,
including performance errors and kinematics (Robinson and
Fuchs, 2001; Popa et al., 2016). Importantly, SS modulation
both leads and lags behavior, which means that individual
PCs may carry predictive and feedback signals about motor
commands and corresponding behaviors (Hewitt et al., 2015;
Popa et al., 2015; Chen et al., 2016; Streng et al., 2018). PC has
a tree-like morphology structure with an intricately elaborate
dendritic arbor, which can be characterized by a large number
of dendritic spines distributed in its dendritic branches. Given
such a sophisticated dendritic structure, it is necessary to find
a suitable level of abstraction with a reduced morphological
structure to understand the working mechanisms of PC for the
integration of PF synaptic inputs.

In a previous study (Marasco et al., 2013), a reduction method
based on the Strahler analysis of neuron morphology was applied
to PCs with an arbitrary dendritic distribution of ion channels
and synaptic inputs and without any fitting or tuning procedures.
In particular, this reduction method can ensure that the somatic
membrane potential trace is accurate while reducing the runtime
of the simulation significantly. In this study, we systematically
modeled the morphology of PCs from three species of guinea-
pigs, mice and rats, and investigated the effect of four different
reduction schemes on the coding capacity of PCs, in terms of
firing rate, spike timing, spike pattern, and modulation of firing
amplitude and phase, with several types of stimulation protocols
of PF synaptic inputs, including the Poisson and modulated
renewal process.

We found that the PC firing rate coding, which is the input-
output relationship of the PC firing activity under different
frequencies, is slightly different in low frequency stimuli but
significantly different in high frequency stimuli at a millimeter-
scale reaction under different reduction schemes of morphology.
The PC spike timing coding quantified by the inter spike intervals
and regular/irregular spike patterns are well captured by different
reduction schemes. In addition, for a modulated stimulus with
a frequency following a sinusoidal modulation, the phase and
amplitude of the PC response curve is also well described by
different reduction schemes. However, there is a variation of
coding performance across different reduction schemes for PCs
from different species. Among these reduction schemes, the
Branch method, which keeps the feature of the geometrical
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volume of a neuron, can achieve a good balance between
different performance measures of accuracy, simplification,
computational efficiency, and spike shape change of morphology
reduction, and reproduce various phenomena shown in the
full model with the whole PC morphology. Thus, these results
suggest that the Branch reduction scheme could serve as a
general guideline to reduce complex morphology into a few
compartments without the loss of basic characteristics of the
firing property of neurons.

2. METHODS

2.1. Neuronal Morphology Reduction
A reduction method maps the full morphological structure
into an equivalent reduced model with much fewer dendritic
compartments. As a typical tree-like structure, one has to identify
the father and child dendrites, and mark them with a set of
graphic notations (see Figure 1A). For the markers, one needs
to set up a coding scheme such that there is an order value for
each selected section or area as illustrated in Figure 1B. Here we
proposed four different coding schemes where the order values
are determined differently. The motivations of these coding

schemes are inspired by a general analysis of river networks
(Horton, 1945; Shreve, 1967).

The main feature of the Shreve and Horton methods is to
identify and classify river types based on the importance of
rivers in water networks. Specifically, Shreve coding is to define
a river without tributaries as level 1, and other river levels are
obtained by adding their tributary levels. The characteristics of
the Shreve method are similar to the calculation of confluence
and have a relatively large reference value in some simulations of
hydrological flow and sediment volume. Horton coding defines
a river without tributaries as level 1, and other river levels are
obtained by the maximum level of its tributary. Horton code
mainly reflects the hierarchical relationship in the water network
and the depth of the river subtree. The Purkinje cell dendritic
structure is similar to the river network, and these two methods
can be used to classify the dendrites and then merge and simplify
the unimportant dendrites. As a result, the different functional
regions of PCs can be characterized by their order values.

Before setting the order value, the PC tree-like morphological
structure can be divided into terminal and non-terminal
dendrites. We used E and O to represent the set of terminal
dendrites and non-terminal dendrites, respectively. Specifically,

FIGURE 1 | Schematic view of reduction process. (A) Illustration of a dendritic field. Each sub-branch has a father dendrite with several child dendrites. Each of them

can be indexed as the j-th dendrite (green) with a set of sub-dendrites (red). (B) Illustration of different coding schemes of a neuronal morphological structure. Levels of

dendrites are colored differently with terminal dendrites as red and non-terminal dendrites as other colors. The number of each dendrite is the order value obtained by

different coding schemes. For instance, for the Branch model, the order value of non-terminal dendrites is the sum of all their sub-dendrite order values plus a weight

as the number of sub-dendrites divided by 10. Thus, the order values of all terminal dendrites are 1. At the next level, the dendrites have an order value of 2.2 that is

the sum of 2, from all their sub-dendrite order values, with 0.2 as a weight of the number of sub-dendrites divided by 10. So, the final order value at this level is 2.2.

This process moves from the terminal or non-terminal dendrites level by level to obtain all the order values. Note Elect method operates in an opposite way. (C)

Reduction process. Coding: The first step is to encode the morphological structure and distinguish different functional areas (Blue, Trunk. Green, Smooth. Gray, Spiny)

of a neuron. Clustering: the second step is to set clusters according to the coding number. Mapping clusters: the third step is to map each cluster into a single

compartment. Mapping synapses: the fourth step is to map synaptic locations in the reduced model. The red dots indicate synaptic locations in the spiny dendrites.
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E = {e1, e2, · · · , ei} is the terminal dendrites set, ei is the i-th
dendrite in the set E, Ne,i is the order value of the i-th dendrite
in set E. O = {o1, o2, ..oj} is the non-terminal dendrites set, oj is
the j-th dendrite inO,No,j is the order value of the j-th dendrite in
O. Then according to the order valueN,N = Ne,i orN = No,j, the
dendrites can be classified as spiny, smooth, or trunk, as follows:

dend ∈







Spiny, if N ≤ s1
Smooth, if s1 < N < s2
Trunk, if N ≥ s2

(1)

where s1 and s2 are the best threshold values for dividing the
functional areas of spiny, smooth, and trunk dendrites. We tested
several different values of s1 and s2, and determined the best
values that can achieve the balance between a higher reduction
and a better overall accuracy. These values, chosen for each PC
are given in Table 1.

In this study, we used four different coding schemes as
defined below.

2.1.1. Branch Scheme
In this scheme, the order values of dendrites are determined
by the branches of each dendrite. The order values of terminal
dendrites are fixed as 1, i.e., Ne,i = 1, then the non-terminal
dendrite order values are given as:

No,j =
n

∑

k=1

No,jk + weight (2)

N = {No,j1 ,No,j2 , · · ·No,jn} is the order value of sub-dendrites
of the j-th dendrite in set O, jk is k-th sub-dendrite of the j-
th dendrite, n is the number of the sub-dendrites of the j-th
dendrite, and weight = n/10, where factor 10 is the best value for
a trade-off between simplification and accuracy of the modeling
in our case.

2.1.2. Horton Scheme
In this scheme, the dendritic tree is encoded by Horton
analysis (Horton, 1945). We set the order value for each section.
Terminal dendrites of set E have the order value as 1, Ne,i = 1.
The order value for non-terminal dendrites can be set as:

No,j = max(No,j1 ,No,j2 , · · · ,No,jn )+ 1 (3)

where, N = {No,j1 ,No,j2 , · · ·No,jn} is the order value of sub-
dendrites of the j-th dendrite in set O, jn is n-th sub-dendrite of
the j-th dendrite, and n is the number of the sub-dendrites of the
j-th dendrite.

2.1.3. Shreve Scheme
In this coding scheme, the morphological structure is
quantitatively analyzed using the adaptive Shreve encoding
scheme (Shreve, 1967). Terminal dendrites of set E are given by
the order value as 1, Ne,i = 1. The non-terminal dendrites order
values are given as:

No,j =
n

∑

k=1

No,jk (4)

where No,jk is the order values of the k-th child dendrite of the
j-th in set O, and n is the number of the child dendrites of
the j-th dendrite.

2.1.4. Elect Scheme
In this scheme, different dendritic geometries result in different
electricity properties of dendrites, so one can use the feature
of input resistance to analyze tree dendrites, so that the values
of the input resistance of dendrites are used as the dendritic
order values:

N = (Ne,i,No,j) = Input resistance (5)

In this model, different functional regions of PCs can be
characterized by their order values as

dend ∈







Spiny, if N ≥ s2
Smooth, if s1 < N < s2
Trunk, if N ≤ s1

(6)

Note Equation (6) operates in the opposite way of Equation (1),
since for Branch, Horton and Shreve methods, tree order values
are increased from spiny to trunk, but the Elect method works as
a decreasing process.

Once the coding stage is finished, the rest of the work-
flow process of reducing neuronal morphology is illustrated in
Figure 1C. One can collect those dendrites according to their
order values into a cluster, such that there are three sets of clusters
as Ctrunk for trunk dendrites, Csmooth for smooth dendrites, and

TABLE 1 | Best thresholds of reduction models for each cell.

Guinea-pig1 Guinea-pig2 Guinea-pig3 Mouse1 Mouse2 Mouse3 Mouse4 Rat1 Rat2 Rat3

Branch s1 3 3 3 3 3 3 3 3 3 3

s2 8 8 8 8 8 8 8 8 8 8

Horton s1 3 3 3 3 3 3 3 3 3 3

s2 30 90 20 50 50 30 30 20 30 20

Elect s1 13 16 18 62 87 35 69 33 27 86

s2 17 17 19 63 88 36 70 34 29 87

Shreve s1 10 10 10 10 10 10 10 10 10 10

s2 30 30 30 30 30 30 30 30 30 30
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Cspiny for spiny dendrites. Within each set, there is a series of
subsets of the cluster in each region of the dendritic field. Such
a subset of clusters can be mapped into one single compartment
by using the same merging rule as in Marasco et al. (2013), then
ionic and synaptic conductances are scaled by a factor to preserve
membrane area (Marasco et al., 2013) or preserve volume. To
preserve themembrane area inHorton, Shreve, and Elect models,

we used a factor f
eq
s,j =

∑

j sj

s
eq
j

, where
∑

j sj is the sum of the

membrane area of each section in the clusters, and s
eq
j is the

membrane area of the equivalent compartment. However, in the
Branch model, to preserve the volume instead of the membrane

area, we used a factor f
eq
v,j =

∑

j vj

v
eq
j

, where
∑

j vj is the sum of the

volumes of each section in the clusters, and v
eq
j is the volume

of the equivalent compartment. Finally, synapse locations are
sequentially mapped in each reduced model in the same way as
in Marasco et al. (2013).

2.2. Multi-Compartment Model of Purkinje
Cell
To compare different reduced models with full morphology,
we used multi-compartment models based on 10 detailed
morphological 3D reconstructions of Purkinje cells of guinea-
pigs, mice, and rats, from a public archive neuromorpho.org.
Specific capacitance was set to 0.8 F/cm2 in the soma, and
1.5 F/cm2 in trunk dendrites, smooth dendrites, and spiny
dendrites. Internal axial resistivity was set to 250 �/cm similar
to the values used in Ostojic et al. (2015) and Rapp et al. (1994).

The same set of parameter values of passive properties, such
as voltage-dependent ionic channels, kinetic, and distribution,
was used for all morphologies of PCs. There are 13 different
types of voltage-gated ion channels modeled, eight of which (P-
type Ca2+ channel, T-type Ca2+ channel, class-E Ca2+ channel,
persistent K+ channel, A-type K+ channel, D-type K+ channel,
delayed rectifier, decay of sub-membrane Ca2+) were inserted
into the soma and dendrites. In addition, three ion channels
(fast and persistent sodium channel, anomalous rectifier channel)
were solely added to the soma, and two ion channels (high-
threshold calcium-activated potassium channel, low-threshold
calcium-activated potassium channel) were solely added to the
dendrites (Schutter and Bower, 1994a; Miyasho et al., 2001).

2.3. Stimulation Protocols
Stimulation of PC was implemented by parallel fiber (PF) inputs,
where synaptic input from each PF to PC is characterized by
AMPA receptors (Gao et al., 2012). Following the typical values
estimated from experiments, a total of 1000 PF connections for a
single PC was used as previously described (Masoli and DAngelo,
2017). AMPA synapses were inserted only in the spiny dendrites
with a random distribution. AMPA synapses were modeled as
a double exponential conductance change with 0.5 and 1.2 ms
for rising and decay time, respectively (Schutter and Bower,
1994b), and the maximal synaptic conductance was drawn from
a Gaussian distribution as 5± 0.5 nS.

In addition, for PCs affected by direct synaptic inhibition
coming from molecular layer interneurons, we used a total of

500 inhibitory connections on a single PC. These synapses were
randomly distributed on the spiny dendrites, and modeled as
GABAA (He et al., 2015) with a double exponential conductance
change with 0.5 and 2.5ms for rising and decay time, respectively,
and the maximal synaptic conductance was drawn from a
Gaussian distribution as 5± 0.5 nS.

PCs aligned on the mediolateral axis receive about 175,000
PF inputs (Napper and Harvey, 1988; Hoxha et al., 2016). This
arrangement results in the hypothesis that the evoked PC firing
for temporal control of movement is encoded in the cerebellum
by beams of synchronously active PCs (Jaeger, 2003). So, in
our model, PC responses were driven by 1,000 synchronized PF
inputs randomly distributed on spiny dendrites (Su et al., 2012;
Hoxha et al., 2016), i.e., simulations were run with a synchronized
stimulation protocol.

A single stimulation consists of a sequence of spikes
containing spike times and inter-spike intervals (ISIs), so we
can generate a successive spike train by the previous spike
plus the regular or irregular time intervals. There are three
types of stimulations used in this study depending on the
sampling process.

2.3.1. Poisson Process
Spike trains were modeled using a homogeneous Poisson process
in which the ISI distribution is exponential. The probability
density function of ISI τ is given by:

p(τ ) = re−rτ (7)

where r is mean firing rate. The mean < τ > and standard
deviation σ of ISIs are both 1/r.

2.3.2. Renewal Process
A simple way to generate a spike train based on the renewal
process is to start with a Poisson spike train and delete all but
every k-th spike. In this way, a spike train is obtained with ISIs τ

given by gamma probability density function:

p(τ ) = (kτ )kτ k−1e−krτ /(k− 1)! (8)

where k is the order of gamma distribution, and r is the mean
firing rate. The mean < τ > and standard deviation σ are 1/r

and< τ > /
√
k, respectively. Here k is set to 2 throughout the

whole study.

2.3.3. Modulated Renewal Process
Recent work on the statistical modeling of neural responses has
focused on modulated renewal processes in which the spike rate
is a function of the recent spiking history. Here we modeled the
modulation of the firing rate r(t) as a synaptic input frequency
such that

r(t) = Asin(2π ft + θ)+ A (9)

where themodulation of the firing rate is thus fully specified by its
amplitude A and frequency f of the sinusoidal component. Thus,
one can generate a spike train that satisfies this firing rate r(t)
by the time-rescaling method (Brown et al., 2002; Pillow, 2009;
Zampini et al., 2016).
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2.4. Data Analysis
The full and reduced PC morphology models were stimulated in
NEURON 7.4. Data analysis was implemented with MATLAB.
Unless otherwise noted, all simulations ran for 2,000 ms. where
data from the last 1,000 ms simulation were used to analyze the
results. The time step 0.025 ms was used for all simulations. For
analysis, we used four measures to characterize the performance
of the reduced method: accuracy, simplification, efficiency and
spike shape change.

2.4.1. Accuracy
The main purpose of a reduced model is to maintain the
input-output (I/O) property on the basis of simplification of
neuronal morphology. We evaluated the accuracy of the I/O
property by comparing the spike trains generated before and after
reduction (Marasco et al., 2013):

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(10)

where TP (True Positives) is the number of spikes from the
full model that are also found in the reduced model. TN (True
Negatives) is the number of intervals that the neuron does not
fire in both the full and reducedmodels. FP (False Positives) is the
number of mismatched spikes in the reduced models. FN (False
Negatives) is the number of spikes from the full model that are
not matched in the reduced models.

2.4.2. Simplification
Morphological simplification is the most basic requirement for a
reduced method. The full morphological structure can be seen as
being made up by a series of cylindrical segments with different
lengths and diameters. Therefore, we characterized the degree
of simplification as the ratio of the segments of morphological
structure before and after reduction:

Simplification =
SEGfull − SEGreduced

SEGfull
(11)

where SEGreduced is the number of the segments in the reduced
morphological structure, and SEGfull is the number of the
segments in the full morphological structure.

2.4.3. Efficiency
Another feature of a reduced model is to improve computing
efficiency, as one wants to compute the neuronal dynamics as fast
as one can, in particular in large-scale network simulations. We
evaluated this feature by the ratio between the runtime of the full
model and reduced model in the same computing environment:

Efficiency =
Runtimefull

Runtimereduce
(12)

where Runtimefull is the run time of the full model and
Runtimereduce is the run time of the reduced model.

2.4.4. Spike Shape
In addition, we also analyzed the accuracy of spike shapes
including spike width and spike amplitude. We evaluated this

feature by comparing the changes in the full model and the
reduced model.

1ChangeX = |FullX − ReduceX| (13)

Where X represents spike width or spike amplitude, FullX and
ReduceX are the mean spike width or spike amplitude in spike
trains of the full model and reduced model, respectively.

3. RESULTS

We considered four different reduction schemes to simplify the
morphology of PCs from three species, then studied their effects
on PC responses to synaptic inputs. To investigate how the
coding capacity of PCs is affected by morphological structure
reductions, we evaluated the performance of the reduced model
with four measures: simplification, accuracy, efficiency, and spike
shape change. Furthermore, the coding capacity of PCs, in terms
of firing rate coding, spike timing coding, and modulated firing
amplitude and phase under different input synaptic frequencies
were studied as well.

3.1. Performance Evaluation of
Morphology Reduction
Ten different PCs with different morphologies from guinea-
pigs, mice, and rats were studied. The reduced morphologies
were generated by four types of reduction schemes for each cell
as shown in Figure 2A. Four reducing schemes show different
simplifications for a particular morphology. However, there is
a large variety of neuronal morphology for each cell from each
species. Although the same set of parameters were used in all
10 PCs, different morphologies resulted in different dynamics of
hyperpolarization. Such a difference is larger across species and
smaller within the same species (Figure 2B).

Then, we focused on three example PCs, guinea-pig1
(v_e_purk1Mod), mouse1 (e4cb2a2Mod), and rat1 (p20) to
illustrate the spiking dynamics of full and reduced morphology.
Throughout the study, these three example PCs are used to
represent three species respectively. In general, for all PCs, the
spiking dynamics of reduced morphology in all four schemes
matched that of the full model very well (Figure 3).

It is especially important to ensure the firing accuracy
of the reduced model, which can be seen in Figure 3. The
detailed measure quantified by accuracy shown in Table 2, which
describes how a somatic membrane potential trace of the full
model can be reproduced in different reduced models. For
comparison, Marosco model was included (Marasco et al., 2013).
The accuracy is relatively diverse in four reduced schemes,
but in general, the Branch model has the highest accuracy.
However, the Marosco reduced model does not archive accurate
firing activities.

The second measure is simplification that characterizes how
the morphologies are changed by reduced models. The reduced
model simplifies complex tree structures into a much smaller set
of dendrites that can be quantified by the degree of simplification.
Table 3 shows that the Elect model has the largest degree
of simplification such that the reduced morphology is most
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FIGURE 2 | Detailed and simplified PC morphologies. (A) A total of 10 PCs from three species are reduced by four different schemes, Branch, Horton, Elect, and

Shreve methods. Spiny dendrites in gray, smooth dendrites and initial major branches in green. Spiny dendrites receive 1,000 excitatory AMPA-type synapses from

parallel fibers (red dots). (B) Hyperpolarization phases after spiking are different in 10 full PC morphologies. Poisson stimulation at 50 Hz.

compact. In contrast, the Horton model has a minimum degree
of simplification. The Marosco model has a slightly larger degree
of simplification than the Elect model for mouse2 and rat1.

A direct outcome of simplification is that the simplest
model needs less computing time for simulation. It is
feasible to ensure the application of reduced models on
large-scale networks only by improving computational
efficiency while high accuracy is maintained. Table 4 shows

the quantification of runtime, where the Elect model achieves
the most efficient computation, as it has the highest degree
of simplification, except that the Marosco model is fastest
for rat1.

Furthermore, it is also important to maintain the accuracy
of spike shape, which can be measured by the change of spike
amplitude in Table 5 and spike width in Table 6, where the
Branch model has higher accuracy for more cells.
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FIGURE 3 | Spiking dynamics of full and reduced PC models. Membrane potential traces recorded from the soma of three example PCs of guinea-pigs, mice and

rats with full model (red) and four reduced models (blue). Poisson stimulation at 50 Hz.

TABLE 2 | Accuracy of reduced models.

Guinea-pig1 Guinea-pig2 Guinea-pig3 Mouse1 Mouse2 Mouse3 Mouse4 Rat1 Rat2 Rat3

Branch 0.976 ± 0.012 0.940 ± 0.031 0.973 ± 0.017 0.926 ± 0.057 0.905 ± 0.063 0.984 ± 0.013 0.965 ± 0.019 0.941 ± 0.036 0.963 ± 0.024 0.964 ± 0.029

Horton 0.954 ± 0.021 0.942 ± 0.029 0.971 ± 0.015 0.860 ± 0.078 0.885 ± 0.064 0.949 ± 0.032 0.880 ± 0.069 0.934 ± 0.038 0.926 ± 0.035 0.955 ± 0.028

Elect 0.886 ± 0.021 0.825 ± 0.048 0.880 ± 0.040 0.970 ± 0.019 0.860 ± 0.063 0.938 ± 0.029 0.848 ± 0.047 0.968 ± 0.015 0.781 ± 0.074 0.850 ± 0.052

Shreve 0.943 ± 0.023 0.924 ± 0.035 0.972 ± 0.012 0.906 ± 0.054 0.913 ± 0.052 0.959 ± 0.020 0.939 ± 0.033 0.889 ± 0.064 0.954 ± 0.017 0.921 ± 0.050

Marosco 0.932 ± 0.029 0.929 ± 0.029 0.930 ± 0.027 0.872 ± 0.092 0.881 ± 0.059 0.955 ± 0.022 0.939 ± 0.033 0.906 ± 0.051 0.947 ± 0.019 0.908 ± 0.057

Values are mean ± STD calculated from 21 sets of Poisson stimulation from 10 to 1K Hz. The best reduced method for each cell is marked in bold.

TABLE 3 | Simplification of reduced models.

Guinea-pig1(%) Guinea-pig2(%) Guinea-pig3(%) Mouse1(%) Mouse2(%) Mouse3(%) Mouse4(%) Rat1(%) Rat2(%) Rat3(%)

Branch 85.5 93.2 80.1 93.3 90.3 86.0 85.7 86.6 90.7 82.8

Horton 79.5 82.1 79.5 79.7 77.2 78.5 78.8 81.8 83.6 80.6

Elect 96.7 96.9 96.2 95.7 91.9 97.1 98.9 93.1 94.3 97.7

Shreve 88.8 90.7 87.6 91.7 88.8 89.7 88.5 93.3 91.7 91.0

Marosco 91.4 93.0 95.1 93.9 92.2 92.7 95.1 94.6 94.1 93.9

The best reduced method for each cell is marked in bold.

Given that accuracy is the most important factor for
reduction, the Branch model is the best one for the performance
of the accuracy of the spike rate, the degree of simplification, and
the runtime and spike shape, are also good. The reason for this is
mainly due to the fact that the scaling factor in the simplification
process preserves the cell volume in the Branch model, while the
other three models preserve the cell membrane area. Thus, we

conclude that cell volume may play an important role in shaping
Purkinje cell firing.

3.2. PC Firing Rate Coding
To characterize the performance of reduced models, we carried
out a wide range of stimulation frequencies from 10Hz to 1KHz
sampled in the Poisson process as illustrated in Figure 4A,
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TABLE 4 | Efficiency of reduced models. Values are mean ± STD.

Guinea-pig1 Guinea-pig2 Guinea-pig3 Mouse1 Mouse2 Mouse3 Mouse4 Rat1 Rat2 Rat3

Branch 19± 3 22± 8 9± 2 24± 7 20± 2 15± 2 15± 3 13± 1 21± 6 12± 3

Horton 9± 2 9± 2 8± 1 11± 1 9± 1 9± 1 10± 2 11± 2 13± 2 10± 2

Elect 40 ± 8 59 ± 12 46 ± 8 56 ± 9 30 ± 4 64 ± 6 72 ± 1 16± 1 39 ± 13 41 ± 2

Shreve 16± 3 18± 3 12± 1 18± 3 13± 1 14± 1 14± 2 20± 2 17± 5 16± 4

Marosco 24± 6 27± 4 35± 4 31± 3 23± 2 24± 3 26± 1 22 ± 1 24± 4 22± 3

The best reduced method for each cell is marked in bold.

TABLE 5 | Change of spike amplitude in reduced models (mv, mean ± STD).

Guinea-pig1 Guinea-pig2 Guinea-pig3 Mouse1 Mouse2 Mouse3 Mouse4 Rat1 Rat2 Rat3

Branch 1.08 ± 0.53 3.63 ± 1.95 1.63 ± 0.98 0.68 ± 0.88 6.23 ± 2.74 0.48 ± 0.17 1.03 ± 0.57 3.71 ± 1.82 3.87 ± 1.87 0.78 ± 0.27

Horton 2.08 ± 1.02 3.12 ± 1.37 1.42 ± 0.62 1.03 ± 0.24 7.30 ± 3.38 0.63 ± 0.16 0.55 ± 0.58 1.81 ± 0.55 0.62 ± 0.27 0.91 ± 0.28

Elect 1.58 ± 0.80 3.09 ± 1.36 1.24 ± 1.00 0.54 ± 0.22 12.10 ± 5.89 2.00 ± 0.74 5.17 ± 3.30 0.95 ± 0.50 2.85 ± 0.70 1.72 ± 1.43

Shreve 3.02 ± 1.40 4.98 ± 2.60 1.95 ± 1.02 0.86 ± 0.19 4.95 ± 2.49 0.81 ± 0.26 0.89 ± 0.65 3.56 ± 1.32 0.56 ± 0.18 1.98 ± 0.53

Marosco 3.86 ± 1.88 4.40 ± 2.18 4.00 ± 1.83 1.80 ± 0.48 6.61 ± 2.89 1.04 ± 0.30 0.80 ± 0.61 3.81 ± 1.34 0.79 ± 0.24 2.55 ± 1.24

The best reduced method for each cell is marked in bold.

TABLE 6 | Change of spike width in reduced models (ms, mean ± STD).

Guinea-pig1 Guinea-pig2 Guinea-pig3 Mouse1 Mouse2 Mouse3 Mouse4 Rat1 Rat2 Rat3

Branch 0.29 ± 0.23 0.73± 0.29 0.18 ± 0.16 0.20± 0.25 1.02± 0.88 0.06 ± 0.08 0.53± 0.50 0.28± 0.26 0.92± 1.07 0.09 ± 0.09

Horton 0.34± 0.27 0.41 ± 0.32 0.23± 0.15 0.20 ± 0.18 0.84± 0.44 0.25± 0.27 0.81± 0.32 0.18± 0.19 0.30± 0.19 0.13± 0.18

Elect 0.81± 0.62 1.39± 1.78 0.44± 0.45 0.26± 0.14 0.51 ± 0.74 0.34± 0.21 0.4± 0.4 0.11 ± 0.12 0.30± 0.23 0.49± 0.19

Shreve 0.42± 0.39 0.59± 0.42 0.27± 0.35 0.23± 0.14 0.92± 0.45 0.21± 0.15 0.55± 0.32 0.37 ± 0.37 0.28± 0.22 0.36± 0.43

fMarosco 0.49± 0.33 0.52± 0.33 0.41± 0.32 0.31± 0.16 0.57± 0.41 0.18± 0.23 0.31 ± 0.13 0.34± 0.46 0.32± 0.22 0.47± 0.69

The best reduced method for each cell is marked in bold.

which is in the same range as observed in vivo experiments
where granule cells can discharge from a few Hz up to
1K Hz (Valera et al., 2012).

The cerebellum can control high-precise motor patterns with
millisecond resolution using a wide range of action potential
firing rates (Amir and Zee, 2011; Ostojic et al., 2015; Jelitai
et al., 2016). Figure 4B shows 10 PC firing rate response curves
under Poisson stimuli ranging from 10 Hz to 1K Hz in the full
morphologymodel. When such stimuli are used, different species
have their own response frequency range, except for PC rat2 that
has a lower range compared to the other two rat PCs.

There is a variation of PC response curves within the same
species due to their morphological differences. The PC firing
rates dramatically increase with stimulations from 10 to 180 Hz,
and then slowly saturate at the higher stimulation frequencies,
which is similar to the experimental observations found in awake
animals, where PCs exhibit an action potential rate between 30
and 200 Hz (Bryant et al., 2010; Cao et al., 2017).

By using the same three example PCs as in Figure 3, one can
compare the detailed differences of PC response across different
species and reduced models. Figure 4B shows that the guinea-
pig PC response is significantly lower than the mouse and rat, in
particular, during high-frequency stimulation. This is consistent
with the difference shown in the phase of hyperpolarization
after spiking (Figure 2 B), even other parameters were fixed as
the same. This may imply that rats and mice are able to react

on millisecond timescale activities faster than guinea-pigs. Four
different reduced methods divide the PCs into different spiny
dendrites, which leads to synaptic distribution locations slightly
different, as a result, four corresponding full models are slightly
different in their response curves (Figures 4C,D). The response
frequency has to be high enough when the stimulation frequency
is high, as evidenced by experimental data that PC could generate
a high stage firing rate to control fast timing patterns of themotor
behavior. PC response curves can be well fitted by exponential
function although the high frequency slowly saturates. After
morphology is reduced, PC response curves are preserved from
the full model, but there are some differences depending on
the reduction schemes as shown in Figures 4C,D. Shreve and
Horton models mediate PC firing rate decreased compared to
the full model at high stimulation frequencies. This could be
seen from both the mouse and rat, but the guinea-pig showed
a slightly increased PC firing rate. In the Elect model, the guinea-
pig showed a significant decrease in firing rate. In the Branch
model, the PC rate decreased in the mouse while the guinea-pig
and rat showed similar firing rates. The increased diversity at high
frequency stimulation implies that complex spatial morphology
structures can affect PCs to react to millisecond-scale activity.
In general, the Branch model is the best model to preserve the
input-output relationship of PCs in all species.

Similar results were also observed when the stimulation
protocol was changed from Poisson to renewal process
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FIGURE 4 | PC firing responses in full and reduced models. (A) Schematic view of Poisson stimulation sequences from 60 to 260 Hz injected to spiny dendrites of full

(left) and reduced (right) models. (B) Firing response curves of 10 PCs with full morphology. (C,D) Comparison of firing response curves of three example PCs from a

guinea-pig, mouse and rat under four reduction schemes, Branch, Horton, Elect, and Shreve, respectively. PC curves are grouped by species in (C) and by reduction

schemes in (D). Note that there are four PC response curves in one full model, since each is a realization of random distribution of PF input synapses. Solid curves in

(B–D) are fitted exponential functions. Poisson stimulation in all cases.

(Supplementary Figure 1). Therefore, PC firing responses vary
depending on morphology and species rather than the types of
stimulation used.

3.3. PC Timing Coding
Purkinje cells transmit precise timing information to their
downstream targets for precise control of motor-related tasks and
conditioned behaviors (Koekkoek et al., 2003; Ivry and Spencer,
2004). Here, by using the full and reduced models with different
stimulation protocols, we investigated the effect of morphology
structures on PC temporal coding, in particular, we focused on
simple spikes that are the majority of PC spikes quantified by
their inter spike intervals (ISIs), which has shown that statistics
of ISIs play an important role in PC temporal coding (Shin and
Schutter, 2006; Shin et al., 2007).

Figure 5 shows the results of temporal coding precision of
three of the same PCs from a guinea-pig, mouse, and rat,
under the stimulation protocols of the Poisson and renewal
processes. A schematic view of PF inputs and PC outputs of
the full and reduced models illustrates that the Branch model
reduces the full morphology but keeps the temporal coding
very accurately (Figure 5A). A common way to characterize the
temporal structure of the spike train is to use the coefficient of
variation (COV) of ISIs. Based on this measure, the spike trains
generated by the PCs are significantly more regular than those of
PFs. The detailed statistics of ISIs of three example PCs with both
full and reduced models confirm this observation (Figure 5B).
Furthermore, the ISI distributions obtained by the reducedmodel
are similar to those by the full model, which can be described
by p-values from the Wilcoxon Rank-sum test. For all three PCs
and both stimulation protocols, p-values of two distributions of
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FIGURE 5 | PC temporal responses under Poisson and renewal stimulation with Branch method. (A) Schematic view of PF input (top) and PC output spike trains

from full model (middle) and Branch model (bottom) from mouse. Poisson stimulation at 100 Hz. (B) ISI distribution of spike trains from PF (gray), PC full model (light

red) and PC reduced model (green), respectively, under Poisson and renewal process stimulation for guinea-pig (top), mouse (middle), rat (bottom). All stimuli are at 50

Hz for 10 s. Similarity between the ISI distributions of full and reduced model measured by p-value, Wilcoxon Rank-sum test. Guinea-pig, 0.51; Mouse, 0.97; Rat 0.26

for Poisson stimulation, and Guinea-pig, 0.63; Mouse 0.93; Rat, 0.32 for renewal stimulation. (C) Distribution of COV2 values obtained from spike trains of PF inputs

(left), PC full model (middle), and Branch model (right) from mouse with Poisson stimulation of different frequencies. (D) PCcov2/PFcov2 showing the regularity

between PF inputs and PC outputs for full model (green) and reduced model (purple) of guinea-pig, mouse and rat. Poisson and renewal process stimulation with

different frequencies from 10 to 1K Hz.

the full and reduced model are non-significant. For the same
frequency stimulus, the PC ISI distributions are different from
each other across the two stimulation protocols of Poisson and
the renewal process, and also different across species as well.

Fine characterization of temporal precision of spike trains
can be described by a modified measure COV2 = 2|ISIn+1 −
ISIn|/(ISIn+1 + ISIn), which can avoid that one of the ISI in
the sequence affects global regularity (Shin et al., 2007; Hong
et al., 2016). A single spike train can obtain a sequence of
COV2 values (Supplementary Figure 3), and their distributions
are shown in Figure 5C for several example frequencies of
Poisson stimulation. Not surprisingly, the COV2 values of the
PF stimulation sequence are distributed uniformly with different

Poisson frequencies. However, the COV2 values of PC spike
trains have a wide distribution with the peak around 0.1.

One can average all COV2 values for each spike train, then
use the value of the ratio PCCOV2/PFCOV2 as an indicator to
evaluate the regularity between PF inputs and PC outputs, as
shown in Figure 5D, such that the ratio >1 indicates that PF
firing is more regular, otherwise, PC is more regular. Similar
to ISI distribution, there are clear differences across species.
Changing of firing regularity was found in the mouse and
rat, but not in the guinea-pig. It is worth noting that PC
spike trains are more regular with the only exception that
the ratio is close to 1 for the renewal process in a low
stimulus frequency (10 Hz) (Supplementary Figures 2D–F),
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FIGURE 6 | Membrane potential traces recorded from the soma of three example PCs of a guinea-pig, mouse and rat in the Branch model. Poisson stimulation at

500 Hz.

while PC spike trains are always more regular for the
Poisson stimulation.

Furthermore, the performance of different reduced models
to capture the temporal structure of spike trains shown in the
full model is different. Under the same stimulation condition,
the spike trains of the mouse PC show more regularity in the
Horton and Shreve models, but the rat shows more regularity
in the Branch and Shreve models. However, the guinea-pig only
shows more regularity in the Elect model under the renewal
process stimulation. In addition, both full and reduced models
have similar results under different stimulations protocols
(Supplementary Figure 2).

Cerebellar PCs are observed to generate regular spike trains
in vivo (H́äusser and Clark, 1997; Hong et al., 2016). PC
simple spike trains contain highly regular spiking patterns and
may transfer information coded by regular spike patterns to
downstream deep cerebellar nuclei neurons (Shin et al., 2007).

To see this effect, we applied a wide range of stimulation
frequencies to extract the regular and irregular spiking patterns.
A zoomed-in illustration of firing activity is shown in Figure 6

under 500 Hz Poisson stimulation, which shows that the guinea-
pig has the most irregular refractory periods as demonstrated in
Figure 2 where there is a much slower hyperpolarization phase
for the guinea-pig, compared to the mouse and rat under the
same stimulus condition.

To characterize this in detail, we applied a threshold of 0.2 on
the measured COV2 values similar to the previous study (Shin
et al., 2007) to extract a series of segments of regular spiking
patterns in individual spike trains obtained by the Branch model
as illustrated in Figure 7A.

Not surprising, when stimulus frequency is larger,
regular patterns have small ISIs due to increased noise
(Supplementary Figure 4). However, the statistics of regular
spiking patterns across species are quite different as shown
in Figure 7C. Increasing of input frequency results in more
regular patterns for the mouse and rat, but there is no significant

change for the guinea-pig. Results of all four reduced models
are similar to the full model for the guinea-pig. For the mouse,
the difference is significantly larger in the Horton and Shreve
models, whereas this difference is very weak in the Branch
and Elect models. The rat PC shows more regular patterns in
the full model than the Branch and Shreve reduced models,
but this difference is not obvious in the Horton model (see
Supplementary Figure 7).

The size of the regular pattern is defined as the number of
ISIs in regular patterns. Most of the patterns have only 2-3 ISIs
for guinea-pig. Interestingly, for the mouse and rat the regular
pattern sizes are widely distributed at high frequencies, where
there are quite a few longer regular patterns in the mouse as
shown in Figure 7B and Supplementary Figure 8.

Figure 7D shows that the guinea-pig has fewer single ISI
and the single ISI duration distribution is more discrete at
low frequencies Supplementary Figure 5A. In contrast to the
regular pattern, irregular pattern sizes are widely distributed at
low frequencies for the mouse and rat, however, the guinea-
pig has a larger irregular size as shown in Figure 7E and
Supplementary Figures 5B, 9.

Thus, we conclude that reduced models can capture the PC
temporal coding in a reasonable range, which is in particular
important for maintaining precise timing patterns converted by
PCs to theirs downstream deep cerebellar nuclei neurons, to
control motor patterns.

3.4. PC Coding of Modulated Inputs
In the previous sections, we demonstrated the input-output
relationships of PC firing activity by Poisson and renewal
process stimulations with a constant firing rate. Recently, in vivo
studies show that the modulations of PC simple spike firing
are related to a number of functions in terms of behavior,
prediction, and sensory feedback (Cao et al., 2012; Streng et al.,
2018). In order to elucidate a simple spike firing modulation,
we simulated the dynamics of the PC in response to PF
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FIGURE 7 | PC spiking pattern statistics with Branch method. (A) Illustration of regular and irregular spiking patterns from spike trains. Each black bar indicates a

spike. The start of regular patterns is colored in red; pink indicates successive ISIs in regular patterns, an irregular pattern is in green, and single ISI is in blue. Mouse

PC was used. (B) Statistics of regular pattern size across a range of Poisson and renewal process stimulation for a guinea-pig, mouse, and rat in both the full and

reduced models. Percentage of different size indicated by different colors, as there are more patterns in a higher frequency. (C) Percentage of regular patterns at

different stimulation frequencies. (D) Single ISI duration across a range of a Poisson stimulation. (E) Statistics of irregular pattern size across a range of Poisson

stimulation. Percentage of different size indicated by different colors.

inputs with modulated firing amplitude and frequency. As
the activities of PFs from granular cells are represented by
modulations of stimuli, one can simply model PF inputs as
sinusoidal modulations (Zampini et al., 2016) that can generate
PF spike trains from amodulated renewal process. By varying the
amplitude and frequency of sinusoidal input, we investigated the

ability of firing modulation of PC simple spikes under different
reduced models.

We first set out to analyze PC firing modulation by changing
PF input amplitude, where frequency and phase of sinusoidal
input is 1 Hz and 0, respectively. Figure 8A shows example
results of mouse PC firing in response to modulated PF inputs
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FIGURE 8 | PC firing modulated by sinusoidal PF inputs with different amplitudes. (A) Illustration of PF inputs and PC outputs. PF sinusoidal input at 1 Hz frequency

with amplitude 20 (top) and 50 (bottom). Modulated PC firing voltage traces over three cycles of input for full model and Branch model. (B) Similar to (A) with four

different amplitudes of 20, 50, 80, and 100 Hz inputs. (top) PF input spike trains and modulated firing rates. PC spike responses from the (middle) full model and

(bottom) Branch model. Mouse PC used in (A,B). (C) Comparison of modulation amplitudes of PF input vs. PC output in full and reduced models of four reduced

schemes for the guinea-pig (red), mouse (green), and rat (blue), respectively. (D) Similar to (C), but for phase change of PC firing modulation for full model and reduced

models. Sinusoidal stimulation frequency is 1Hz in all cases.

at two different amplitudes, together with responses from the
reduced Branch model. The amplitude of PC modulation is
expected to be equal to that of the oscillating input when the
reduced model is accurate enough, which is shown in Figure 8B

with four tightly matched example responses for the mouse PC.
For the full model, the modulated amplitudes of the mouse

and rat PC responses are well matched to those of PF inputs
(Figure 8C). However, the guinea-pig PC is different: well-
matching is observed for lower amplitudes up to 90 Hz (80 Hz
in Elect method), but smaller than PF input amplitude for larger
input amplitudes. Similarly, the PC firing of the guinea-pig shows
in phase with low amplitude PF inputs, but slightly leads phase at
high input amplitude (large than 100 Hz). However, the mouse
and rat PC modulation phases are in phase with PF inputs for all
input frequencies (Figure 8D).

To investigate the firing modulation when PC morphological
structures are changed, we simulated four corresponding reduced
models. Compared to the full model, the guinea-pig shows
lower modulation amplitudes for all reduced models. The mouse
shows lower modulation amplitudes only in the Branch and
Horton reduced models with higher sinusoidal amplitude (90
Hz). However, the modulation amplitudes of the rat are always
matched to the PF input amplitudes in the four reduced
models (Figure 8C). Moreover, in four reduced models, the
modulation phases of the mouse and rat are always in phase
with PF inputs. However, the guinea-pig shows leading phases
at low input amplitudes and lagged phases at high input
amplitudes. Therefore, when the modulation amplitude changes,
there is a large influence on PC modulated amplitudes and little
influence on the PC modulated phase. In particular, for the
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FIGURE 9 | PC firing modulated by sinusoidal PF inputs with different frequencies. (A) Illustration of PF inputs and PC outputs. PF sinusoidal input with amplitude 50

at frequencies of 0.5 Hz (top) and 1 (bottom). Modulated PC firing voltage traces over five cycles of input for full model and Branch model. (B) Similar to (A) with four

different frequencies of 0.5, 1, 5, and 10 Hz inputs. (top) PF input spike trains and modulated firing rate. PC spike responses from the (middle) full model and (bottom)

Branch model. Mouse PC used in (A,B). (C) Modulation amplitudes of PC output in full and reduced models of four reduced schemes for the guinea-pig (red), mouse

(green), and rat (blue), respectively, at different PF input frequencies. (D) Similar to (C), but for phase change of PC firing modulation for the full and reduced models.

PF sinusoidal stimulation amplitude is 25 Hz in (B–D).

guinea-pig, the complex tree structure plays a key role in the
firing modulation.

Recently, theoretical studies showed the rate of PC tonic firing
could be modulated by somatic injection of sinusoidal currents
up to remarkably high frequency (1 kHz) (Ostojic et al., 2015).
Here we replaced the current input with the modulated synaptic
input as above, changed the frequency of PF sinusoidal input, and
analyzed its effect on PC firing modulation as shown in Figure 9.

Figure 9A shows example results of mouse PC firing
modulation with given PF sinusoidal inputs with a fixed
amplitude and phase as 0 for both the full and Branch reduced
models. PC firing changes dynamically with different frequency
changes. Averaged PC spiking responses over many cycles of
inputs show that PC firing is well modulated and fitted with a
wide range of sinusoidal input frequencies for both the full and
Branch reduced models (Figure 9B) for the amplitude of 25 Hz.

PC output amplitudes can be characterized by fitted sinusoidal
functions, which shows that the PC output amplitude of this
modulation is equal to the PC input amplitude up to 3 Hz for
three typical PCs in the full models (Figure 9C). Then there is
a small fluctuation of amplitude changes. Overall, these results
are captured by reduced models under different schemes. The
only exception is for the guinea-pig, shown in the Elect method
(Figure 9C). In addition, the modulation phase changes are in
phase with PF inputs at most of the frequencies (Figure 9D) for
both the full and reduced models across the guinea-pig, mouse,
and rat.

However, when the PF input amplitude is 50 Hz, the PC
output amplitude can only be modulated equally at sinusoidal
low frequencies below 3Hz and decays for larger frequencies, but
the amplitude of the guinea-pig decays faster than the mouse and
rat (Supplementary Figure 12). Moreover, for the Elect reduced
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model, the PC output amplitude is much less than the input
amplitude at all frequencies (Supplementary Figure 12).

Therefore, the PC firing could be modulated by simplifying
the morphological structure at low amplitude when the
sinusoidal frequency changes. However, the firing rate of the
guinea-pig PC could not be modulated at high amplitude in
the Elect reduced model when the frequency changes. We
conclude that the Elect model, which has the highest degree
of simplification, makes it difficult to be modulated at high
amplitudes. Together with the previous results, we believe that
the complex morphological structure contributes to PC firing
modulation with given sinusoidal PF inputs.

3.5. Inhibition Effect on PC Coding
Purkinje cells are the sole output of the cerebellar cortex. So
far, we only consider the effects of excitatory inputs on PCs
coding ability, since they receive the only excitatory signals of
parallel fibers from granule cells which are the only output of
granular layer. However, PCs also receive direct inhibitory input
from several classes of molecular layer interneurons (Barmack
and Yakhnitsa, 2008; He et al., 2015; Brown et al., 2019),
which contribute the firing activities of PCs significantly as
well (Brown et al., 2019).

Therefore, the effect of direct inhibition on PC firing
activities were also studied by adding a population of inhibitory
synaptic connections (See Methods). Indeed, we found there is
a significant change of PC firing activities due to the inhibition
input as shown in Figure 10 with the same three example PCs
of the guinea-pig, mouse and rat under four reduction schemes
under the Poisson stimulation. Compared to firing activities in
Figure 4 and spike timing patterns in Figure 7where there is only
PF input, there is a systematic influence from the direct inhibitory
input ( See Supplementary Figures 6, 10, 11). Although the
results with inhibition are comparable to those without inhibition
for most of the cells, inhibitory input do play a functional
role in adjusting firing activities, similar to experimental
observations (Brown et al., 2019). The detailed performance
with inhibitory inputs was computed in a similar way shown
in Supplementary Table 1 for accuracy, Supplementary Table 2

for spike amplitude, and Supplementary Table 3 for spike width.
Again, depending on the specific cells and species, there is a large
diversity among different reduced methods.

4. SUMMARY AND DISCUSSION

In this study, we investigated the coding capacity of Purkinje cells
to excitatory parallel fiber input with different morphological
reduction schemes. We proposed four reduction schemes to
reduce the PC complex dendritic tree to a few components and
tested these reduced models with 10 specific detailed PCs from
three species of a guinea-pig, mouse and rat, respectively.

We showed, by performance evaluation and simulation,
that reduced methods can balance accuracy and computational
efficiency in different ways. We found that the Branch method
has a better accuracy in most PCs, which is likely related
to the preserved volume in the reduced method. We also
found that there is no direct relationship between accuracy

and simplification. In the Branch reduced model, PCs have
the lowest level of simplification but only the tguinea-pig2
cell has the highest accuracy. In the Elect reduced model,
the mouse1 cells show the highest accuracy and simplification
at the same time. The Rat1 cell has the highest degree of
simplification but presents the lowest accuracy. In addition,
the computing efficiency is proportional to the degree of the
simplification. Therefore, the diversity of different reduction
methods for performance implies that one has to choose a
proper method depending on the questions that needs to
be addressed.

Compared to the Marosco model (Marasco et al., 2013), we
found that the Horton and Shreve model has a better accuracy
in most PCs, in particular, the Branch model is more accurate
than the Marosco model across all PCs. Furthermore, the Elect
model has a larger degree of simplification than the Marosco
model in most PCs. We also found that the accuracy of the
spike shape for four reduced models is higher than the Marosco
model in most PCs. However, no single method can achieve both
good accuracy and simplification at the same time. This suggests
that there is a trade-off of morphology reduction between
accurate firing activity and efficient runtime of stimulation, which
may require more systematic investigations at the level of the
neuronal network.

Precise firing coding is a key property of Purkinje cells in the
cerebellum that is mainly used to control the high-precise motor
patterns with millisecond timescale (Amir and Zee, 2011; Ostojic
et al., 2015). We found that the mouse and rat PCs can respond
to generate higher firing rates than guinea-pig PCs with the same
stimulation. This may imply that rats and mice are able to react
on a millisecond timescale better than guinea-pigs and may have
better performance for precise temporal control of motor-related
tasks and conditioned behaviors. It is worth noting that the
animal species are not uniquely represented by encoding of firing
rates since the same species have different rate coding due to their
differences in morphology. However, the detailed mechanisms of
why different species show different dynamic behaviors during
reduction remain unclear. More evidence is needed to confirm
and extend the current conclusion in the future.

In addition to firing rate coding, timing coding can be
represented in PCs spiking patterns. With respect to simple
spikes of PCs in response to PF excitatory inputs, PCs generate
more regular spike trains than the stimulation sequences of
the Poisson process. For stimulation of the renewal process,
PF input sequences are more regular than PC spike trains at
low frequencies. In contrary, PC spike trains are more regular
than stimulation sequences at high frequencies. Furthermore,
rat and mouse PC spikes are more regular than guinea-pig at
high frequencies. It is worth noting that increasing the rate
of input results in a regularity in the mouse and rat but has
no effect on the guinea-pig. Inter-spike intervals have a linear
relationship with refractory periods following each spike (Guan
et al., 2006). We found that the guinea pig has the most irregular
refractory periods under the same stimulus condition (Figure 6).
Thus, we suggest that regularity is presumably determined by
the refractory period. Moreover, the mouse and rat have similar
results of the proportion of regular patterns in reduced models,
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FIGURE 10 | PC firing activities with 500 inhibitory and 1,000 excitatory inputs in Poisson stimulation. (A) Full (left) and Branch (right) models receive excitatory (red)

and inhibitory (blue) synapses. (B) Comparison of firing response curves of three example PCs from the guinea-pig, mouse and ratt under four reduction schemes,

Branch, Horton, Elect and Shreve, respectively. (C) Statistics of regular pattern size across a range of Poisson stimulation for the guinea-pig, mouse, and rat in the full

and Branch models. Percentage of different size is indicated by different colors. (D) Similar as (C), but for irregular patterns. (E) Single ISI duration across a range of

Poisson stimulation.

FIGURE 11 | Complex spikes reproduced by reduced models. (A) Full and reduced morphology of the guinea-pig receiving CF (red dot) synapses. (B) Membrane

potential traces recorded from the soma of guinea-pig PC in full (red) and four reduced models (blue). The shaded part indicates complex spikes. Poisson stimulation

at 200 Hz.
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but the mouse is more regular. This phenomenon is likely to be
determined by the refractory period.

We stress the importance of morphology because the
morphology is known to define the feature of neuronal types
and has significant influences on neuronal computation. A wide
range of patterns of firing activity, dendritic processing and
synaptic integration produced by differences in morphology
determine the response of neurons to synaptic inputs (Mainen
and Sejnowski, 1996; Cannon et al., 2010; Einevoll et al., 2013).
Indeed, we found that differences in neuronal morphology
determine the response of PCs to synaptic inputs with a variation
of firing rate, firing timing, and firing patterns. Here we mainly
consider the case of PF synaptic inputs, since adding inhibitory
inputs does not change the current results. However, it should
be noted that the dynamics of neurons in the cerebellum is
driven by a large diversity of synapses (Zampini et al., 2016),
and network dynamics can be reshaped by the various types
of synaptic plasticities (Liu and Buonomano, 2009; Liu, 2011),
future efforts are needed to study the effect of morphology
on neuronal and network dynamics via different synaptic
dynamics (Hering and Sheng, 2001; Yuste and Bonhoeffer, 2001);
(Ostojic et al., 2015).

It is well-known that Purkinje cells affect motor behavior
via both simple and complex spikes (Khaliq and Raman, 2005;
Harmon et al., 2017). We mainly addressed simple spikes in
this study and future work is needed to systematically analyze
complex spikes discharged by the PC. Simple spikes occur
spontaneously and are modulated by synaptic inputs from
granule cells. Complex spikes arise from climbing fibers and can
induce plasticity of other afferents to Purkinje cells, therefore
it plays the functional role of teaching or error signals during
motor learning (Shogo and Medina, 2015; Titley et al., 2017).
The granule cell inputs modulate simple spike firing up to
200 Hz, while climbing fibers trigger complex spikes at a
remarkably low frequency (1 Hz) (Warnaar et al., 2015). In
addition, complex spikes trigger prominent temporal pauses in
the simple spike trains (Tang et al., 2017). While parallel fibers
make synaptic contacts on spines in the spiny dendrite region,
climbing fiber makes synaptic contact on the main and smooth
dendrite regions (Schutter, 1999; Achard and Schutter, 2008).We
mainly simplified the spiny dendrites of the reduced models and
preserved most of the morphological structure of smooth and
main dendrites. While parallel fibers make synaptic contact on
spines in the spiny dendrite region, climbing fiber makes synaptic
contact on the main and smooth dendrite regions. However, we
found that membrane potential traces can be reproduced well in
four reduced models at climbing fiber input (Figure 11). Thus,
we speculate our reduced model can reproduce the properties of

complex spikes very well. However, further systematic studies are
needed to investigate the complex spikes.

Therefore, the reduced method can be redesigned to
consider this feature of the regional difference. It is possible
that spiny dendrites have no effect on evoked complex
spikes, so they can be eliminated when simplifying the
morphological structure.

The Purkinje cell is a very unique cell type in that it has
a very large, perhaps the largest and most dense neuronal
morphology. However, there are many other cell types defined
in other areas of the brain, in which neuronal morphologies are
very different as well. Therefore, it is possible that one has to
design specific reduction schemes according to the uniqueness
of neuronal morphology for each cell type. For instance, the
typical morphology of layer V neurons in the cortex can
generate specific dendritic spikes that are, in particular, important
to be kept when their morphologies are reduced (Amsalem
et al., 2018). Thus, one may not expect that there is a unique
method for morphological reduction of all cell types in the
neuronal system.
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