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Today, face biometric systems are becoming widely accepted as a standard method

for identity authentication in many security settings. For example, their deployment in

automated border control gates plays a crucial role in accurate document authentication

and reduced traveler flow rates in congested border zones. The proliferation of such

systems is further spurred by the advent of portable devices. On the one hand, modern

smartphone and tablet cameras have in-built user authentication applications while on

the other hand, their displays are being consistently exploited for face spoofing. Similar

to biometric systems of other physiological biometric identifiers, face biometric systems

have their own unique set of potential vulnerabilities. In this work, these vulnerabilities

(presentation attacks) are being explored via a biologically-inspired presentation attack

detection model which is termed “BIOPAD.” Our model employs Gabor features in a

feedforward hierarchical structure of layers that progressively process and train from

visual information of people’s faces, along with their presentation attacks, in the visible

and near-infrared spectral regions. BIOPAD’s performance is directly compared with

other popular biologically-inspired layered models such as the “Hierarchical Model

And X” (HMAX) that applies similar handcrafted features, and Convolutional Neural

Networks (CNN) that discover low-level features through stochastic descent training.

BIOPAD shows superior performance to both HMAX and CNN in all of the three

presentation attack databases examined and these results were consistent in two

different classifiers (Support Vector Machine and k-nearest neighbor). In certain cases,

our findings have shown that BIOPAD can produce authentication rates with 99%

accuracy. Finally, we further introduce a new presentation attack database with visible

and near-infrared information for direct comparisons. Overall, BIOPAD’s operation, which

is to fuse information from different spectral bands at both feature and score levels for the

purpose of face presentation attack detection, has never been attempted before with a

biologically-inspired algorithm. Obtained detection rates are promising and confirm that

near-infrared visual information significantly assists in overcoming presentation attacks.

Keywords: face biometrics, presentation attack detection, anti-spoofing, multiple sensor fusion,

biologically-inspired biometrics

INTRODUCTION

Biometrics have a long history of existence and usage in various security environments. Modern
biometric systems utilize a variety of physiological characteristics also known as “biological
identifiers.” For example, non-intrusive biometric patterns extracted from a finger, palm, iris,
voice, gait (and their fusion in multimodal biometric systems), can provide a wealth of identity
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information about a person. Face biometrics in particular,
pose a challenging practical problem in computer vision due
to dynamic changes in their settings such as fluctuations in
illumination, pose, facial expressions, aging, clothing accessories,
and other facial feature changes such as tattoos, scars, wrinkles
and piercings. The main advantage of face biometric applications
is that they can be deployed in diverse environments at low
cost (in many cases, a simple RGB camera is sufficient) without
necessitating substantial participation and inconvenience from
the public. Public acceptance of face biometrics is also the
highest amongst all other biological identifiers. Modern day
applications making extensive use of face biometric systems
include, mobile phone authentication, border or customs
control, visual surveillance, police work, and human-computer
interaction. Regardless of the numerous practical challenges in
this field, face biometrics still remain a heavily researched topic
in security systems.

Face biometric systems are susceptible to intentional changes
in facial appearance or falsification of photos in official
documents known as, “presentation attacks.” For example,
impostors may acquire a high quality face image of an individual
and manipulate it either printed on paper, on a mask or even
on a smartphone display to deceive security camera checkpoints.
The significant reduction in high-definition portable camera size
also means that impostors have easy access to tiny digital cameras
that discretely or secretively capture face images of unsuspecting
individuals. Moreover, with the vast online availability of face
images in public or social media, it is relatively easy to
acquire and reproduce a person’s image without their consent.
“Presentation Attack Detection (PAD)” or less formally known
“anti-spoofing,” engulfs the detection of all spoofing attempts
made on biometric systems. Therefore, accurate and fast PAD is
an important problem for authentication systems across many
platforms and applications (Galbally et al., 2015) in the fight
against malicious security system attacks. Basic face presentation
attacks often are: (a) printed face on a paper sheet. Sometimes
a printed face is shown with eyes cropped out so that the
impostor’s eyes blink underneath. (b) Digital face displayed
on a screen from digital devices such as tablets, smartphones,
and laptops. This kind of face presentation attacks can be
static or video. In video attacks facial movements, eye blinking,
mouth/lip movements or expressions are usually simulated
through a short video sequence. (c) A 3D mask (paper, silicon,
cast, rubber etc.) specifically molded for a targeted face. In
addition, impostors may also try identity spoofing by using
more sophisticated appearance alteration techniques or their
combinations: (1) Glasses corrective or otherwise and/or contact
lenses with possible color change. (2) Hairstyle, change in color,
cut/trim, hair extensions etc. (3) Make-up or fake facial scars.
(4) Real and/or fake facial hair. (5) Facial prosthetics and/or
plastic surgery.

Presentation attacks in images can be detected from anomalies
in image characteristics such as liveness, reflectance, texture,
quality, and spectral information. Sensor-based approaches
are considered efficient strategies to investigate such image
characteristics and naturally involve the usage (and fusion) of
various camera sensors that capture minute discrepancies. A

sensor-based method that uses a light field camera sensor with
26 different focus measures together with image descriptors
(Raghavendra et al., 2015) reported promising PAD scores. With
the aid of infrared sensors authors in Prokoski and Riedel (2002)
analyzed facial thermograms for rapid, and varied illumination
environments. Similar thermography methods were presented
in Hermosilla et al. (2012) and Seal et al. (2013). Motion-based
techniques are mostly employed in video sequences to detect
motion anomalies between frames. Some representative methods
of this type of PAD algorithms used Eulerian Video Motion
Magnification (Wu et al., 2012), Optical Flow (Anjos et al., 2014),
and non-rigid motion with face-background fusion analysis (Yan
et al., 2012). Liveness-based approaches extract image features
that focus on the liveness phenomena of a particular subject.
Using this approach, algorithms scan liveness patterns in certain
facial parts such as facial expressions, mouth or headmovements,
eye blinking, and facial vein maps (Pan et al., 2008; Chakraborty
and Das, 2014). Texture based methods investigate texture,
structure and overall shape information of faces. In conventional
terms, commonly used texture-based methods rely on Local
Binary Patterns (Maatta et al., 2011; Chingovska et al., 2012;
Kose et al., 2015), Difference of Gaussians (Zhang et al., 2012)
and Fourier frequency analysis (Li et al., 2004). For quality
characteristics, a notable image quality method in Galbally et al.
(2014) proposed 25 different image quality metrics as extracted
between real and fake images in order to train classifiers which
are then used for the detection of potential attacks.

In today’s society, face perception is extremely important. In
the distant past, our very survival in the wild depended on our
ability to collaborate collectively as species. As a consequence,
the human brain over the millennia has evolved to perform facial
perception in an effortless, rapid and efficient manner (Ramon
et al., 2011). The ever increasing requirements in complexity,
power and processing speed, have motivated the biometric
research community to explore new ways of optimizing facial
biometric systems. Therefore, it should not come as a surprise
that biology has recently become a valuable source of inspiration
for fast, power efficient and alternative methods (Meyers and
Wolf, 2008; Wang et al., 2013).

The fundamental biologically-motivated vision architecture
consists of alternating hierarchical layers mimicking the early
processing stages of the primary visual cortex (Hubel and
Wiesel, 1967). It is established from past research that as
visual stimuli are transmitted up the cortical layers (from V1–
V4), visual information progressively exhibits a combination of
selectivity and invariance to object translations such as size,
position, rotation, depth etc. In the past, there have been many
vision models and variants inspired from this approach such
as the “Neocognitron” (Fukushima et al., 1980), “Convolutional
neural network” (LeCun et al., 1998), and “Hierarchical model
and X” (Riesenhuber and Poggio, 2000). Over the years,
these models have performed incredibly well in many object
perception tasks and today are recognized as equal alternatives
to statistical techniques. In face perception, biologically-inspired
methodologies have been applied successfully for some years and
have proven reliable as well as accurate (Lyons et al., 1998; Wang
and Chua, 2005; Perlibakas, 2006; Rose, 2006; Meyers and Wolf,
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2008; Pisharady and Martin, 2012; Li et al., 2013; Slavkovic et al.,
2013; Wang et al., 2013).

There are many common characteristics in biologically-
motivated algorithms and perhaps the most important aspect
is the extensive use of texture-based features in either 2D
or 3D images. Reasons for designing a biologically-inspired
model would be its projected efficiency, parallelization and speed
in extremely demanding biometric situations. Contemporary
state-of-the-art methods are efficient in selected environments
with high availability of data but sifting each frame with
laborious and lengthy CNN training, sliding windows or
pixel-by-pixel approaches requires an incredible amount of
available resources such as storage capacity, processing speed and
power. Nevertheless, biologically-inspired systems have almost
entirely been expressed by deep learning CNN architectures.
In Lakshminarayana et al. (2017), spatio-temporal mappings of
faces extraction is followed by a CNN schema, and discriminative
features for liveness detection were subsequently acquired. This
approach produced impressive results on the databases examined
but their setup relied solely on video sequences which penalize
processing speed and are not always available in the real world,
especially in border control areas where a single image should
suffice. Other CNN models (Alotaibi and Mahmood, 2017;
Atoum et al., 2017; Wang et al., 2017) explored depth perception
prior to application of a CNN that distinguished original vs.
impostor access attempts. In Alotaibi and Mahmood (2017),
depth information was produced with a non-linear diffusion
method based on an additive operator splitting scheme. Even
though only a single image was required in this work, the use
of only one database (and the high error rates in the Replay-
Attack database) did not entirely reveal the potential of this
approach. Another CNN approach was presented in Atoum et al.
(2017) where a two-stream CNN setup for face anti-spoofing was
employed by extracting local image features and holistic depth
maps from face frames of video sequences. Experimentation
with this CNN setup showed reliable results with a significant
cost on practicality i.e., training two separate CNNs along
with all intermediate processing steps. In Wang et al. (2017),
a representation joining together 2D textual information and
depth information for face anti-spoofing was presented. Texture
features were learned from facial image regions using a CNN and
face depth representation was extracted from Kinect images. The
high error rates and limited experimentation procedure made
their findings rather questionable. Finally, in Liu et al. (2018)
a CNN-RNN (Recursive Neural Network) model was used to
acquire face depth information with pixel-wise supervision, by
estimating remote photoplethysmography signals together with
sequence-wise supervision. The accuracy of this method relied
heavily on the number of frames per video which makes this
approach computationally heavy.

Overall, Convolutional Neural Network approaches and
the manner in which they are executed or accelerated in
hardware is a big subject of debate in our world today. They
require large amounts of resources in hardware, software and
energy to be effectively trained. However, since end-users have
different hardware/software configurations, no particular effort
was given to hardware optimization or software acceleration.

The investigation of a biologically-inspired PAD secure system
was developed as part of two funded projects, the European
project ABC4EU and the Spanish national project BIOINPAD.
End-users in both projects (i.e., the Spanish national police,
Estonian police, Rumanian Border Guard) were interested in a
new approach to the PAD problem.

Over the years, bio-inspired systems have received significant
interest from the computer vision community because their
solutions can relate to real-world human experiences. Thus,
the main research contribution of this work has been the
introduction of a system that handles video presentation attack
detection from a biologically-inspired perspective. A system
that has a straightforward and simple architecture able to cope
with visual information from a single frame at high precision
rates. Our design focus has been the development of a bio-
inspired systemwith a clear structure and relatively little effort. In
addition, this paper summarizes precision rate results obtained
during our research and compares them against other known
models to enhance the comparative scope and understanding.
The system has been evaluated with different databases in the
visible, and near-infrared (and their fusion) spectral regions.
This is illustrated over several sections of this article which
is organized in the following way. In section Methodology
and BIOPAD’s structure, definitions and methodology that
have led us to the development of the BIOPAD model are
discussed, followed by a detailed explanation of the model’s
structure. Furthermore, in that section, we demonstrate the
biologically-inspired techniques used, the model’s general layout,
and individual layer functionality. Section Experiments describes
all databases used (section Databases), explains our biometric
evaluation procedures (section Presentation attack results) and
analyses all experiments conducted for the BIOPAD, Hierarchical
Model And X (HMAX) and CNN (AlexNet) models. Section
Experiments is further divided into visible (section Visible
spectrum experiments) and near-infrared (section Near-infrared
experiments and cross-spectral fusion) experiments for a better
comparison between the two approaches explored. Finally,
the last section summarizes all of our conclusions in this
research work.

METHODOLOGY AND BIOPAD’S
STRUCTURE

In the first part of this section, the overall layered structure
is described, followed by the biologically-inspired concepts
that have been used as core mechanisms in BIOPAD. In the
last section, each layer is individually explored, along a full
explanation of its operation in a pseudo-like manner.

Center-Surround and Infrared Channels
Mammals perceive incoming photons through the retina in their
eyes. The number of individual photoreceptors in the retina of
the human eye varies from person to person and in the same
person from time to time, but on average each eye consists of∼5
million cones, 120 million rods and 100 thousand photosensitive
retinal ganglion cells (Goldstein, 2010).
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FIGURE 1 | Examples of on-center and off-center receptive fields for color opponency channels. Plus sign indicates whether the particular color is on and the

minus off.

In the human retinae, rod photoreceptors peak at ∼500 nm,
they are slow response receptors, come in small numbers, possess
large receptive fields, and are suitable for dark environments i.e.,
night time. However, cone receptive fields are narrower and are
tuned to different wavelengths of light. They are considerably
greater in numbers than rods and hence, are responsible for visual
acuity. Bipolar retinal cells bear the task of unifying incoming
visual information from cones and rods (Engel et al., 1997).
Furthermore, on-center and off-center bipolar cells operate in
a center-surround process between red-green and blue-yellow
wavelengths. For example, on-center Green-Red (RG) bipolar
cells are going to maximally respond when red hits the center of
their receptive field only and are inhibited when green is at their
surrounding region. Vice versa, this operation is reversed for
an off-center RG bipolar cell where excitation only occurs when
the detectable green wavelength is incident in the surrounding
region. As shown in Figure 1, this can be further applied for the
blue-yellow and lightness channels. The color opponent space is
defined by the following equations (Van De Sande et al., 2010):

O1 = (R− G)/
√
2 (1)

O2 = (R+ G− 2B)/
√
6 (2)

O3 = (R+ G+ B)/
√
3 (3)

The O3 opponent channel is the intensity channel and color
information is conveyed by channels O1 and O2. In BIOPAD,
when the input image is in RGB, all three opponent channels
are processed simultaneously and in order to make use of the
available infrared information, an additional channel NIR is
added in the fourth channel dimension.

The use of infrared or thermal imaging alongside the visible
spectrum, has been the subject of investigation many times in

the past (Kong et al., 2005) and Gabor filters with near-infrared
data have been applied together with computer vision algorithms
(Prokoski and Riedel, 2002; Singh et al., 2009; Zhang et al., 2010;
Chen and Ross, 2013; Shoja Ghiass et al., 2014). However, the
use of infrared spectra in presentation attack detection using a
biologically-motivated model, to our knowledge, is a first with
this research work.

The actual infrared range of wavelengths can be huge,
spanning from 7 microns all the way up to 300 microns and
generally these bands, are undetectable to the human eye.
However, there is evidence that infrared wavelengths up to 10
microns under certain circumstances are detectable by humans
as visible light (Palczewska et al., 2014). From a biological
perspective, the exact mechanism of near-infrared perception in
the visual cortex is unknown. In BIOPAD and at low feature
level, it is treated as an additional channel input from the retina,
with a range of normalized pixel values as provided by the sensor
(Figure 2). Infrared data acquisition and sensor information is
shown in section Presentation attack results.

Area V1—Edge Detection
As visual signals travel to the primary visual cortex through the
lateral geniculate nucleus, area V1 orientation selective simple
cells process incoming information (Hubel and Wiesel, 1967)
from the retinae and perform basic edge detection operations
for all subsequent visual tasks. They serve as the building block
units of biological vision. It is already well-established from
literature that orientation selectivity in V1 simple cells can be
precisely matched by Gabor filters (Marcelja, 1980; Daugman,
1985; Webster and De Valois, 1985).

A Gabor filter is a linear filter which is defined as the product
of a sinusoid with a 2D Gaussian envelope and for values in pixel
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coordinates (x, y), it is expressed as:

G
(

x, y
)

= exp

(

−
X2 + γ 2Y2

2σ 2

)

cos

(

2π

λ

)

X (4)

X = x cos θ − y sin θ (5)

Y = −x sin θ + y cos θ (6)

In Equation 5, γ is the aspect ratio and in this work is set
to 0.3. Parameter λ is known as the wavelength of the cosine
factor and together with the effective width, parameter σ, specify
the spatial tuning accuracy of the Gabor filter. Ideally, to
optimize the extraction of contour features from V1 units for
a particular set of objects, some form of learning is necessary
to isolate an optimum range of filters. However, this process
adds complexity and it is time-consuming since it requires
a huge number of samples, as experiments on convolutional
neural networks have shown in literature. In order to avoid this
step, Gabor filter parameters are hardcoded directly into our
model following parameterization sets that have been identified
from past studies. Two different parameterization settings have
been considered (Serre and Riesenhuber, 2004; Lei et al., 2007;
Serrano et al., 2011). Our preliminary experiments have shown
that the two particular Gabor filter parameterization ranges,
have no noticeable effect on PAD results. Thus, we chose the
parameterization values given (Serrano et al., 2011).

Additionally, it is known that V1 cell receptive field sizes
vary considerably (McAdams and Reid, 2005; Rust et al., 2005;
Serre et al., 2007) to provide a range of thin to coarse spatial
frequencies. Similarly, four different receptive field sizes were
used here with pixel dimensions 3 × 3, 5 × 5, 7 × 7, and 9
× 9. Coarser features are handled by area V2, explained in the
next section.

Area V2—Texture Features
In general, the significance of textural information is sometimes
neglected or even downplayed in past biologically-inspired
vision models. In face biometrics, as explained previously in
the introductory section, there is a long list of texture-based
presentation attack detection models and texture information is
considered a crucial feature against attacks.

The role of cortical area V2 in basic shape and texture
perception is essential. V2 cells share many of the edge
properties found in V1. Nevertheless, V2 cell selectivity has
broader receptive fields and is attuned to more complex features
compared with V1 cells (Hegdé and Van Essen, 2000; Schmid
et al., 2014). In addition to broader spatial features, this
layer processes textural information and is therefore capable
of expressing the different nature of surfaces. This is a crucial
advantage in face presentation attack detection where there is a
wealth of information hidden within the texture of faces, facial
features or face attacks. For example, texture of beards, skin,
and glasses can prove a valuable feature against spoofing attacks
mimicking their nature.

V2 cells are effectively expressed by a sinusoidal grating cell
operator though other shape characteristics also correspond well
(Hegdé and Van Essen, 2000). The grating cell operator has not
only shown great biological plausibility with respect to actual V2

texture processes but has also proven superior to Gabor filters
in texture related tasks (Grigorescu et al., 2002). Its response
is relatively weak to single bars but in contrast, it responds
maximally to periodic patterns.

The approach used here (Petkov and Kruizinga, 1997)
consists of two stages. In the first stage grating subunits
generate on-center and off-center cells responding to periodicity
much like retina cells. In the following stage, grating cell
responses of a particular orientation and periodicity are added
together, a process also known in neurons as spatial summation
(Movshon et al., 1978).

A certain response Gr of a grating subunit at position
(x, y), with orientation θ and periodicity λ is given by
Petkov and Kruizinga (1997):

Gr
(

x, y
)

θ,λ =
{

1, if ∀ n, M
(

x, y
)

θ,λ, n ≥ ρM(x, y)θ,λ
0, if ∃ n, M

(

x, y
)

θ,λ, n < ρM(x, y)θ,λ
(7)

where n ∈ {-3 . . . 2}, ρ is the threshold parameter between 0 and
1 (typically 0.9). The maximum activities of M at a given location
(x, y) and for a particular selection of θ , λ, n, are calculated as
followed (Petkov and Kruizinga, 1997):

M
(

x, y
)

θ ,λ, n=max







s
(

x′, y′
)

θ ,λ,ϕn
|

n λ
2 cosθ≤x′−x<(n+1) λ

2 cos θ
n λ
2 sinθ≤y′−y< (n+1) λ

2 sin θ

(8)

φn =
{

0, n = −3,−1, 1
π , n = −2, 0, 2

(9)

and

M
(

x, y
)

θ ,λ,n =max
(

M
(

x, y
)

θ,λ, n

)

(10)

The responses at M(x, y)θ ,λ,n in Equation 9, are simple cell
responses with symmetric receptive fields along a line segment
3λ. Essentially this means that there are three peak responses
for each grating subunit at point (x, y) at a given orientation θ.
This line segment is split in λ/2 intervals. The particular position
of each interval defines the response of on-center and off-center
cells. In other words, a grating cell subunit is maximally activated
when on-center and off-center cells of the same orientation and
spatial frequency are activated at point (x, y). In Equation 10, φn

is the phase offset and for values between 0 and π, it corresponds
to symmetric center-on and center-off operations, respectively.

In the second part of V2 grating cell design, a response
w of grating cell centered on (x, y) along orientation θ and
periodicity λ, is the weighted summation of grating subunits with
orientations θ and θ + π , as given below:

w(x, y)λ, θ=
∫

exp

(

−
(

x−x′
)2 +(y−y′)2

2 (βσ)2

)

(

Gr
(

x′, y′
)

θ,λ+Gr
(

x, y
)

θ+π ,λ

)

dx′dy′, θ∈ [0,π ) (11)

Parameter β is the summation area size with a typical value of 5.
In our experiments the number of simple cells were empirically
chosen at 3 and all other parameter values were set at default
values according to Petkov and Kruizinga (1997).
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FIGURE 2 | The proposed model structure. Several layers L1 to L5 progressively process spatial and spectral facial features. All participants gave written informed

consent for the publication of this manuscript.

BIOPAD Structure
Light waves are being continuously perceived by our eyes
and every generated electrical impulse passes via the lateral
geniculate nucleus of our brain to arrive at the first neurons
in the striate cortex (Hubel and Wiesel, 1967). Countless
neurons organized in progressive layers then process this
information through cascades of cerebral layer modules each
intended for a specific operation. Broadly, visual areas in
the human brain after visual area V2 follow the dorsal and
ventral visual pathways, the “where” and “what” pathways
(Schneider, 1969; Ungerleider and Mishkin, 1982). The two
streams are layers along two distinct cerebral paths that
localize and analyse meaningful information in constant
neuronal communication.

BIOPAD’s structure mimics the basic visual areas V1 and
V2 in the primary visual cortex in a bottom-up fashion
(Figure 2). Its operation relies on the early stages of biological
visual cognition, without any external biases or influences.
The design successively processes extracted biologically-inspired
features reducing their dimensionality to an extent that
they can be used with classifiers that determine original
from fake access attempts. Furthermore, through successive
biologically-motivated filtering BIOPAD’s main strength lies
in its ability to transform extracted features into higher
dimensional vectors in a simple way that maximizes the
separation between them. For example, an important difference
between BIOPAD and HMAX is that the latter model’s main
focus is view-invariant representation of objects irrespective

of their size, position, rotation and illumination. Conversely,
BIOPAD’s purpose is the detection of face spoofing attempts
and to this end, invariance properties such as size and
position could be valuable with future extensions. Even
though invariance properties are generally meaningful in face
recognition (Yokono and Poggio, 2004; Perlibakas, 2006; Rolls,
2012), in this particular scenario of face presentation attack
detection they add unnecessary complexity or processing delays
and are therefore not explored further. More specifically,
BIOPAD’s proposed structure is separated in the following
layers (Figure 2):

Input Layer: The purpose of the input layer is to prepare
image information by scaling down all input RGB images to a
minimum of 300 pixels for the shortest edge in order to preserve
the image’s aspect ratio. This particular image size was chosen as
a good compromise between speed/time and computational cost.

Layer L1: This layer plays the role of the lateral geniculate
nucleus and separates visual stimuli in the appropriate double-
opponency channels (bipolar cells) as given in section Area V1—
Edge detection while scaling all pixel values to the same range
between 0 and 1.

Layer L2a: Gabor filter operations perform edge detection
according to parameterization values given in section Area V2—
Texture features producing feature maps for each channel. It is
important to note that after obtaining filtered outputs from all
Gabor filters (in total 192) for each double-opponency channel,
a maximum operator is applied so that a particular maximum
response of L2a vectors (x1 . . . xm) in a neighborhood j is
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given by:

r = argmax j(xj) (12)

The maximum operator is a well-known non-linear biological
property exhibited by certain visual cells at low levels of visual
cognition that assists in pooling visual inputs from previous
layers (Riesenhuber and Poggio, 1999; Lampl et al., 2004)
to greater receptive fields. This hierarchical process gradually
projects meaningful visuospatial information to higher cortical
layers in the mammalian brain (Figures 3a,b).

Layer L2b: In this layer grating cell operations are performed
according to the settings given in section BIOPAD structure.
Subsequently, grating outputs are spatially summed with outputs
from L2a, in order to form a single L2 output for each of the
three double-opponency channels. Spatial summation is another
property of the visual cortex and like the maximum operator it is
intended to linearly combine presynaptic inputs into outputs for
higher layers (Movshon et al., 1978). Spatial summation is used
in this layer in order to preserve the spatial integrity and sensitive
texture information in faces (Figure 3c).

Layer L3: The three double-opponency channels after spatial
summation (Figure 3d), contain both edge and texture features.
The information of these channels along with the RG-BY spectral
channels from L1 that contain the spectral differences of each
image, are aggregated into spatial histograms with a window size
of 20 units and bin size of 10. These values were empirically
selected after experimentation as ideal for the particular layer
dimensions. These spatial histograms have been used before in
the context of face recognition but with lower level features at L1
(Zhang et al., 2005). Here, they are employed at an intermediate
level of feature processing and with various types of biological-
like features. It is further important to note here that since
all these spatio-spectral channels carry different types of visual
information, they are never mixed together.

Layer L4: In this layer all L3 information from the previous
layer is simply concatenated and sorted in a multidimensional
vector for either the training or testing phase, without any further
processing. Vector dimensions vary according to the size of
the dataset and choice of parameters within the model. For
example, if from the previous L3 settings spatial histograms
are performed over larger regions or if the input image
layer of the image is set to smaller dimensions (for faster
processing speeds), then the total number of vectors extracted
will be smaller. Moreover, if the total number of images in
the dataset changes, so does the vector dimension size, i.e.,
md×np, where m are the vectors extracted from previous
layers with length d and n are the columns of vectors per
image p.

Layer L5: Supervised classification takes place in
this layer and any classifiers used can be trained with
the extracted feature vector from L4. Training data
are selected by following the 10-fold cross-validation
technique. The supervised classifiers chosen for this
work were a Support Vector Machine (SVM) with
a linear kernel and k-Nearest Neighbor (KNN) with
Euclidean distance.

BIOPAD’s overall operation is further demonstrated with a
pseudo-code approach below:

RGB Data Setup

Each PAD database consists of single RGB frame
samples for a particular person’s authentic video
sequence and their presentation attacks. The PAD
image database is then split in 70% training samples
(Tr) 30% samples for testing (Ts) with cross-validation
in 10-folds.

if RGB case train then,

for each random Tr sample of each fold do,

(1) Input: Load a m × n Tr sample and scale to 300 pixels for the shortest

edge.

(2) Center-surround: Convert RGB space to O1, O2, O3 channel

opponent space using Equations (2–4) thus obtain opponency frame

Or of the same dimensions.

for each opponency channel O1 (red –green differences), O2

(blue–yellow) and O3(lightness) do,

(3) Process V1: Load 3x3, 5x5, 7x7, 9x9 Gabor filters (Gf ) parameterised

with σ =1, and λ = 4, 5.6, 7.9, 11.31, 15.99, 22.61 in total 192 filters

then.

• L1Tr = Or · Gf , where L1Tr is a multidimensional array of

m × n ×192 convolved versions of the Tr frame with V1-Gabor

like filters.

• Extract the maximum response using Equation (12) at every position

along the dimension of convolutions to obtain a new matrix L1M
• Normalize L1M with zero mean and unit variance.

(4) Process V2: Load grating filters (Gr ) using θ = 0–360◦ in 45◦ steps, λ =
5.42, ρ = 0.9, and β = 5.

• L2Tr = Or · Gr , where L2Tr is a multidimensional array of m × n ×
θ convolved versions of the Tr frame with V2 -grating filters.

• Extract the maximum response using Equations (10–12) at every

position along the dimension of convolutions to obtain a new

matrix L2M.

• Normalize L2M with zero mean and unit variance.

(5) Spatial summation of L1M and L2M features yielding an array of the

same size as the input.

(6) Spatial histograms on summation output from step 5, with a fixed

window size of 20x20 L3 units and bin size of 10, then concatenate

histograms into a column of 5920 L4 vectors for each sample

(7) Train classifier after all Tr have been processed through steps (1–6).

else if RGB case test then,

for each random Ts sample of each fold do,

repeat steps (1-6) as above and use 5920 column vectors of Ts to extract

predictions from the trained classifier

RGB and NIR Data Setup

The FRAV database consists of RGB and NIR single samples
for a particular person’s authentic video sequence and their
presentation attacks. The PAD image database is then split in
70% training samples (Tr) 30% samples for testing (Ts) with
cross-validation in 10-folds, maintaining RGB and NIR original
sample ratios.
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if RGB and NIR case train then,

for each random Tr sample of each fold, do

repeat steps (1-2) and (3-6). At L1 for each opponency channel O1

(red –green differences), O2 (blue – yellow), O3(lightness), NIR (near-infrared)

extract 7100 L4 column vectors for each Tr sample during classifier training.

else if RGB and NIR case test then,

for each random Ts sample of each fold do,

repeat steps (1-2) and (3-6). At L1 for each opponency channel O1

(red –green differences), O2 (blue – yellow), O3(lightness), NIR (near-infrared)

extract 7100 L4 column vectors of Ts for predictions obtained from the

trained classifier.

EXPERIMENTS

It is important to note that in all experiments for both the
genuine access and impostor attacks, only one photo per
person was used from the entire video sequences. The databases
employed in this work and their different spoofing attacks
are explained in section Databases. Section Presentation attack
results presents the obtained results in conventional biometric
evaluation measures. The remaining part of this section is
further divided into experiments in the visible and near-infrared
spectrum. In this subsection, the different spectra are examined
individually and subsequently, their cross-spectral fusion at
feature, and score levels. Since our model currently does not
perform any liveness detection method, successive video frames
are not being considered. For the purpose of homogeneity

and statistical accuracy between datasets, train and test data
were divided with the cross-validation technique, bypassing the
original train/test data split of some databases as has been
explained in the previous section in more detail.

Databases
The Facial Recognition and Artificial Vision (FRAV) group’s
“attack” database addresses several critical issues compared to
other available face PAD databases. The number and type of
attacks can vary significantly in each facial presentation attack
database and by large, databases of the past never included a large
sample of known threats. In addition to the sample of individuals
examined being relatively small, little attention was paid in
the multitude of human characteristics often occurring within
human populations e.g., beards, glasses, eye color, haircuts etc. At
the same time, sensor equipment is often limited and out-dated
to contemporary technology products found in the market today.
These shortcomings necessitated the creation of an up-to-date
PAD facial database according to ISO/IEC and ICAO standards
with a larger statistical sample, multi-sensor information and
inclusion of all basic attacks. This database serves as a simulation
stepping stone for experimentation ahead for any real-world
situation and supplements the list of existing databases found
publicly. The introduction of this new database from our group
offers the following main characteristics and contributions:

• The largest PAD-ready facial database to date with 185
different individuals of both genders and various age groups.

• The largest collection of sensor data aimed at PAD
algorithms. Four different types of sensors namely Intel’s

FIGURE 3 | A genuine access attempt vs. a photo-print attack. Top row shows the progressive process of a genuine photo attempt. Bottom row shows the printed

photo attack. Column (A) shows the input layer images. Column (B) the L2a layer as processed from edge detection Gabor filters, column (C) the L2b layer

processed from texture grating cells and column (D) the combined layers L2a and L2b after spatial summation. The richness and depth of edge-texture information in

the original image (top row) is apparent. All participants gave written informed consent for the publication of this manuscript.
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Realsense F200, FLIR ONE mobile phone thermal sensor, Sony
A6000 ILCE-A6000 and a HIKVISION surveillance camera and
therefore covering a range of spectral bands in the visible, near-
infrared (at 860 nm) and infrared (800–1500 nm).

• Various spoofing attack scenarios examined, which include
the following types of spoofing attacks:

1. Printed photo attacks with high resolution A4 paper.
2. Mask attacks from printed paper.
3. Mask attacks from printer paper with eye areas exposed an eye

blinking effect.
4. Video attack with a tablet electronic device.
5. 3D Mask attack (to this day limited but will be expanded in

the future)

Lastly, particular attention was paid at uniformly illuminating all
faces using artificial lighting. Two T4 fluorescent tubes operating
at 6,000 K−12 Watts each, evenly distributing multi-directional
light to all subjects. Figure 4 illustrates all of the presentation
attack types explored in the FRAV “attack” database for a given
subject using RGB and NIR sensor information.

The CASIA Face Anti-Spoofing (Zhang et al., 2012) database
is a database from the Chinese Academy of Sciences (CASIA)
Center for Biometrics and Security Research (CASIA-CBSR).
This database contains videos at 10 s of real-access and spoofing
attacks of 50 different subjects, divided into train and test sets
with no overlap. All samples were captured with three devices

at different resolutions: (a) low resolution with an old 640 ×
480 webcam, (b) normal resolution with a more up-to-date
640 × 480 webcam and c) high resolution with a 1920x 1080
Sony NEX-5 camera. Three different attacks were considered,
(a) warped, spoofing attacks are performed with curved copper
paper hardcopies of high-resolution digital photographs from
genuine users, (b) cut, attacks are performed using hardcopies
of high-resolution digital photographs from genuine users, with
the eye areas cut out to simulate eye blinking, c) video, genuine
user videos are replayed in front of the capturing device using
a tablet.

The MSU Mobile Face Spoofing Database or MFSD (Wen
et al., 2015) for face spoof attacks, consists of 280 video clips
of photo and video attack attempts of 35 different users. This
database was produced at the Michigan State University Pattern
Recognition and Image Processing (PRIP) Lab, in East Lansing,
US. The MSU database has the following properties, (a) mobile
phones were used to acquire both genuine faces and spoofing
attacks, (b) printed photos were generated as high-definition
prints and their authors claim that these have much better quality
than printed photos in other databases of this kind. Two types
of cameras were used in this database, (a) built-in camera in
MacBook Air at a resolution of 640 × 480, and (b) front-facing
camera in the Google Nexus 5 Android phone at a resolution
of 720 × 480. Spoofing attacks were generated using a Canon
SLR camera, recording at 18.0M pixel photographs and 1,080

FIGURE 4 | An example of a subject from the FRAV “attack” database. Top row left to right: Genuine access RGB photo, RGB Printed photo attack, RGB printed

mask attack, RGB printed mask with eyes exposed attack, RGB tablet attack. Bottom row left to right: Genuine access NIR photo, NIR printed photo attack, NIR

printed mask attack, NIR printed mask with eyes exposed attack, NIR tablet attack. All participants gave written informed consent for the publication of

this manuscript.
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p high-definition video clips and iPhone 5S back-facing camera,
recording 1,080 p video clips.

Presentation Attack Results
BIOPAD was evaluated with three different databases, FRAV-
attack, CASIA, andMFSD. The main concern of our experiments
was the detection success rate of spoofing attacks made by
potential impostors. In simple terms, the system was required
to effectively differentiate between fake and genuine access
attempts. This was treated as a two-class classification problem.
The applied biometric evaluation procedures are defined for the
spoofing False Acceptance Rate (sFAR) and False Rejection Rate
(FRR) as:

sFAR =
Impostor attacks seen as genuine

Total number of attacks
(13)

FRR =
Rejected genuine access attempts

Total number of genuine access attempts
(14)

Moreover, presentation attack detection is further presented
according to SC37ISO/IEC JTC1 Biometrics (2014) with an
additional measure, Average Classification Error Rate (ACER).
The average of impostor attacks incorrectly classified as genuine
attempts and normal presentation incorrectly classified as
impostor attacks is given by:

ACER =
sFAR+ FRR

2
(15)

Train and test data were partitioned using the k-fold cross
validation technique. All scores were obtained using 10-folds and
in order to further testify performance scores, and L4 feature
vectors were essentially classified using two different schemas.
A Support Vector Machine (SVM) classifier with two different
kernels linear, Radial Basis Function (RBF) and a k-nearest
neighbor (KNN) classifier of n = 2 nearest neighbors with
Euclidean distance as a distance measure. In reality, the number
of neighbors varies according to the dataset but for the two class
problem here out of all n values examined, two produced the best
average on all datasets as found through cross-validation. In the
beginning, BIOPAD was examined only on the RGB images of
all three databases and then on both RGB/Near-Infrared (NIR)
images at feature-score levels for the FRAV attack database only
since infrared data is unavailable for the other databases.

Visible Spectrum Experiments

Accuracy rates are defined as the number of images for each
database correctly classified as genuine or fake, i.e., true positives
and true negatives. The average classification accuracy scores
and standard deviation values from all trials in Tables 1, 2,
respectively, highlight the large differences between datasets and
classifiers. From Table 1 it can be deduced that BIOPAD analyses
presentation threats better thanHMAXunder all of the examined
databases. Depending on the choice of training and testing data
as provided by cross-validation, significant deviations in results
may occur. This is largely due to the relatively small sample
sizes in databases, especially in CASIA and MFSD, leading to
significant statistical variance. This has an obvious effect on the

TABLE 1 | The average detection percentages (%) of 10 trials with

cross-validation.

Dataset BIOPAD HMAX

SVM linear SVM RBF KNN SVM linear SVM RBF KNN

CASIA 92.75 90.13 57.37 90.25 88.63 63.50

MFSD 97.08 86.04 82.08 90 87.08 70.42

FRAV 98.91 98.71 94.71 96.57 93.91 81.23

TABLE 2 | The average standard deviation values (σ2) of 10 trials with

cross-validation.

Dataset BIOPAD HMAX

SVM linear SVM RBF KNN SVM linear SVM RBF KNN

CASIA 5.06 5.96 10.18 6.06 5.6 17.17

MFSD 3.82 3.68 9.97 7.84 9.86 11.23

FRAV 1.14 1.4 1.99 2.18 3.18 4.98

KNN classifier which portrays an unstable and low performance
with respect to SVM. The CASIA presentation attack database
produced the worst overall results in terms of PAD.

The highest performance has been achieved with the FRAV
“attack” database closely followed by the performance achieved
with theMFSD database. This is not entirely surprising since both
datasets consist of good quality images and high resolution print
attacks. The worst performance has been noticed when operating
with CASIA photos. The total average performance from all
datasets in the BIOPAD SVM linear case is at 96.24% while for
HMAX at 92.27%. HMAX is not a dedicated PAD algorithm, nor
has it been ever designed for such a purpose. Nevertheless, it can
be seen from Table 1 that HMAX has performed remarkably well
which beyond doubt proves the adaptability and capacity that
bio-inspired computer vision models have.

In Table 2, standard deviation values further paint a picture
of relationships between models and datasets. The highest
performance was observed in BIOPAD with SVM using the
FRAV database and the worst in HMAX KNN using CASIA.
Between them there is a sizeable difference of 16% indicating
the impact of choosing a particular scenario and classifier in
PAD performance. It is further noticeable from this table that
BIOPAD provides a more consistent set of results with SVM
linear being the overall winner in performance. The detection
accuracy rates inTable 1 provide an insight into the overall ability
of the PAD model to detect spoofing attacks. From these results
it is seen that the model can achieve a high detection rate at
almost 99% with a consistent standard deviation value of 1.14
for the SVM linear kernel case in the FRAV database. Overall,
the KNN classifier with the CASIA database has shown the worst
performance. While conclusions from Tables 1, 2 are useful,
biometric evaluation becomes more meaningful when measured
in terms of sFAR and FRR which can effectively capture the
nature of error.
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In addition to HMAX and for a more complete comparison
with BIOPAD, the selected databases were analyzed using
Convolutional Neural Network. Multiple lines of research have
been explored for CNN architectures in last two decades and a
huge number of different methods are proposed in references
(Canziani et al., 2016; Ramachandram and Taylor, 2017). In
this part of the experiments, the objective is to compare the
proposed bio-inspired method with a base line CNN model. The
architecture selected was based on the well-known LeNet method
(LeCun et al., 1998) with the improvements implemented in
AlexNet (Krizhevsky et al., 2012). AlexNet has been tested for
detecting presentation attacks using faces (Yang et al., 2014; Xu
et al., 2016; Lucena et al., 2017). The architecture of the net
is formed by eight layers, five convolutional and three fully-
connected. All results provided in Table 3 are the average of
10 trials.

Table 3 shows that error percentages are relatively small and
comparable with another state-of-the-art algorithm like CNN
that have been used in the past. The sFAR percentages for
the CASIA and MFSD databases are comparable but there
is a significant difference between the two databases in their
FRR percentages. Naturally, this is also reflected onto the
ACER percentages. The significant difference in FRR percentages
indicates the difficulty of distinguishing attacks from genuine
access attempts in the CASIA database. The error percentages
for the best classifier choice (SVM linear) appear particularly
improved for the FRAV attack database. In effect, this proves
the importance of image quality in terms of both verification
and presentation attack cases. Image quality is a consequence
of various reasons and is also reflected in PAD results seen in
Table 1. We further wanted to investigate the impact V1 and V2
edge and texture operations have on the overall performance of
presentation attack detection. These tests were only performed
for the SVM linear kernel case. It is worthwhile therefore
to examine the separate and combined effect of V1 and V2
operations which can be seen in Table 4 below in terms of
classification percentages. PAD scores rise when V1 and V2
feature vectors are combined together and standard deviation
values across all trials indicate better performance. While these
values are indicative in these early stages of experimentation,
a separate study on optimum parameterization for each layer
may yet reveal a more important relationship between edge and
texture features in presentation attack detection.

In order to better understand the intrinsic quality difference
of the databases used in this work, various metrics were explored.
There are numerous image quality metrics that have been
developed over the years such as mean square error, maximum
difference, normalized cross-correlation and peak signal-to-
noise ratio amongst many others. Some of these metrics in
fact have been successfully used as a separate PAD algorithm
(Galbally et al., 2014). The majority of quality metrics requires
the examined image to be subtracted from a reference image.
This produces accurate error results only when the images are
identical i.e., when the image content is identical. However, in
practice face databases are a collection of images from various
sensors at different angles. So in this particular case, sharpness
metrics capable of measuring the content quality from a single

TABLE 3 | AlexNet and BIOPAD average sFAR and FRR scores over 10 trials.

Dataset AlexNet BIOPAD

sFAR FRR ACER sFAR FRR ACER

CASIA 2.857 13.9 8.37 2.77 14.58 8.67

FRAV 2.98 17.34 10.16 0.85 2.43 1.64

MFSD 9.64 39.07 24.34 3.44 5 4.22

TABLE 4 | The average classification percentages (%) and standard deviation

values of 10 trials with cross-validation for V1 and V2 operations.

Dataset µ σ
2

V1 V1 and V2 V1 V1 and V2

CASIA 90 92.75 8.6 5.06

MFSD 95.63 97.08 6.25 3.82

FRAV 97.73 98.91 2.48 1.14

image would be more suitable and useful. Likewise as before
with quality metrics, there is a huge list of sharpness metrics
being used in literature today, e.g., absolute central moment,
image contrast and curvature, histogram entropy, steerable
filters, energy gradients etc. An in-depth database quality analysis
is beyond the scope of this work, and we have experimented
with several sharpness metrics noting similar responses from all.
Table 5, shows indicative sharpness results by using the spatial
frequency quality (Eskicioglu and Fisher, 1995) metric which has
been representatively chosen.

It is evident from the mean values (µ) in Table 5 that the
CASIA dataset on average does not possess the high quality
of spatial features seen in the MFSD and FRAV databases.
Furthermore, the MFSD dataset has produced the best scores,
however it should be highlighted that it does not have the
same variety of presentation attacks found in the FRAV “attack”
database nor the abundance of test subjects. The “Smartphone”
and “Tablet” attacks are a similar type of electronic device
attack and there is no provision of mask attack data. To
further understand the importance of the aforementioned better,
we employ the t-Distributed Stochastic Neighbor Embedding
(t-SNE) (Van Der Maaten and Hinton, 2008) technique to
visualize and compare presentation attacks in each dataset.
L4 vectors as extracted from BIOPAD are used with t-SNE
technique at “default” value settings, i.e., 30 dimensions for its
principal component analysis part and 30 for the Gaussian kernel
perplexity factor, and shown in Figure 5.

In Figures 5A,C,E, real access attempts vs. impostor attacks
are visualized within the same space. These illustrations help
understand how genuine users distance from their attacks. It
can be easily observed in Figure 5A that for the CASIA dataset
real access attempts are scattered across the same space as
presentation attacks, making the classification process complex
and difficult to achieve. This is also confirmed by its reduced
detection rates. Different patterns are exhibited from results
in Figure 5B, where real access attempts occupy a denser area

Frontiers in Computational Neuroscience | www.frontiersin.org 11 May 2019 | Volume 13 | Article 34

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Tsitiridis et al. Bio-Inspired Presentation Attack Detection

TABLE 5 | Direct comparison of spatial frequency quality index values for three datasets and for each of their presentation attacks.

Dataset Printed photo Printed mask Printed

Photo/Mask with Eye blinking

Smartphone Tablet Real users µ

CASIA 0.803 – 0.8957 – 1.0221 1.094 0.9538

MFSD 2.4191 – – 2.7054 2.9603 2.754 2.7097

FRAV 1.8275 1.6544 1.5081 – 1.4906 1.831 1.6623

FIGURE 5 | L4 vectors visualized with t-SNE for the three datasets. (A) real vs. impostors–CASIA database, (B) presentation attacks—CASIA database, (C) real vs.

impostors –MFSD database, (D) presentation attacks—MFSD database (E) real vs. impostors—FRAV “attack” database, and (F) presentation attacks—FRAV

“attack” database.

FIGURE 6 | HMAX vectors visualized with t-SNE for the three datasets in terms of real access attempts vs. impostors. (A) t-SNE for the CASIA dataset, (B) t-SNE for

the MFSD dataset, and (C) t-SNE for the FRAV “attack” dataset.

within the impostor attack zone and finally in Figure 5C, in
which real access attempts fall within a separate space. Looking
at the presentation attack images in all datasets closely, it is not
surprising to understand why these patterns occur. In Figure 5B,
mainly due to the low image sharpness in CASIA (Table 5) and
the nature of attack experiments, L4 vectors cover almost the
same range of values and dimensional space. As the separation
of presentation attacks and real access attempts improve in
Figures 5D,F so do the results in Table 1. Finally, in Figure 5F,
some real access attempts exhibit a noticeable overlap with their

respective presentation attacks, particularly within the printed
photo space, which is the main source of sFAR and FRR errors
for the FRAV database. Arguably, the presentation attack that, in
general, best matches genuine user information is the “printed
photo” attack which can be efficiently faced in the NIR spectrum
(section Near-infrared experiments and cross-spectral fusion).

Finally, comparing BIOPAD L4 vectors with HMAX vectors
using t-SNE (Figure 6), it can be noted that HMAX vectors do
not display the same amount of consistency in distinct areas
but rather vectors from all attacks appear merged and scattered
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TABLE 6 | BIOPAD detection rates and their standard deviation values over 10 trials.

Dataset SVM linear SVM RBF KNN σ2-SVM linear σ2-SVM RBF σ2-KNN

FRAV RGB 96.13 94.58 85.95 2.26 3.21 3.91

FRAV NIR 97.81 97.17 92.28 1.72 2.16 3.2

FRAV(RGB + NIR) Feature level 96.33 95.71 86.49 3.08 2.93 3.07

FRAV(RGB + NIR) Score level 96.97 95.87 89.11 1.99 2.68 3.55

FIGURE 7 | L4 vectors visualized with t-SNE for the FRAV “attack” database and its NIR information. (A) real vs. impostors—FRAV “attack” database with NIR

information only, and (B) presentation attacks—FRAV “attack” database with NIR information only, (C) real vs. impostors—FRAV “attack” database with RGB&NIR

information fused at feature level, and (D) presentation attacks—FRAV “attack” database with RGB&NIR information fused at feature level.

across the same area. HMAX lack of bio-inspired features capable
of processing texture and color information, leads to hardly
distinguishable classes. In effect, this has a toll in presentation
attack detection results (Table 1).

Near-Infrared Experiments and Cross-Spectral Fusion

BIOPAD experiments in the previous section have centered
on the visible spectral bands and have shown great promise.
Nonetheless, there were noticeable overlaps with certain
presentation attacks and so we wanted to further expand
BIOPAD’s capacity to cope with these attacks and minimize
the contribution of errors either directly from the subjects or
their ambience. For this reason, our experiments in this section
present a direct comparison between the performance for each
spectral band, then their fusion at feature and score levels i.e.,

fusion between the visible and NIR band. At feature level, NIR
is treated like an additional channel (Figure 2) and L4 vectors
from all bands are equally processed in the model. Conversely,
at score level visible—NIR bands are processed and classified
separately. However, after classification, vectors for each subject
are examined over all trials using the weighted sum score level
fusion technique in order make a decision on whether the subject
is genuine or not.

For this round of experiments, we only process the FRAV
“attack” dataset since NIR data is unavailable in other datasets
and to our knowledge the FRAV “attack” database is the only face
presentation attack dataset in literature. Originally, the FRAV
“attack” dataset consists of 185 different subjects and experiments
in the previous section were conducted under this sample. In
these experiments, available data for different subjects is changed
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to 157 individuals since there were failure-to-acquire instances
during database acquisition. All other setup parameters remain
unchanged as before.

In Table 6, the best results with the least standard deviation
values for BIOPAD across all classifiers were obtained by using
NIR images. The drop in performance in the visible spectrum
is nearly 1.5% for the SVM linear classifier case and this pattern
trend is consistent with other classifier settings. NIR superiority
in this type of presentation attack experiments can be further
viewed from their t-SNE results in Figures 7A,B, where it is
apparent that classes are well-separated. These representations
can be directly compared with the visible spectrum case
(Figures 5E,F) where there was a clear overlap between genuine
and impostor attacks leading to errors being introduced in
sFAR and FFR. The overlap between genuine access attempts
and printed photo attacks does not exist in the NIR case
and the “tablet” is completely neutralized since there isn’t any
useful attack information being projected at NIR. Fusing visual
information between the visible and NIR at feature level, caused
BIOPAD to lose slightly in detection rate performance with
respect to NIR only by ∼1.5%, also noticeable in standard
deviation values. Moreover, when visualized at feature level
and with the visible spectrum analyzed (Figures 7C,D), attack
patterns appear slightly improved to Figures 5E,F but otherwise
similar patterns are noticeable.

Furthermore, the performance between the different visual
information can be viewed from the Detection Error Tradeoff
(DET) curve as shown in Figure 8. The DET curve for the
FRAV “attack” illustrates the relationship within sFAR and FRR.
Naturally, sFAR and FRR confirm the same behavior seen in
the percentages, also presented in Table 6. As expected the
best curve is obtained by BIOPAD with NIR followed by RGB
+ NIR (feature level) and RGB. Equal error rate or Attack
Presentation Equal Error Rate (APEER) is a biometric security
system indicator that determines the threshold values for sFAR
and FRR. When these rates are equal, their common value
is known as the “equal error rate.” This value specifies the
proportion of false acceptances to false rejections. Low equal
error rates mean higher accuracy. In Figure 8, the difference
between APEERs in BIOPAD’s case is 4.15% and undoubtedly
shows that for the types of attacks present in the FRAV “attack”
database, the best acquisition method for PAD is with the use of
a NIR sensor.

CONCLUSIONS

In this article we presented a novel presentation attack
detection algorithm that relies on the extraction of edge and
texture biologically-inspired features, by mimicking biological
processes found in areas V1 and V2 of the human visual
cortex. This model termed as “BIOPAD,” reproduced impressive
presentation attack detection rates of up to 99% in certain
cases by only utilizing one photo per person and for all attacks
examined in the three datasets that were investigated. The main
contributions of this research work were to (a) Present a novel
biologically-inspired PAD algorithm which behaves comparably

FIGURE 8 | BIOPAD Detection Error Tradeoff curves of SVM linear classifier

for the FRAV “attack” database in NIR(red), RGB + NIR at feature level (blue)

and RGB (green). Attack Presentation Error Rate—APER.

to other state-of-the-art algorithms. (b) Introduce a new PAD
database called FRAV- “attack,” and (c) Introduce near-infrared
band information for PAD experimentation at feature and
score levels.

BIOPAD has been successful in surpassing other standard
biological-like techniques such as HMAX and CNN which
are considered state-of-the-art and benchmark models in
biologically-inspired vision research. In addition, the creation,
introduction and implementation of a new face presentation
attack database by our group termed as “FRAV attack,” extended
our investigation conclusions with high definition samples and
diverse scenarios for the most commonly used spoofing attacks.
The “FRAV attack” dataset which encompasses visual data that
span from visible to infrared, is expected to set future standards
for all new databases in face biometrics.

For the first time in literature, a biologically-inspired
algorithm has been directly applied with near-infrared
information, specifically for the purposes of face presentation
attack detection. As observed from the experimental analysis in
section Presentation attack results, BIOPAD features maximize
the separation between attacks and as a consequence increase
attack detection performance. The sFAR and FRR indicate that
BIOPAD error performance falls within acceptable limits and
it was further evident from our experiments that the nature
of data were better separated in classification by a SVM linear
classifier. However, future research in classification might reveal
classification schema more effective in dealing with incoming
data from multiple sensors.
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Our results have also shown that near infrared sensor
information is of extreme value and importance for presentation
attack detection, significantly outperforming visible spectrum
data. In our case, an increase in detection rate of almost 6% was
observed between the near-infrared and visible scenarios. While
the usefulness of near infrared information appears indisputable,
we have proposed data fusion from multiple sensors to minimize
errors from future elaborate attack methods that have not yet
been investigated. To this end, data fusion at feature and score
level indicate enhanced detection rates with respect to rates
obtained from the visible spectrum.

Overall, results were promising and BIOPAD can serve
as a foundation for further enhancements. Future work
will include refinement of the biological-like operations to
significantly increase performance and speed, optimization of
presentation attack detection for video, and real time processes
by incorporating biologically-inspired liveness detection
algorithms, experimentation with multiple sensors, different
types of novel and sophisticated presentation attacks, and
experimentation in dynamic—real world situations.
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