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It is often assumed that Hebbian synaptic plasticity forms a cell assembly, a mutually

interacting group of neurons that encodes memory. However, in recurrently connected

networks with pure Hebbian plasticity, cell assemblies typically diverge or fade under

ongoing changes of synaptic strength. Previously assumed mechanisms that stabilize

cell assemblies do not robustly reproduce the experimentally reported unimodal and

long-tailed distribution of synaptic strengths. Here, we show that augmenting Hebbian

plasticity with experimentally observed intrinsic spine dynamics can stabilize cell

assemblies and reproduce the distribution of synaptic strengths. Moreover, we posit that

strong intrinsic spine dynamics impair learning performance. Our theory explains how

excessively strong spine dynamics, experimentally observed in several animal models of

autism spectrum disorder, impair learning associations in the brain.

Keywords: spine dynamics, synaptic weight distribution, cell assembly, autism spectrum disorder, recurrent

network, learning

INTRODUCTION

The operation of a neural circuit is shaped by the strength of synapses that mediate
signal transduction between neurons. Activity-dependent modification of synaptic strength,
termed synaptic plasticity, is considered to be an underlying mechanism of learning and memory
(Malenka and Bear, 2004; Mongillo et al., 2017). A major form of synaptic plasticity is Hebbian
plasticity (Hebb, 1949). While there are multiple molecular mechanisms (Malinow and Malenka,
2002; Matsuzaki et al., 2004; Nicoll et al., 2006) underlying Hebbian plasticity and experimental
protocols (Neves et al., 2008), it is commonly induced by coactivation of pre- and postsynaptic
neurons within a particular time window. One prominent biological mechanism for Hebbian
plasticity is activity-dependent spine volume change. Spine volume is known to be tightly
correlated with synaptic strength (Matsuzaki et al., 2001; Smith et al., 2003; Noguchi et al., 2005;
Béïque et al., 2006; Asrican et al., 2007; Holbro et al., 2009; Zito et al., 2009), and both long-
term potentiation (LTP) and long-term depression (LTD) involve spine change (Lang et al.,
2004; Matsuzaki et al., 2004; Otmakhov et al., 2004; Zhou et al., 2004; Kopec et al., 2006;
Hayama et al., 2013).

It was previously proposed (Hebb, 1949; Amari S., 1977; Hopfield, 1982) that a memory can be
represented by coherent activity in a cell assembly, i.e., a group of cells mutually exciting each other,

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2019.00038
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2019.00038&domain=pdf&date_stamp=2019-06-13
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:taro.toyoizumi@riken.jp
https://doi.org/10.3389/fncom.2019.00038
https://www.frontiersin.org/articles/10.3389/fncom.2019.00038/full
http://loop.frontiersin.org/people/46897/overview
http://loop.frontiersin.org/people/688008/overview
http://loop.frontiersin.org/people/687995/overview
http://loop.frontiersin.org/people/4030/overview


Humble et al. Learning With Intrinsic Spine Dynamics

and the memory can be stored in synaptic strengths between
these neurons by Hebbian plasticity. Consistently, recent
experiments have shown that the activation of a coherently active
group of cells is necessary and sufficient for the expression of
learned behavior (Liu et al., 2012; Nabavi et al., 2014). However,
how a neural circuit maintains cell assemblies stably is not well
understood. In some models, cell assemblies are stable because
synaptic strength is modified only during learning, and then fixed
(Amari S. I., 1977; Hopfield, 1982; Vogels et al., 2011). However,
these models neglect changes in synaptic strength after learning
and thus do not address themaintenance of an acquiredmemory.

Several studies modeled ongoing Hebbian plasticity during
spontaneous activity and found that Hebbian plasticity alone
is likely not sufficient to maintain a cell assembly. In additive
Hebbian plasticity models (Gerstner et al., 1996; Song et al.,
2000; Gütig et al., 2003), in which the dependencies of the
LTP and LTD amplitudes on synaptic strength are the same,
memory tends to become unstable due to a positive feedback
during spontaneous activity (Fiete et al., 2010; Litwin-Kumar
and Doiron, 2014; Zenke et al., 2015), namely, neurons that fire
together are wired together, and then fire together more often.
This kind of a positive feedback process typically fuses assemblies
and expands the largest existing cell assembly. Some forms of
stabilizing mechanisms, such as inhibitory plasticity (Litwin-
Kumar and Doiron, 2014), homeostatic plasticity (Zenke et al.,
2013), or heterosynaptic plasticity (Zenke et al., 2015) have been
suggested to stabilize memory (Keck et al., 2017). However, even
with these stabilizing mechanisms, the resulting distribution of
synaptic strengths often becomes dissimilar to what has been
experimentally observed (Toyoizumi et al., 2007). For example,
while the models with positive feedback often produce a synaptic
strength distribution that is bimodal, experiments have reported
a unimodal and long-tailed distribution of synaptic strengths
(Song et al., 2005; Cossell et al., 2015) and corresponding spine
volumes (Yasumatsu et al., 2008; Loewenstein et al., 2011).

An alternative proposal is multiplicative Hebbian plasticity
(van Rossum et al., 2000; Gütig et al., 2003; Morrison et al., 2007),
in which the LTP amplitude is less prominent than the LTD
amplitude for large synapses, in agreement with experimental
observations (Bi and Poo, 1998; Tanaka et al., 2008; Hayama et al.,
2013). This multiplicative form of Hebbian plasticity can avoid
the above instability problem, and under spontaneous activity of
neurons, synaptic strengths converge near a prefixed set point
where LTP and LTD effects balance each other, regardless of the
initial synaptic strengths (Morrison et al., 2007). This means that
memories degrade in the presence of spontaneous neural activity.

Hence, in all the models described above, it is nontrivial to
stably maintain cell assemblies and reproduce the experimentally
observed distribution of synaptic strengths (or of spine volumes),
which has a thick tail and a peak at a rather weak strength (Song
et al., 2005; Yasumatsu et al., 2008; Loewenstein et al., 2011;
Cossell et al., 2015). Interestingly, a similar distribution of spine
volumes is robustly observed even in animal models of mental
disorders (Pathania et al., 2014) and with an LTD deficiency
in calcineurin KO animals (Okazaki et al., 2018). In contrast,
in the above mathematical models, the distribution of synaptic
strengths is fragile and strongly depends on the balance of LTP

and LTD that is set by model parameters and input to neurons.
Thus, conventional models have no mechanism to restore the
distribution of synaptic strengths.

Despite the common assumption that only synaptic plasticity
changes spines, they also dynamically change in the absence of
neural activity. Recent studies showed that spine turnover, i.e.,
generation and elimination of spines, continues even under the
blockade of neural activity and calcium signaling in vivo (Kim
andNabekura, 2011; Nagaoka et al., 2016; Ziv and Brenner, 2018).
Further, spine volumes constitutively fluctuate in the absence
of neural activity, calcium signaling, and activity-dependent
plasticity in vitro (Yasumatsu et al., 2008). These intrinsic spine
dynamics are characterized by a zero drift coefficient and a
diffusion coefficient proportional to the square of spine volume,
v2. Interestingly, this volume-dependent diffusion reproduces
the experimentally observed equilibrium distribution of spine
volumes with a power-law tail of exponent v−2 (Yasumatsu
et al., 2008; Ishii et al., 2018). This observation poses an
important question: How do intrinsic spine dynamics affect the
maintenance of cell assemblies?

We address this question by simulating a mathematical model
of a recurrently connected neural network that implements both
multiplicative spike-timing-dependent plasticity (STDP) (van
Rossum et al., 2000; Morrison et al., 2007) and experimentally
observed intrinsic spine dynamics (Yasumatsu et al., 2008). We
also study how spine turnover and the distribution of spine
volumes are affected by these two processes. Despite a possible
perception of intrinsic spine dynamics as noise, we show that they
can help to maintain cell assemblies by preventing unnecessary
spines from growing and sustaining the physiological spine
volume distribution.

Based on the model analysis, we hypothesize that intrinsic
spine dynamics that are stronger than in wild type (WT)
conditions can explain the abnormally high spine turnover rate
observed in animal models of autism spectrum disorder (ASD)
(Pan et al., 2010; Isshiki et al., 2014). By fitting model parameters
to one ASD mouse model, fmr1KO (a model of fragile X
syndrome) (Pfeiffer and Huber, 2009), we show how excessively
strong intrinsic spine dynamics may cause learning deficits in
ASD animals (Silverman et al., 2010; Padmashri et al., 2013).

RESULTS

We study the dynamics of spine volumes using a model of
a cortical circuit. We stimulate recurrently connected spiking
neurons (Figure 1; also see Methods) to explore if the network
stores memories as cell assemblies. The cortical network consists
of 1,000 excitatory and 200 inhibitory leaky-integrate-and-fire
spiking neurons (Tuckwell, 1988), where the excitatory and
inhibitory neurons are randomly connected by a 10% connection
probability (Figure 1A). For simplicity, the excitatory neurons
are embedded in a one-dimensional feature space that describes,
for example, orientation selectivity in V1. We assume that
synapses can be formed between a pair of excitatory neurons
that have potential connectivity (Markram et al., 1997). Potential
connectivity (either 0 or 1) from a neuron to another is randomly

Frontiers in Computational Neuroscience | www.frontiersin.org 2 June 2019 | Volume 13 | Article 38

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Humble et al. Learning With Intrinsic Spine Dynamics

A

Feature-space distance

  
 P

o
te

n
ti
a

l

c
o

n
n

e
c
ti
v
it
y
 (

%
)

# contact points

− 0.5 0 0.5
0

10

1 10
0

0.3

P
ro

b
. 

Excitatory Inhibitory

1 2

3 3 4

10%

10%

Input

Plastic

B1

In
p
u
t

Time (s)

Base Stim

1

2

3

4

1 / 2 / 3 / 4

Inhibitory

Hz

3s

B3

C

Intrinsic dynamics

STDP

not functional Spine

Volume=0.02µm 3

0 10 20 30
0

10

20

Time (s)

F
ir
in

g
 r

a
te

 (
H

z
)

Neuron adaptation

Excitatory

Inhibitory

0

0.1

A
d

a
p

ta
ti
o

n
a

m
o

u
n
t

1

2

3

4

G
ro

u
p

s

Baseline spiking activity

10
-70

-50

  
M

e
m

b
ra

n
e

p
o

te
n

ti
a

l 
(m

V
)

B4

Time (s)

B2

−100 −50 0 50 100

7.6

0

tpost - tpre (ms)

∆
S

p
in

e
-v

o
lu

m
e

 (
µ

m
 )

STDP window

0 0.2 0.4 0.6
Spine-volume (µm )

0

2

4

6

8

D
if
fu

s
io

n
 c

o
e

ff
ic

ie
n

t 
(µ

m
  
d

a
y
  
)

x10
-33

6

3

Intrinsic spine dynamics

D

E F

x10
-9

-1

FIGURE 1 | Recurrent network model with STDP and intrinsic spine dynamics. (A) A model of cortical circuitry. Excitatory and inhibitory neurons are modeled as

leaky-integrate-and-fire units, which are sparsely connected. We assume that only the recurrent excitatory synapses are plastic. Excitatory neurons are aligned in a

one-dimensional feature space, which is divided into four neighborhood quarters. Fourty percent of randomly chosen excitatory neurons in each quarter comprise a

stimulation group. The four stimulation groups are randomly stimulated one at a time during the learning period. (B1) Potential connectivity peaks at around 10% and

decays with the tuning-distance between two excitatory neurons in the feature space. Synapses can grow if two excitatory neurons are potentially connected. (B2) If

two excitatory neurons have potential connectivity, the number of contact points is randomly drawn from a truncated Poisson distribution in the range of 1 to 10. Each

contact point can accommodate one spine. (B3) Spiking activity and membrane potential dynamics of a sample set of neurons at baseline. (B4) Excitatory neurons

have an adaptation current, which builds up with firing activity and suppresses firing rate. (C) During a learning period, one of the stimulated groups is randomly

chosen with probability ¼ and receives elevated external input for 3 s. All inhibitory neurons receive external stimulation throughout the entire learning period. (D) Spine

volumes are changed by the combination of STDP and intrinsic spine dynamics (except in Figure 2, where only STDP is considered). Arrows indicate possible

changes in spine volume and the size of the arrow represents the possible maximum change in spine volume. A threshold at 0.02 µm3 separates spines and

non-spines, and STDP only affects spines. (E) The multiplicative STDP rule used for changing spine volume. The LTD amplitude is proportional to spine volume. (F)

The diffusion coefficient characterizing intrinsic spine dynamics, which is proportional to the square of spine volume.

generated and set at the beginning of a simulation. Potential
connectivity peaks at 10.4% (see Figure 7 for a systematic
exploration of this peak value) for neurons with similar selectivity
and falls off with their tuning-distance (Figure 1B1). If two
neurons have potential connectivity, the number of synaptic
contact points is drawn randomly from a truncated Poisson
distribution (Figure 1B2) (Hardingham et al., 2010). In the
absence of elevated external input, excitatory neurons in this
network exhibit a background firing rate of about 0.1Hz

(Figure 1B3). Cortical excitatory neurons are generally adaptive
and cannot continuously fire at their maximum firing rate.
Hence, we model an adaptation current (Wang et al., 2003)
that slowly builds up with the postsynaptic spiking activity and
hyperpolarizes the neuron with its characteristic time constant of
about 5 s (Figure 1B4; see Methods). Finally, only the recurrent
excitatory to excitatory synapses are assumed to change.

To model activity-dependent plasticity, we assume that spine
volume is proportional to synaptic strength (see Methods, but
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we define a tiny protrusion of volume <0.02 µm3 as a “non-
spine”) because the correlation between the synaptic strength and
spine volume has been experimentally demonstrated (Matsuzaki
et al., 2004; Harvey and Svoboda, 2007; Bosch et al., 2014).
The spine volume of an excitatory to excitatory synapse is
modeled by multiplicative STDP (Figure 1E) (van Rossum et al.,
2000), and thus the LTP amplitude is independent of synaptic
strength, while the LTD amplitude is proportional to synaptic
strength. Therefore, with an increase in synaptic strength, the
LTD amplitude increases at a steeper rate than the LTP amplitude,
and this is consistent with experimental observations (Bi and
Poo, 1998; Tanaka et al., 2008; Hayama et al., 2013). We let
the network acquire cell assemblies by providing additional
external input to subsets of neurons. We divide the feature space
of the excitatory network into four equally sized neighboring
quarters (Figure 1A), and randomly select 40% of the neurons
in each quarter as a stimulated group. We randomly select
one of these four groups at a time during the learning period
and stimulate it with an elevated rate of Poisson spikes for
3 s (Figure 1C; see Methods). For simplicity, all inhibitory
neurons are stimulated throughout the learning period. The
spine volume, v, of each spine is initially drawn randomly from

a fixed distribution, proportional to
(

v+ 0.05 µm3
)−2

. This
initial distribution approximates an experimentally observed
spine volume distribution (see Methods). As we will see
below, changing synaptic strengths by multiplicative STDP
alone fails to sustain cell assemblies in the presence of
spontaneous activity.

Learning Without Intrinsic Spine Dynamics
Firstly, we consider the case where intrinsic spine dynamics are
absent and spine volumes are only changed by multiplicative
STDP. Figure 2 depicts the behavior of our network during and
after the learning period. The learning period (Figure 2A) is
terminated when the mean intra-group spine volume of at least
one stimulated group reaches ≥0.49 µm3. During the learning
period, four groups of neurons were randomly stimulated one
at a time (Figure 2B, Left) with increased input, and after the
learning period, only group 3’s neurons stayed active (Figure 2B,
Right). Figure 2C plots the firing rates of all neurons in the
3rd-quarter during the entire simulation period. This shows
that the number of active neurons monotonically increased both
during the learning period and during the maintenance period,
indicating an unstable learning outcome. Specifically, the cell
assembly initially formed among the externally stimulated group
3 neurons and spread to neighboring neurons. This spreading
of the cell assembly provided extra recurrent input from newly
recruited neurons to this cell assembly. Figure 2D summarizes
the population averaged firing rates of the four stimulated
groups. All groups show elevated firing rates during the learning
period due to external stimulations. After the learning period,
physiological neural activity was maintained only for a day.
After that, the mean firing rate of one group (i.e., group 3)
exploded, and that of the other groups declined down to near
zero values. The spine volume distribution at the end of the
simulation included a non-physiological secondary peak at 0.5

µm3 (Figure 2E). A small but non-negligible number of non-
stimulated synapses also formed a peak at 0.5 µm3. These
synapses contribute to the extremely high firing rate of the
group 3 neurons and further recruitment of non-stimulated
neurons toward the end of the simulation. During the learning
period, themean volume of the spines connecting neurons within
each stimulated group increases due to LTP (Figure 2F). Note
that LTP is dominant over LTD for small spines because we
assume that the LTP amplitude is fixed but the LTD amplitude
is proportional to spine volume. After a few days of learning,
mean spine volumes plateaued at around 0.5 µm3, where LTP
and LTD effects roughly balance. Themean spine volume of other
spines (non-stimulated) exhibited a slow but steady increase
(Figure 2F), reflecting the formation of the secondary peak of
non-stimulated spines seen in the spine volume distribution
(Figure 2E). The volumes of individual spines (Figure 2G) are
homogeneous within each group and their development mirrors
the corresponding mean spine volume (Figure 2F).

The spread of activity is slow in this simulation because of the
lateral inhibition that tends to shut down spikes in surrounding
neurons (Billings and van Rossum, 2009). However, the activity
will eventually spread as long as neurons fire occasionally
and spine volumes between active neurons converge near the
prefixed LTP/LTD balancing point at around 0.5 µm3. This
convergence is innate to multiplicative STDP and spontaneously
happens even in the absence of the learning period, albeit slowly
(Figure S1). Hence, as expected from previous studies (Morrison
et al., 2007), a recurrently connected network with multiplicative
STDP has difficulty sustaining cell assemblies in spine volumes
in the presence of spontaneous activity. Notably, the resulting
spine volume distribution is dissimilar to an experimentally
observed unimodal distribution with many small spines and a
fat tail.

Learning With Normal Intrinsic Spine
Dynamics
Next, we add intrinsic spine dynamics previously observed in
hippocampal slices (Yasumatsu et al., 2008). Spine volumes
fluctuate every day, and the amplitude of these fluctuations is
spine volume dependent (Figure 1F). Importantly, these intrinsic
spine dynamics were largely intact in the absence of neural
activity and synaptic plasticity, i.e., under the pharmacological
blockade of sodium channels, NMDA, and voltage-dependent
calcium channels in cells. In the absence of neural activity
and plasticity, the amplitude of spine volume fluctuations is
roughly proportional to spine volume, ∼ αv + β , where v is
spine volume with parameters α = 0.2 day−1/2 and β =
0.01 µm3 day−1/2 (Yasumatsu et al., 2008). In other words, the
effect of intrinsic spine dynamics is summarized by the volume-
dependent diffusion coefficient D (v) = (αv+ β)2 /2 with zero
drift coefficient (Yasumatsu et al., 2008) (see also Methods).
Therefore, the Fokker-Planck equation (Risken, 1989) for
describing the evolution of the spine volume distribution P(v, t)
is ∂P(v, t)/∂t = (∂2/∂v2)[D (v)P(v, t)]. It indicates that the
equilibrium is reached when the diffusion intensity D (v) P(v, t)
becomes volume-independent. This gives the equilibrium spine
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FIGURE 2 | Network behavior in the absence of intrinsic spine dynamics. (A) Experimental protocol. External stimulus is provided during the learning period (blue bar)

and the memory retention is studied in the maintenance period. The learning period finishes when one cell assembly becomes strong enough to sustain it’s activity. (B)

Typical neural activity during (Left) and after (Right) the learning period. The panels show the firing rates of 1,000 excitatory neurons in a 50 s time window. During the

learning, neural activity is driven by external stimulus, which randomly activates one group at a time. After learning, one group of neurons is strongly active

spontaneously. (C) Firing rates of the 3rd-quarter neurons in the entire simulation period. Neurons are sorted by the first time their firing rates exceed 15Hz. The

number of active neurons expands both during the learning and retention periods beyond the initial 40% that are stimulated. (D) Mean firing rates of the four

stimulated groups. (E) Spine volume distribution at the end of the simulation for intra-stimulated-group spines (Stimulated: pink) and other spines (Other: green). (F)

Mean spine volume of intra-stimulated-group spines (pink) and other spines (green). (G) Individual volumes of a single intra-stimulated-group spine from each

stimulated group and a single non-stimulated spine. The learning period is represented by a blue bar.
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volume distribution Peq (v) ∝ 1/D(v) ∼ v−2, which has a power-
law tail. Note that there are two mathematical conventions for
interpreting the above equation (Gardiner, 1985), which lead to
different semantic meanings of fluctuation. Here, we take the
Itô interpretation, in which the intrinsic spine dynamics are
interpreted as spine volume fluctuations (but see Methods for
an alternative interpretation). We regard that spines smaller than
0.02 µm3 are non-spines and do not exhibit multiplicative STDP,
whereas intrinsic spine dynamics are still present even for these
small protrusions (cf. Figure 1D). This assumption is consistent
with the experimental observations that the baseline spine
turnover is largely activity-independent (Kim and Nabekura,
2011; Nagaoka et al., 2016).

We used the same stimulation protocol as in Figure 2 to
study cell assembly learning when both multiplicative STDP
and intrinsic spine dynamics are involved (Figures 3A–H).
Cell assembly learning was similar at the beginning of the
simulation to the case without intrinsic spine dynamics: Firing
rates increased (Figure 3D) and the intra-group spines enlarged
(Figure 3F). In contrast to the previous case, a physiological
neural activity level wasmaintained throughout (Figure 3D), and
none of the cell assemblies aggressively spread to neighboring
non-stimulated neurons (Figure 3C) during the maintenance
period. The activity-dependent formation of cell assemblies is
evident from the coherent reactivation of stimulated groups
(Figure 3B) during the maintenance period at much lower
spontaneous firing rates than during the learning period. This
spontaneous reactivation of cell assemblies is essential for
the maintenance of memory patterns (similarly to Mi et al.,
2017). Nonetheless, these memory patterns can be successfully
maintained even if neural activity is blocked for a whole day
(e.g., by tetrodotoxin; Figure S2). Notably, the mean volume
of the intra-assembly spines was stably maintained (Figure 3F),
although individual spine volumes fluctuated throughout the
simulation (Figure 3G). In contrast to the previous case
without intrinsic spine dynamics (cf. Figure 2E), the spine
volume distribution remained unimodal after learning, with no
secondary peak around 0.5 µm3 (Figure 3E; cf. Figure 2E with
a secondary peak). This is because a possible secondary peak
at the tail was smeared by large fluctuations in large spines.
Despite this smearing, the memory patterns were still stored by
enlarged spines located around the tail of the distribution. Finally,
spine generation was increased during the learning period,
as often seen experimentally (Hofer et al., 2009; Yang et al.,
2009) (Figure 3H). The contribution of each model mechanism
assumption is further explored in Figure S3.

A Cell Assembly Is Maintained by an
Ensemble Property of Intra-Assembly
Spines
To elucidate how intrinsic spine dynamics stabilize our
network learning and enable the storing of memories, we
examined the effects of STDP and intrinsic spine dynamics
separately (Figure 4). We initialized spine volumes randomly
as described above except for the intra-group spines of one
group, whose volumes were all set identically and changed

systematically. While we simulated the spontaneous activity of
neurons, we monitored how multiplicative STDP and intrinsic
spine dynamics changed the mean intra-group spine volume,
respectively. Multiplicative STDP leads to an overall potentiation
of the intra-group spines (Figure 4; orange line) if they are
small (roughly <0.57 µm3) and a depression of the spines
if they are large (roughly >0.57 µm3). This transition is
observed for large spines because the LTD amplitude, which is
proportional to spine volume, dominates over the amplitude of
LTP, which is independent of spine volume. LTP dramatically
increases for spines >0.30 µm3 because strong intra-group
connections serve as positive feedback on coincident firing
between the neurons within the group, increasing the frequency
of both LTP and LTD events. Therefore, STDP on its own
leads to one fixed point of mean spine volume at a non-
physiologically high value at around 0.57 µm3. This fixed point
is controlled by the parameter setting the relative amplitude of
LTD (Morrison et al., 2007). Intrinsic spine dynamics, on the
other hand, normalize the spine volume distribution, restoring
the distribution toward the equilibrium distribution Peq (v) ∝
1/D(v) with a mean spine volume of roughly 0.15µm3 (Figure 4;
brown line).

When the contributions from STDP and intrinsic spine
dynamics are added together with an appropriate balance
(Figure 4; black line), the combination permits a bi-stability in
the mean spine volume of a population of spines. In this case,
changes in the mean spine volume are dominated by the intrinsic
spine dynamics when small (roughly <0.30 µm3), so that the
spine volumes fluctuate around 0.15 µm3. Conversely, changes
in the mean spine volume are significantly affected by STDP
when large (roughly >0.30 µm3), creating a larger-volume fixed
point at approximately <0.55 µm3. In between these stable fixed
points, there is a separation point (unstable fixed point) at around
0.50 µm3, which prevents the mean spine volume from moving
in between these two stable fixed points. Therefore, while single
spines are largely fluctuating and sporadically moving around
the small and large mean spine-volume fixed points, a large
cell assembly is stably maintained by the ensemble property of
intra-assembly spines: here quantified as themean intra-assembly
spine volume.

These results suggest that intrinsic spine dynamics can
normalize the synaptic strength distribution to a stereotypical
shape in the presence of ongoing Hebbian plasticity, and at the
same time, enable the circuit to stably retain memory patterns
in the form of cell assemblies with a bi-stable mean intra-cell
assembly spine volume. The relative amplitudes of STDP and
intrinsic spine dynamics are key parameters for achieving this bi-
stability. For example, if STDP is too strong, relative to intrinsic
spine dynamics, the small mean spine volume fixed point at 0.15
µm3 would disappear. We have already seen in our model that
in the absence of intrinsic spine dynamics, the spine volume
distribution sharply peaks at around the large mean spine volume
fixed point and activity becomes too high (Figure 1). Instead, if
STDP is too weak, relative to intrinsic spine dynamics, the large
mean spine volume fixed point around 0.55µm3 could disappear.
Below, we explore more generally what might go wrong with
excessively strong intrinsic spine dynamics.
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FIGURE 3 | Network behavior in the presence of intrinsic spine dynamics. (A–G) Conventions are as in Figure 2. (H) Spine generation and elimination.
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FIGURE 4 | Decomposition of spine volume change by STDP and intrinsic spine dynamics under spontaneous activity. We separately measured changes in mean

spine volume induced by either STDP (orange line) or intrinsic spine dynamics (brown line), by systematically initializing all intra-group spine volumes of one group to a

fixed value, and measuring any subsequent changes. The net change is separately plotted (black line). Arrows of corresponding color mark the flow of mean spine

volume change due to each mechanism, or the combination of both, at the top. STDP and intrinsic spine dynamics change the mean spine volume toward 0.57 and

0.15 µm3, respectively. When the two mechanisms are combined, the net dynamics have bistability: There are two stable fixed points at 0.55 and 0.15 µm3, and a

separation point at roughly 0.50 µm3, which divides the two basins of attraction. The shaded interval indicates the standard deviation.

Learning With Excess Intrinsic Spine
Dynamics as a Model of Fragile
X Syndrome
Interestingly, experimental results suggest that intrinsic spine
dynamics are abnormally high in a mouse model of fragile X
syndrome, fmr1KO (Pan et al., 2010; Nagaoka et al., 2016).
Below, we constrain the parameters α and β of the diffusion
coefficient D (v) = (αv+ β)2 /2 to characterize intrinsic spine
dynamics in fmr1KOmice based on reported observations. Spine
turnover is about twice as high in fmr1KO mice as in WT
mice (Pan et al., 2010). Remarkably, this elevated spine turnover
largely remains even when calcium activity is pharmacologically
blocked, suggesting that this is due to abnormal intrinsic spine
dynamics (Nagaoka et al., 2016). Another constraint is the
spine volume distribution. Experimental reports comparing the
spine volume distribution in fmr1KO and WT mice have mixed
observations – some studies detected more immature spines
in fmr1KO but others detected no significant difference (He
and Portera-Cailliau, 2013). For simplicity, we assume that any
differences in the spine volume distribution between fmr1KO
and WT mice are negligible. Based on the numerical fitting to
the observed spine turnover, these two constraints specify the
parameters α = 0.43 day−1/2 and β = 0.021 µm3day−1/2

for fmr1KO mice (Figure 5; see also Figure S4 for a systematic
parameter search). Intuitively speaking, α and β are twice
as high as the corresponding WT values. This is because,
despite the presence of STDP, the spine volume distribution
is largely set by the equilibrium distribution of the intrinsic
spine dynamics, Peq (v) ∝ 1/ (v+ β/α)2. It suggests that
the ratio β/α should be similar between WT and fmr1KO
to have similar spine volume distributions, and β in fmr1KO
is twice as large as WT to account for the doubled spine
turnover rate.

FIGURE 5 | Spine turnover in our WT and fmr1KO models with two different

levels of intrinsic spine dynamics.

Learning and memory deficits have been reported in fmr1KO
mice (Padmashri et al., 2013). We investigated whether these
learning and memory deficits could potentially be explained
by the abnormal intrinsic spine dynamics modeled above.
Consistent with the experimental observations, storing memory
patterns was impaired in our fmr1KO model (Figures 6A–H),
where coherent spontaneous activation of cell assemblies rapidly
faded after learning (Figures 6B–D). This is because the mean
spine volumes of the stimulated groups decreased during the
maintenance period (Figure 6F). This effect can be intuitively
understood from the result in Figure 4—memory cannot be
stably stored in a cell assembly if intrinsic spine dynamics are too
strong, relative to multiplicative STDP, because the stable fixed
point of the mean intra-group spine volume around 0.55 µm3

disappears. Individual spines fluctuated as in the WT model but
with a greater amount per unit time (Figure 6G). As a result
of excessively strong intrinsic spine dynamics and the decay of
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mean intra-group spine volume for the stimulated groups, the
stimulated spines scattered around the spine volume distribution
(Figure 6E). This result is in contrast to the WT result, where
stimulated spines are localized nearer the tail of the spine volume
distribution (cf. Figure 3E). Similarly to the WT model, the
external stimulation at the onset of learning increased the spine
generation rate by about 2.5% without significantly altering the
elimination rate. Note that the baseline turnover in this fmr1KO
model was about twice as high as the WT model, consistent with
the experimental observation (Nagaoka et al., 2016).

The learning and memory deficits reproduced above are
however potentially more severe than observed experimentally
because fmr1KO mice have some learning capability, albeit
limited. Therefore, we considered whether there may be some
compensating mechanism, via which animals with excessively
strong intrinsic spine dynamics rescue some learning and
memory performance. We consider the regulation of potential
connectivity as one candidate mechanism. Figure 7 explores
how the stability of cell assemblies changes in our WT and
fmr1KO models (i.e., the simulations of Figures 3, 6) if the peak
potential connectivity (Figure 1B1) is systematically altered. A
cell assembly in either the WT or fmr1KO model can exhibit
one of the following three scenarios: its mean firing rate either
(1) explodes (≥100Hz) due to unstable learning, (2) fades
(≤1Hz), or (3) is stably maintained within a physiological
range (>1Hz and <100Hz) during the maintenance period.
The peak potential connectivity of 10.4% was already optimized
for the WT model, such that nearly all cell assemblies are
stable. The frequency of fading assemblies increased if potential
connectivity was too low and that of exploding assemblies
increased if potential connectivity was too high. However, the
WT model stably maintained cell assemblies over a range of
the peak potential connectivity from 9.4 to 10.8%. In contrast,
the maintenance of cell assemblies in the fmr1KO model was
much more sensitive to potential connectivity. As indicated
in Figure 7, most of the assemblies fade with the baseline
peak connectivity of 10.4%. The stability in the fmr1KO model
first improved up to ∼50% maintenancerate, but soon started
to decline again due to exploding assemblies, as potential
connectivity increases. Given this result, it is an interesting
possibility that fmr1KO mice with excessively strong intrinsic
spine dynamics may locally up-regulate potential connectivity,
relative to WT mice, to avoid catastrophic forgetting (Figure 7
Right; marked as compensation). This hypothesis, which predicts
an elevated frequency of exploding assemblies in fmr1KO mice,
is consistent with the experimentally observed hyper neural
activity and synchrony in fmr1KO mice (Musumeci et al., 2000;
Gonçalves et al., 2013).

DISCUSSION

In previous models of synaptic plasticity, changes in synaptic
strengths are assumed to be activity-dependent (Poo et al.,
2016; Mongillo et al., 2017). Recent experimental observations
suggest that this is not the case. In this work, we modeled
how activity-independent intrinsic spine dynamics (Yasumatsu

et al., 2008; Nagaoka et al., 2016) affect learning and memory
in recurrent circuit models. For simplicity, we assumed that
spine volume is proportional to synaptic strength (Matsuzaki
et al., 2004; Harvey and Svoboda, 2007; Bosch et al., 2014).
Contrary to a view that noisy synaptic changes are harmful to
memory, intrinsic spine dynamics in our model play a positive
role in preventing Hebbian-plasticity-driven non-specific growth
of synapses. Specifically, as a result of the interaction between
STDP and intrinsic spine dynamics in our model, the mean intra-
assembly spine volume exhibits bistability, which is suitable to
sustain memory. STDP keeps spines large within a cell assembly
due to the coherent spontaneous activity of the membership
neurons (e.g., Kenet et al., 2003; Diekelmann and Born, 2010;Wei
and Koulakov, 2014), and intrinsic spine dynamics constitutively
normalize all spines toward a physiological distribution.

In our model, memory is maintained by the total strength of
synapses that connect neurons within an assembly. Individual
synapses fluctuate and exhibit constant turnover, but this does
not degrade the memory as long as the net strength is kept. One
property of the current model is that, given the innate Hebbian
instability of cell assemblies in spontaneously active recurrent
networks, highly overlapping cell assemblies likely merge during
maintenance, even in the presence of intrinsic spine dynamics.
In this sense, either a preprocessing mechanism that decorrelates
memory patterns (Perez-Orive et al., 2002; Leutgeb et al., 2007) or
a more elaborate additional mechanism that stabilizes individual
synapses (Frey and Morris, 1997; Ziegler et al., 2015; Benna and
Fusi, 2016) may be helpful for improving the memory capacity
(Hopfield, 1982).

There are several experimental observations that support the
role of intrinsic spine dynamics in shaping the spine volume
distribution. First, the spine volume distribution in the absence
of neural activity and plasticity was well predicted by intrinsic
spine dynamics, and the distribution is similar to that in the
normal condition (Yasumatsu et al., 2008). Second, the spine
volume distribution was robust to experimental manipulations to
synaptic plasticity. Remarkably, calcineurin KO mice with little
LTD (Okazaki et al., 2018) exhibited a spine volume distribution
that was similar to WT mice. This raises an argument against the
hypothesis that the spine volume distribution is set by the balance
between LTP and LTD. We argue that previous computational
models that do not include intrinsic spine dynamics miss an
important component underlying synaptic organization.

We studied the interplay between activity-dependent synaptic
plasticity and intrinsic spine dynamics in the formation
and maintenance of cell assemblies in recurrent networks.
Conventional studies of intrinsic spine dynamics often focus
on independent synapses (Yasumatsu et al., 2008) or learning
in a local feedforward network (Matsubara and Uehara, 2016)
instead of learning in a recurrently connected network. Another
study explored the consequence of volatile synaptic strengths
in recurrently connected networks without studying how such
volatility affects activity-dependent plasticity (Mongillo et al.,
2018). Other studies model stochastic changes of synaptic
strength (Loewenstein et al., 2011) or connectivity (Deger
et al., 2012; Fauth et al., 2015) without distinguishing activity-
dependent and -independent parts. Hence, these works do
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FIGURE 6 | Network behavior in the presence of predicted fmr1KO intrinsic spine dynamics. (A–H) Conventions are as in Figure 3.
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FIGURE 7 | Varying the probability of recurrent excitatory to excitatory connections in the WT model (Left) and the fmr1KO model (Right) permits an increased

chance of cell assembly fade or explosion at different connectivity levels. We hypothesize that fmr1KO mice may have a compensatory increase in potential

connectivity (red line) to partially rescue stable cell assemblies.

not distinguish their separate roles in memory and synaptic
normalization. Another line of studies (Litwin-Kumar and
Doiron, 2014; Zenke et al., 2015) model activity-dependent
synaptic plasticity to account for the formation and maintenance
of cell assemblies in a recurrent network. However, because
these models do not include intrinsic spine dynamics, their
synaptic strength distributions are typically sensitive to the
fine balance between LTP and LTD and counter to the
experimental observations described above. Thus, the proposed
model postulates how synaptic normalization, by intrinsic spine
dynamics, maintains most synapses that are not participating
in a cell assembly weak. In addition, intrinsic spine dynamics
in our model work as a homeostatic mechanism that stabilizes
Hebbian plasticity, although they are activity independent and an
explicit sensing-and-control (Davis, 2006; Shah and Crair, 2008)
mechanism is absent. For this to work, the relative magnitude
of Hebbian plasticity and intrinsic spine dynamics is important;
For example, this stabilization fails if Hebbian plasticity is too fast
(see Figure 4). While we conjecture that intrinsic spine dynamics
can stabilize slow Hebbian plasticity in adults, other fast forms
of homeostatic plasticity, such as inhibitory plasticity (Vogels
et al., 2011; Litwin-Kumar and Doiron, 2014), might be helpful
in the young, or once neural activity deviates beyond the level
that intrinsic spine dynamics can compensate for.

Another main contribution of this study is the relationship
between intrinsic spine dynamics and ASD. The observation
that baseline spine turnover is abnormally high in various ASD
mouse models (Isshiki et al., 2014), including a model animal
for fragile X syndrome (fmr1KO) (Pan et al., 2010) suggests
abnormal intrinsic spine dynamics could be one candidate
substrate of ASD. Indeed, a recent experiment has confirmed
that high baseline spine turnover in fmr1KO mice is activity-
independent (Nagaoka et al., 2016), and intrinsic spine dynamics
are stronger in fmr1KO (Ishii et al., 2018). Based on these
experimental observations, we fitted parameters characterizing
intrinsic spine dynamics in fmr1KO mice and found that they
explain the learning deficit observed in fmr1KOmice (Padmashri
et al., 2013). Interestingly, when we included a compensatory
increase in recurrent excitatory connectivity to rescue some

memory, the model reproduced epileptic-like neural activity that
has been reported experimentally in fmr1KO mice (Musumeci
et al., 2000; Gonçalves et al., 2013). More generally, the disrupted
cortical connectivity theory of ASD (Courchesne and Pierce,
2005; Kana et al., 2011) argues that deficiency of cortical long-
range connections and compensatory strengthening of local
connections is a general feature of ASD.We contend that because
there are typically fewer long-range connections, which therefore
limits the positive feedback effect of Hebbian plasticity that
is required for maintaining cell assemblies, they are especially
susceptible to degradation due to excessively strong intrinsic
spine dynamics, such as in our fmr1KOmodel. Furthermore, the
learning deficiency in our proposed local cortical circuit model
of fmr1KO, and its rescue by a compensatory increase in the local
connectivity (Figure 7), is consistent with this theory. Hence, it
is an intriguing possibility that pharmacological manipulations
(Nagaoka et al., 2016), or a future neurofeedback technology
(Ganguly and Poo, 2013; Yahata et al., 2016), could be used to
rescue memory and learning, and long-range neural association,
by reducing intrinsic spine dynamics or producing network
motifs (Watanabe and Rees, 2015) efficiently connecting target
brain areas.

A similar concept to intrinsic spine dynamics that has
been used to describe ASD is intrinsic forgetting (Davis and
Zhong, 2017). These two mechanisms are both related to
chronic molecular signaling, which slowly degrades synapses and
therefore memories. However, important differences between the
two are how they are regulated in ASD animals and how they
could possibly be involved in producing flexible behavior. A
decrease in intrinsic forgetting has been argued to disable flexible
behavior by maintaining conflicting memories (Reaume et al.,
2011; Davis and Zhong, 2017). In contrast, the excessively strong
intrinsic spine dynamics found in ASD animals (Pan et al., 2010;
Isshiki et al., 2014; Nagaoka et al., 2016) would work in the
opposite manner, by facilitating forgetting. Namely, stable cell
assemblies in our fmr1KOmodel, typically require more neurons
than the WT model to counter excess synaptic normalization.
Hence, given a hypothesis that the number of total neurons is
roughly the same between fmr1KO and WT mice, fmr1KO mice
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may afford a smaller number of cell assemblies in the brain,
possibly reducing the number of behavioral repertoires.

Overall, our spine dynamics model provides a novel
path relating spine statistics, memory, and ASD. Notably,
it is currently difficult to block intrinsic spine dynamics
experimentally in vivo without affecting plasticity, because they
are thought to be caused by the thermal agitation of molecules.
This underscores the importance of a modeling study. Selective
manipulations of intrinsic spine dynamics are an intriguing
candidate direction to influence memory and learning, and the
current model serves as a guide.

METHODS

Network and Neurons
A local network of NE excitatory and NI inhibitory leaky-
integrate-and-fire neurons [Figure 1A; see e.g., (Tuckwell, 1988)]
is considered. We simulate a network with (NE,NI) =
(1000, 200). The dynamics of membrane potential Vi of neuron
i is described by

τm
dVi

dt
(t) = −(Vi(t)− V0)− Ai(t)+ Ri(t)

∑

j,k

wij
(k)

∫ t

−∞
f (t − t′)Sj(t

′ − ∆ij)dt
′ + Ri(t)Ii

ext(t)

with membrane time constant τm = 20 ms, resting potential
V0 = −70 mV, adaptation Ai, refractory coefficient Ri, kth
(k = 1, 2, ...), synaptic strength wij

(k) from neuron j to neuron

i, spike train Sj(t) =
∑

n δ(t − tj
(n)) of neuron j composed of

nth (n = 1, 2, ...) spike time tj
(n), random axonal delay ∆ij from

neuron j to neuron i uniformly sampled from interval [0.5, 5.0]
ms, and external input Ii

ext to neuron i (see below). Note that δ is
the Dirac delta function. The time course of postsynaptic input is
modeled using the alpha function (Gerstner et al., 2014),

f (t) = 20 mV ·
τr

τf − τr

(

e−t/τf − e−t/τr
)

2(t)

with rise time τr = 0.5 ms, fall time τf = 2.0 ms, and the
Heaviside step function2(t) that takes 1 for t ≥ 0 and 0 for t < 0.
The peak value of f (t) is about 0.39mV. A spike is emitted when
Vi reaches a spiking threshold at −50 mV and then Vi is reset to
V0. Excitatory neurons receive adaptation input Ai that reflects a
slow Na+-activated K+ current (Wang et al., 2003) (Figure 1B4),
with dynamics described by

dAi

dt
(t) = −

Ai(t)

τA
+ 0.0017[20 mV− Ai(t)]Si(t)

with time constant τA = 13 s. In contrast, we assume no
adaptation (Ai = 0) in inhibitory neurons. Refractoriness is
imposed by Ri. Ri is fixed at 0 after each spike of neuron i for 1ms
(absolute refractoriness), and then recovers toward 1 following

τR
dRi

dt
(t) = 1− Ri(t)

with time constant τR = 3.5 ms (relative refractoriness). The
differential equations are numerically solved using the Euler
method with bin size ∆t = 0.1 ms.

Network Topology
In the network model of Figure 1A, excitatory neurons, E, and
inhibitory neurons, I, are sparsely connected. The connections
from excitatory to inhibitory neurons (E → I) and those
from inhibitory to excitatory neurons (I → E) are randomly
generated with 10% connection probability. Each of these
directed connections is mediated by a single synapse, whose
strength is randomly drawn from a uniform distribution in the
range [0, 31] mV for E → I and [−31, 0] mV for I → E,
respectively. According to our neuron model described above, a
typical E→ I or I→ E synapse produces a postsynaptic potential
of 6mV. For simplicity, we assume no direct connections
between inhibitory neurons. Excitatory neurons are equidistantly
placed on a one-dimensional ring of circumference 1 a.u. that
represents the feature space. Note that the tuning distance
in feature space dfs does not necessarily correspond to the
physical location of a neuron, or the distance between any
two neurons. The potential connections from excitatory to
excitatory neurons (E → E) are randomly generated according
to the Gaussian probability profile (10.4%∗exp[−0.5∗(dfs/0.1)

2],
Figure 1B1), which peaks at 10.4% for similarly tuned neurons
(dfs ≈ 0), and decays toward 0 with a length-constant of 0.1 as
dfs increases. Although this E→ E peak connection probability is
optimized for memory retention, simulation outcomes are robust
with this parameter in our model (see, Figure 7, WT model).
Effectively, this allows excitatory neurons closer in the feature
space to be more interconnected, and those farther apart to be
less so. If there is a potential connection from one neuron to
another, we randomly assign a fixed number K(K = 1, 2, · · · , 10)
of spines from a Poisson distribution (λK/K!)/

∑10
K′=1 (λ

K′
/K ′!)

with parameter λ = 3 (Figure 1B2).

Stimulation
In addition to the recurrent input, neuron i also receives
spike train Si

ext(t′) as external input (dashed connection in
Figure 1A). At baseline, Si

ext(t′) is generated by a Poisson process
with firing intensity 60Hz. Input neurons are not modeled
explicitly here. The external input to each neuron is given

by Ii
ext(t) =

∫ t
−∞ f (t − t′)Si

ext(t′)dt′. This sets the baseline
membrane potential and firing rate of neurons to −58.6 ±
2.4mV and 0.13± 0.08Hz, respectively.

We divide the feature space of excitatory neurons into four
equally-sized consecutive parts and randomly select 40% of
the neurons from each part as a stimulated neuron group
(Figure 1A). During the learning period (indicated by blue
horizontal bars below the time axes in Figures 2, 3, 6), one of the
4 stimulated neuron groups is randomly selected with probability
¼ and receives additional Poisson spikes at 750Hz for 3 s. During
the learning period, all inhibitory neurons also receive additional
Poisson spikes at 300Hz. The learning period starts at t = 0 and
ends when at least one group’s mean intra-group spine volume
reaches ≥ 0.49 µm3.
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Spine Dynamics
Unlike E → I and I → E synapses, which have fixed weights, E
→ E synapses (orange and brown dashed in Figure 1A) change
in time via two independent mechanisms: STDP and intrinsic
spine dynamics. We assume that synaptic strengths for E → E
synapses are essentially proportional to their spine volumes and
therefore model their spine volume dynamics as changes in
synaptic strengths. Changes in the kth (k = 1, 2, ...,Kij) spine

volume vij
(k) on neuron i, receiving signal from neuron j, is

modeled by

dvij
(k)

dt
(t) = Ta

(

Si(t)SSj(t)−
vij

(k)(t)

vLTD
Sj(t)SSi(t)

)

2(vij
(k)(t)− vθ )+

√ST(αvij(k)(t)+ β)ξ (t)

where the first and second terms on the right-hand side describe
changes by multiplicative STDP (van Rossum et al., 2000) and
intrinsic spine dynamics (Yasumatsu et al., 2008), respectively. T
is a speed-up factor that we describe below, a = 7.6 · 10−9

µm3 is
the amplitude of STDP,SSi is the running average of past spiking
activity of neuron i, i.e.,

dSSi
dt

(t) = −
SSi(t)
τSTDP

+ Si(t)

with an averaging time constant τSTDP = 20 ms, and vLTD =
0.5 µm3 is the scaling factor for volume-dependent LTD (van
Rossum et al., 2000). STDP is assumed to be absent for small
spines of vij

(k) < vθ = 0.02 µm3. Slope parameter α = 0.2

day−½ and offset parameter β = 0.01 µm3 day−½ for intrinsic
spine dynamics are set as previously experimentally observed
(Yasumatsu et al., 2008). ξ is white noise with the autocorrelation
function < ξ (t)ξ (t′) >= δ(t − t′). The above Langevin equation
is numerically solved by the Euler method with bin size ∆t = 0.1
ms. In addition, we set reflecting boundaries for spine volume
to enforce 0 ≤ vij

(k) ≤ 1.0µm3 for all spines. One problem
is that it is too time consuming to directly simulate the 10-day
learning period studied with the fine time resolution required to
simulate STDP and intrinsic spine dynamics. We therefore run
T = 3.3·104 times shorter simulations by speeding up both STDP
and intrinsic spine dynamics by factors T and

√ST, respectively.
(Note that volume changes v(t + ∆t) − v(t) by intrinsic spine
dynamics are diffusive and scale with the square root of time
duration

√
∆t.) This way, we can extrapolate spine volume

changes happening during 10 days based on shorter simulations
up to 3,000 s. We display the time before this conversion in
panels describing neural activity in seconds, but display the time
after this conversion in panels describing learning in days. We
initially set E → E spine volumes by randomly sampling from
the equilibrium distribution Peq(v) ∝ (αv+β)−2 , which is set by
the intrinsic spine dynamics. Synaptic strength w of a spine with
volume v is then assumed to be

w = (43 µm−3)v

for v ≥ vθ (a functional spine) and 0 for v < vθ (a non-functional
spine, e.g., filopodia). The median spine volume of Peq(v) is 0.047

µm3 and such a spine produces 0.8mV of excitatory postsynaptic
potential. We set vθ to be a threshold volume typically used in
experiments to detect spines (Yasumatsu et al., 2008). We define
spine gain and loss by a fraction of spines passing this threshold
from below and above per day, respectively. The exact value of vθ

does not matter for our results as long as it is sufficiently small.

Itô vs. Stratonovich Interpretation
The meaning of fluctuation is different under the Itô and
Stratonovich interpretations of intrinsic spine dynamics
(Gardiner, 1985). The intrinsic spine dynamics under the Itô
interpretation that we study in the main text are described by

∂P(v, t)

∂t
=

1

2

∂2

∂v2
(αv+ β)2P(v, t)

In this view, changes in spine volume distribution are purely
produced by the volume-dependent fluctuation with amplitude
αv + β . In contrast, the Stratonovich interpretation represents
the same equation in a different way:

∂P(v, t)

∂t
= −

∂

∂v

[

−
α(αv+ β)

2
P(v, t)

]

+
1

2

∂

∂v

{

(αv+ β)
∂

∂v

[

(αv+ β)P(v, t)
]

}

In this view, changes in spine volume distribution are described
by two terms: the first term is the drift term produced by apparent
force α(αv + β)/2 and the second term is produced by the
volume-dependent fluctuation αv+β . Hence, while the above two
equations are identical, there is a semantic difference regarding
what fluctuationmeans. According to the Itô interpretation, only
the fluctuation drives spine volume changes and this fluctuation
preserves mean spine volume [i.e., martingale (Øksendal, 2000)]
except for a boundary effect. According to the Stratonovich
interpretation, the apparent force shrinks and the fluctuation
enlarges mean spine volume, respectively, and the two effects
are canceled. These two interpretations become the same in
the special case of α = 0, namely, when the fluctuation is
volume independent.

Simulation Environment
Simulations were performed in custom written C code with
the forward Euler-integration method and a step size of 0.1ms.
Code was written to efficiently run on multiple GPUs to produce
the trillions of random numbers needed to model the intrinsic
spine dynamics per simulation up to 3,000 s. Post-simulation
analysis was undertaken with MATLAB. Source code is available
upon request.
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