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The analysis of Electroencephalographic (EEG) signals is of ulterior importance to

aid in the diagnosis of mental disease and to increase our understanding of the

brain. Traditionally, clinical EEG has been analyzed in terms of temporal waveforms,

looking at rhythms in spontaneous activity, subjectively identifying troughs and peaks

in Event-Related Potentials (ERP), or by studying graphoelements in pathological sleep

stages. Additionally, the discipline of Brain Computer Interfaces (BCI) requires new

methods to decode patterns from non-invasive EEG signals. This field is developing

alternative communication pathways to transmit volitional information from the Central

Nervous System. The technology could potentially enhance the quality of life of patients

affected by neurodegenerative disorders and other mental illness. This work mimics

what electroencephalographers have been doing clinically, visually inspecting, and

categorizing phenomena within the EEG by the extraction of features from images of

signal plots. These features are constructed based on the calculation of histograms of

oriented gradients from pixels around the signal plot. It aims to provide a new objective

framework to analyze, characterize and classify EEG signal waveforms. The feasibility of

the method is outlined by detecting the P300, an ERP elicited by the oddball paradigm

of rare events, and implementing an offline P300-based BCI Speller. The validity of the

proposal is shown by offline processing a public dataset of Amyotrophic Lateral Sclerosis

(ALS) patients and an own dataset of healthy subjects.

Keywords: Electroencephalography, Histogram of Gradient Orientations, brain-computer interfaces, P300, SIFT,

amyotrophic lateral sclerosis, naive-bayes near neighbors, waveforms

1. INTRODUCTION

Although recent advances in neuroimagining techniques, particularly radio-nuclear and
radiological scanning methods (Schomer and Silva, 2010), have diminished the prospects of the
traditional Electroencephalography, the advent and development of digitized devices has impelled
for a revamping of this hundred years old technology. Their versatility, ease of use, temporal
resolution, ease of development and production, and its proliferation as consumer devices, are
pushing EEG to become the de-facto non invasive portable or ambulatory method to access and
harness brain information (De Vos and Debener, 2014).

A key contribution to this expansion has been the field of Brain Computer Interfaces (Wolpaw
and Wolpaw, 2012) which is the pursuit of the development of a new channel of communication
particularly aimed to persons affected by neurodegenerative diseases.
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One noteworthy aspect of this novel communication channel
is the ability to transmit information from the Central Nervous
System (CNS) to a computer device and from there use that
information to control a wheelchair (Carlson and del R. Millan,
2013), as input to a speller application (Guger et al., 2009), in a
Virtual Reality environment (Lotte et al., 2013) or as aiding tool
in a rehabilitation procedure (Jure et al., 2016). The holly grail of
BCI is to implement a new complete and alternative pathway to
restore lost locomotion (Wolpaw and Wolpaw, 2012).

EEG signals are remarkably complex and have been
characterized as a multichannel non-stationary stochastic
process. Additionally, they have high variability between different
subjects and even between different moments for the same
subject, requiring adaptive and co-adaptive calibration and
learning procedures (Clerc et al., 2016). Hence, this imposes an
outstanding challenge that is necessary to overcome in order to
extract information from raw EEG signals.

BCI has gained mainstream public awareness with worldwide
challenge competitions like Cybathlon (Riener and Seward,
2014; Novak et al., 2018) and even been broadcasted during the
inauguration ceremony of the 2014 Soccer World Cup. New
developments have overcome the out-of-the-lab high-bar and
they are starting to be used in real world environments (Huggins
et al., 2016; Guger et al., 2017). However, they still lack the
necessary robustness, and its performance is well behind any
other method of human computer interaction, including
any kind of detection of residual muscular movement
(Clerc et al., 2016).

A few works have explored the idea of exploiting the signal
waveform to analyze the EEG signal. In Alvarado-González
et al. (2016), an approach based on Slope Horizontal Chain
Code is presented, whereas in Yamaguchi et al. (2009) a
similar procedure was implemented based on Mathematical
Morphological Analysis. The seminal work of Bandt-Pompe
Permutation Entropy (Berger et al., 2017) also explores succinctly
this idea as a basis to establish the time series ordinal patterns.
In the article (Ramele et al., 2016), the authors introduce a
method for classification of rhythmic EEG events like Visual
Occipital Alpha Waves and Motor Imagery Rolandic Central µ

Rhythms using the Histogram of Gradient Orientations of signal
plots. Inspired in that work, we propose a novel application of
the developed method to classify and describe transient events,
particularly the P300 Event Related Potential. The proposed
approach is based on the waveform analysis of the shape of
the EEG signal. The signal is drawn on a bidimensional image
plot, vector gradients of pixels around the plot are obtained,
and with them, the histogram of their orientations is calculated.
This histogram is a direct representation of the waveform of
the signal. The method is built by mimicking what regularly
electroencephalographers have been performing for almost a
century as it is described in Hartman (2005): visually inspecting
raw signal plots.

This paper reports a method to: (1) describe a procedure
to capture the shape of a waveform of an ERP component,
the P300, using histograms of gradient orientations extracted
from images of signal plots, and (2) outline the way in which
this procedure can be used to implement an P300-Based BCI

Speller application. Its validity is verified by offline processing
two datasets, one of data fromALS patients and another one from
data of healthy subjects.

This article unfolds as follows: section 2.1 is dedicated to
explain the Feature Extraction method based on Histogram of
Gradient Orientations of the Signal Plot, section 2.1.1 shows
the preprocessing pipeline, section 2.1.2 describes the image
generation of the signal plot, section 2.1.3 presents the feature
extraction procedure while section 2.1.4 introduces the Speller
Matrix Letter Identification procedure. In section 2.2, the
experimental protocol is expounded. Section 3 shows the results
of applying the proposed technique. In the final section 4 we
expose our remarks, conclusions, and future work.

2. MATERIALS AND METHODS

The P300 (Farwell and Donchin, 1988; Knuth et al., 2006) is
a positive deflection of the EEG signal which occurs around
300 ms after the onset of a rare and deviant stimulus that the
subject is expected to attend. It is produced under the oddball
paradigm (Wolpaw and Wolpaw, 2012) and it is consistent
across different subjects. It has a lower amplitude (±5µV)
compared to basal EEG activity, reaching a Signal to Noise Ratio
(SNR) of around −15 db estimated based on the amplitude
of the P300 response signal divided by the standard deviation
of the background EEG activity (Hu et al., 2010). This signal
can be used to implement a speller application by means of
a Speller Matrix (Farwell and Donchin, 1988). This matrix is
composed of 6 rows and 6 columns of numbers and letters.
The subject can focus on one character of the matrix. Figure 1
shows an example of the Speller Matrix used in the OpenVibe
open source software (Renard et al., 2010), where the flashes
of rows and columns provide the deviant stimulus required
to elicit this physiological response. Each time a row or a
column that contains the desired letter flashes, the corresponding
synchronized EEG signal should also contain the P300 signature
and by detecting it, the selected letter can be identified.

2.1. Feature Extraction From Signal Plots
In this section, the signal preprocessing, the method for
generating images from signal plots, the feature extraction
procedure and the Speller Matrix identification are described.
Figure 2 shows a scheme of the entire process.

2.1.1. Preprocessing Pipeline
The data obtained by the capturing device is digitalized and a
multichannel EEG signal is constructed.

The 6 rows and 6 columns of the Speller Matrix are intensified
providing the visual stimulus. The number of a row or column
is a location. A sequence of 12 randomly permuted locations
l conform an intensification sequence. The whole set of 12
intensifications is repeated ka times.

• Signal Enhancement: This stage consists of the enhancement
of the SNR of the P300 pattern above the level of basal EEG.
The pipeline starts by applying a notch filter to the raw digital
signal, a 4th degree 10Hz lowpass Butterworth filter and finally
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FIGURE 1 | Example of the 6× 6 Speller Matrix used in the study obtained from the OpenVibe software. Rows and columns flash in random permutations.

FIGURE 2 | For each column and row, an averaged, standardized and scaled signal x̃l (n, c) is obtained from the segments Sl
i
corresponding to the ka intensification

sequences with 1 ≤ i ≤ ka and location l varying between 1 and 12. From the averaged signal, the image I(l,c) of the signal plot is generated and each descriptor is

computed. By comparing each descriptor against the set of templates, the P300 ERP can be detected, and finally the desired letter from the matrix can be inferred.

a decimation with a Finite Impulse Response (FIR) filter of
order 30 from the original sampling frequency down to 16 Hz
(Krusienski et al., 2006).

• Artifact Removal: For every complete sequence of 12
intensifications of 6 rows and 6 columns, a basic artifact
elimination procedure is implemented by removing
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the entire sequence when any signal deviates above/
bellow±70µV .

• Segmentation: For each of the 12 intensifications of one
intensification sequence, a segment Sli of a window of tmax

seconds of the multichannel signal is extracted, starting
from the stimulus onset, corresponding to each row/column
intensification l and to the intensification sequence i. As
intensifications are permuted in a random order, the segments
are rearranged corresponding to row flickering, labeled 1–6,
whereas those corresponding to column flickering are labeled
7–12. Two of these segments should contain the P300 ERP
signature time-locked to the flashing stimulus, one for the row,
and one for the column.

• Signal Averaging: The P300 ERP is deeply buried under basal
EEG so the standard approach to identify it is by point-
to-point averaging the time-locked stacked signal segments.
Hence the values which are not related to, and not time-
locked to the onset of the stimulus are canceled out (Liang and
Bougrain, 2008).

This last step determines the operation of any P300 Speller.
In order to obtain an improved signal in terms of its SNR,
repetitions of the sequence of row/column intensification are
necessary. And, at the same time, as long as more repetitions are
needed, the ability to transfer information faster is diminished, so
there is a trade-off that must be acutely determined.

The procedure to obtain the point-to-point averaged signal
goes as follows:

1. Highlight randomly the rows and columns from the matrix.
There is one row and one column that should match the letter
selected by the subject.

2. Repeat step 2.1.1 ka times, obtaining the 1 ≤ l ≤ 12 segments
Sl1(n, c), . . . , S

l
ka
(n, c), of the EEG signal where the variables

1 ≤ n ≤ nmax and 1 ≤ c ≤ C correspond to sample points
and channel, respectively. The parameter C is the number of
available EEG channels whereas nmax = Fs tmax is the segment
length and Fs is the sampling frequency. The parameter ka is
the number of repetitions of intensifications and it is an input
parameter of the algorithm.

3. Compute the Ensemble Average by

xl(n, c) =
1

ka

ka
∑

i=1

Sli(n, c) (1)

for 1 ≤ n ≤ nmax and for the channels 1 ≤ c ≤ C. This
provide an averaged signal xl(n, c) for the twelve locations
1 ≤ l ≤ 12.

2.1.2. Signal Plotting
Averaged signal segments are standardized and scaled for 1 ≤

n ≤ nmax and 1 ≤ c ≤ C by

x̃l(n, c) =

⌊

γ
(xl(n, c)− x̄l(c))

σ̂ l(c)

⌋

(2)

where γ > 0 is an input parameter of the algorithm and it is
related to the image scale. In addition, xl(n, c) is the point-to-
point averaged multichannel EEG signal for the sample point n
and for channel c. Lastly,

x̄l(c) =
1

nmax

nmax
∑

n=1

xl(n, c)

and

σ̂ l(c) =

{

1

nmax − 1

nmax
∑

n=1

[

xl(n, c)− x̄l(c)
]2

}
1
2

are the mean and estimated standard deviation of xl(n, c), 1 ≤

n ≤ nmax, for each channel c.
Consequently, a binary image I(l,c) is constructed according to

I(l,c)(z1, z2) =

{

255 if z1 = γ n and z2 = x̃l(n, c)+ zl(c)
0 otherwise

(3)
with 255 being white and representing the signal’s value location
and 0 for black which is the background contrast, conforming
a black-and-white plot of the signal. Pixel arguments (z1, z2) ∈

N × N iterate over the width (based on the length of the signal
segment) and height (based on the peak-to-peak amplitude) of
the newly created image with 1 ≤ n ≤ nmax and 1 ≤ c ≤ C. The
value zl(c) is the image vertical position where the signal’s zero
value has to be situated in order to fit the entire signal within the
image for each channel c:

zl(c) =

⌊

maxn x̃
l(n, c)−minn x̃

l(n, c)

2

⌋

−

⌊

maxn x̃
l(n, c)+minn x̃

l(n, c)

2

⌋

(4)

where the minimization and maximization are carried out for n
varying between 1 ≤ n ≤ nmax, and ⌊·⌋ denote the rounding to
the smaller nearest integer of the number.

In order to complete the plot I(l,c) from the pixels, the
Bresenham (Bresenham, 1965; Ramele et al., 2016) algorithm
is used to interpolate straight lines between each pair of
consecutive pixels.

2.1.3. Feature Extraction: Histogram of Gradient

Orientations
The work of Hubel and Wiesel (1962), on how the visual cortex
sense features was the inspiration to the development of an
algorithm to identify and decode salient local information from
image regions. The Scale Invariant Feature Transform (SIFT)
is a Computer Vision method proposed by Lowe (2004) which
is composed of two parts, the SIFT Detector and the SIFT
Descriptor. The former is the procedure to identify relevant
areas of an image whereas the latter is the procedure to describe
and characterize a region of an image (i.e. patch) calculating an
histogram of the angular orientations of pixel gradients. In order
to characterize EEG signal waveforms, this work proposes an
alternative to the SIFT Descriptor, the Histogram of Gradient
Orientations (HIST) algorithm.
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For each generated image I(l,c), a keypoint pk is placed on a
pixel (xpk , ypk ) over the image plot and a window around the
keypoint is considered: a local image patch. Its size is Xp × Xp

pixels and is constructed by dividing the window in 16 blocks of
size 3s each one, where s is the scale of the local patch and it is an
input parameter of the algorithm. It is arranged in a 4 × 4 grid
and the pixel pk is the patch center, thus Xp = 12s pixels.

A local representation of the signal shape within the patch can
be described by obtaining the gradient orientations on each of
the 16 blocks Bi,j with 0 ≤ i, j ≤ 3 and creating a histogram of
gradients. In order to calculate the histogram, the interval [0, 360]
of possible angles is divided in 8 bins, each one of 45 degrees.

Hence, for each spatial bin 0 ≤ i, j ≤ 3, corresponding to the
indexes of each block Bi,j, the orientations are accumulated in a
3-dimensional histogram h through the following equation:

h(θ , i, j) = 3s
∑

p∈I(l,c)

wang( 6 J(p)− θ)wij

(

p− pk

3s

)

∥

∥J(p)
∥

∥ (5)

where p is a pixel from the image I(l,c), θ is the angle bin with θ ∈

{0, 45, 90, 135, 180, 225, 270, 315},
∥

∥J(p)
∥

∥ is the euclidean norm of
the gradient vector in the pixel p and it is computed using finite
differences and 6 J(p) is the angle of the gradient vector.

The contribution of each gradient vector to the histogram
calculated by Equation 5 is balanced by a trilinear interpolation.
The scalar wang(·) and vector wij(·) functions are linear
interpolations used by Lowe (2004) and Vedaldi and Fulkerson
(2010) to provide a weighting contribution to the eight adjacent
bins in the tridimensional histogram. They are calculated as

wij(v) = w(vx − xi)w(vy − yj) (6)

with 0 ≤ i, j ≤ 3 and

wang(α) =

1
∑

r=−1

w

(

8α

2π
+ 8r

)

(7)

where xi and yi are the spatial bin centers located in xi, yj ∈

{− 3
2 ,−

1
2 ,

1
2 ,

3
2 } and the interpolating function w(·) is defined as

w(z) = max(0, 1 − |z|). The function parameter v = (vx, vy)
is a vector variable and α a scalar variable. Vector v holds pixel
coordinates (vx, vy) normalized between−2 and 2 and combined
with the function w(z) it produces zero for every combination of
(i, j) except for the 4 adjacent spatial bins. On the other hand, r
is an integer that can vary freely in the set {−1, 0, 1} and α is the
difference between the gradient orientation angle and the angle
bin center in radians. By following this procedure, summands on
Equation (7) are nullified except for the 2 adjacent angular bins.

These binning functions conform the trilinear interpolation
that has a combined effect of sharing the contribution of
each oriented gradient between their eight adjacent bins in a
tridimensional cube in the histogram space, and zero everywhere
else (Mortensen and Shapiro, 2005).

The fixed value of 3 is a magnification factor which
corresponds to the number of pixels per each block when s = 1.
As the patch has 16 blocks and 8 bin angles are considered, for

each location l and channel c a feature called descriptor d(l,c) of
128 dimension is obtained. The main differences between this
implementation and the standard SIFT Descriptor are described
in the Appendix.

Figure 3 shows an example of a patch and a scheme of the
histogram computation. In Figure 3A a plot of the signal and
the patch centered around the keypoint is shown. In Figure 3B

the possible orientations on each patch are illustrated. Only the
upper-left four blocks are visible. The first eight orientations of
the first block, are labeled from 1 to 8 clockwise. The orientations
of the second block B1,2 are labeled from 9 to 16. This labeling
continues left-to-right, up-down until the eight orientations for
all the sixteen blocks are assigned. They form the corresponding
descriptor d of 128 coordinates. Finally, in (C) an enlarged image
plot is shown where the oriented gradient vector for each pixel
can be seen.

2.1.4. Speller Matrix Letter Identification

2.1.4.1. P300 ERP extraction
Segments corresponding to row flickering are labeled 1–6,
whereas those corresponding to column flickering are labeled
7–12. The extraction process has the following steps:

• Step A: First highlight rows and columns from the matrix in a
random permutation order and obtain the Ensemble Average
as detailed in steps 2.1.1, 2.1.1, and 2.1.1 in section 2.1.1.

• Step B: Plot the signals x̃l(n, c), 1 ≤ n ≤ nmax, 1 ≤ c ≤ C,
according section 2.1.2 in order to generate the images I(l,c) for
rows and columns 1 ≤ l ≤ 12.

• Step C: Obtain the descriptors d(l,c) for rows and columns
from I(l,c) in accordance to the method described in
section 2.1.3.

2.1.4.2. Calibration
A trial, as defined by the BCI2000 platform (Schalk et al., 2004),
is every attempt to select just one letter from the speller. A set of
trials is used for calibration and once the calibration is complete
it can be used to identify new letters from new trials.

During the calibration phase, two descriptors d(l,c) are
extracted for each available channel, corresponding to the
locations l of a selection of one previously instructed letter
from the set of calibration trials. These descriptors are the P300
templates, grouped together in a template set called Tc. The set
is constructed using the steps described in section 2.1.1 and the
steps A, B, and C of the P300 ERP extraction process.

Additionally, the best performing channel, bpc is identified
based on the the channel where the best Character Recognition
Rate is obtained.

2.1.4.3. Letter identification
In order to identify the selected letter, the template set Tbpc is
used as a database. Thus, new unclassified descriptors q(l,bpc)

are computed and they are compared against the descriptors
belonging to the calibration template set Tbpc.

The Naive Bayes Nearest Neighbor (k-NBNN) (Boiman et al.,
2008) is a discriminative (Wolpaw and Wolpaw, 2012) semi-
supervised classification algorithm that allows the categorization
of an image to one class by comparing the set of extracted
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FIGURE 3 | (A) Example of a plot of the signal, a keypoint and the corresponding patch. (B) A scheme of the orientation’s histogram computation. Only the upper-left

four blocks are visible. The first eight orientations of the first block, are labeled from 1 to 8 clockwise. The orientation of the second block B1,2 is labeled from 9 to 16.

This labeling continues left-to-right, up-down until the eight orientations for all the sixteen blocks are assigned. They form the corresponding descriptor of 128

coordinates. The length of each arrow represents the value of the histogram on each direction for each block. (C) Vector field of oriented gradients. Each pixel is

assigned an orientation and magnitude calculated using finite differences.

descriptors to those which are more similar from template
dictionaries. This work proposes an adapted version to obtain a
unary classification scheme to identify the selected letter in the
P300-Based BCI Speller, based on the features provided by the
calculated descriptors.

• Step D:Match to the calibration template Tbpc by computing

ˆrow = arg min
l∈{1,...,6}

k
∑

h=1

∥

∥

∥
q(l,bpc) − d

(bpc)

h

∥

∥

∥

2
(8)

and

ˆcol = arg min
l∈{7,...,12}

k
∑

h=1

∥

∥

∥
q(l,bpc) − d

(bpc)

h

∥

∥

∥

2
(9)

with d
(bpc)

h
belonging to the set NT(q

(l,bpc)), which is defined,

for the best performing channel, as NT(q
(l,bpc)) = {d

(bpc)

h
∈

Tbpc/d(bpc) is the k-nearest neighbor of q(l,bpc)}. This set is
obtained by sorting all the elements in Tbpc based on distances
between them and q(l,bpc), choosing the k with smaller values,
with k a parameter of the algorithm.

By computing the aforementioned equations, the letter of the
matrix can be determined from the intersection of the row ˆrow
and column ˆcol. Figure 2 shows a scheme of this process.

2.2. Experimental Protocol
To verify the validity of the proposed framework and method,
the public dataset 008-2014 (Riccio et al., 2013) published on
the BNCI-Horizon website (Brunner et al., 2014) by IRCCS
Fondazione Santa Lucia, is used. Additionally, an own dataset
with the same experimental conditions is generated. Both of them
are utilized to perform an offline BCI Simulation to decode the
spelled words from the provided signals.

The algorithm is implemented on MATLAB V2017a
(Mathworks Inc., Natick, MA, USA). The algorithm described
in section 2.1.3 is implemented on a modified version of the
VLFeat (Vedaldi and Fulkerson, 2010) Computer Vision library.
Furthermore, in order to enhance the impact of this paper and

for a sake of reproducibility, the code of the entire algorithm,
including the modified VLFeat library, has been made available
at: https://bitbucket.org/itba/hist.

In the following sections the characteristics of the datasets and
parameters of the identification algorithm are described.

2.2.1. P300 ALS Public Dataset
The experimental protocol used to generate this dataset is
explained in Riccio et al. (2013) but can be summarized as
follows: eight subjects with confirmed diagnoses but on different
stages of ALS disease, were recruited and accepted to perform
the experiments. The Visual P300 detection task designed for
this experiment consisted of spelling seven words of five letters
each, using the traditional P300 Speller Matrix (Farwell and
Donchin, 1988). The flashing of rows and columns provide the
deviant stimulus required to elicit this physiological response.
The first 3 words are used for calibration and the remaining
four words, for testing with visual feedback. A trial is every
attempt to select a letter from the speller. It is composed of signal
segments corresponding to ka = 10 repetitions of flashes of 6
rows and ka = 10 repetitions of flashes of 6 columns of the
matrix, yielding 120 repetitions. Flashing of a row or a column
is performed for 0.125 s, following by a resting period (i.e.,
inter-stimulus interval) of the same length. After 120 repetitions
an inter-trial pause is included before resuming with the
following letter.

The recorded dataset was sampled at 256 Hz and it consisted
of a scalp multichannel EEG signal for electrode channels
Fz, Cz, Pz, Oz, P3, P4, PO7, and PO8, identified according
to the 10–20 International System, for each one of the eight
subjects. The recording device was a research-oriented digital
EEG device (g.Mobilab, g.Tec, Austria) and the data acquisition
and stimuli delivery were handled by the BCI2000 open source
software (Schalk et al., 2004).

In order to assess and verify the identification of the P300
response, subjects are instructed to perform a copy-spelling task.
They have to fix their attention to successive letters for copying a
previously determined set of words, in contrast to a free-running
operation of the speller where each user decides on its own what
letter to choose.
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2.2.2. P300 for Healthy Subjects
We replicate the same experiment on healthy subjects using
a wireless digital EEG device (g.Nautilus, g.Tec, Austria).
The experimental conditions are the same as those used
for the previous dataset, as detailed in section 2.2.1. The
produced dataset is available in a public online repository
(Ramele et al., 2017).

Participants are recruited voluntarily and the experiment is
conducted anonymously in accordance with the Declaration
of Helsinki published by the World Health Organization. No
monetary compensation is handed out and all participants
agree and sign a written informed consent. This study is
approved by the Departamento de Investigación y Doctorado,
Instituto Tecnológico de Buenos Aires (ITBA). All healthy subjects
have normal or corrected-to-normal vision and no history of
neurological disorders. The experiment is performed with 8
subjects, 6 males, 2 females, 6 right-handed, 2 left-handed,
average age 29.00 years, standard deviation 11.56 years, range
20–56 years.

EEG data is collected in a single recording session. Participants
are seated in a comfortable chair, with their vision aligned to
a computer screen located one meter in front of them. The
handling and processing of the data and stimuli is conducted by
the OpenVibe platform (Renard et al., 2010).

Gel-based active electrodes (g.LADYbird, g.Tec, Austria) are
used on the same positions Fz, Cz, Pz, Oz, P3,P4, PO7, and PO8.
Reference is set to the right ear lobe and ground is preset as the
AFz position. Sampling frequency is slightly different, and is set
to 250 Hz, which is the closest possible to the one used with the
other dataset.

2.2.3. Parameters
The patch size is XP = 12s × 12s pixels, where s is the scale of
the local patch and it is an input parameter of the algorithm.
The P300 event can have a span of 400 ms and its amplitude
can reach 10µV (Rao, 2013). Hence it is necessary to utilize a
signal segment of size tmax = 1 second and a size patch XP

that could capture an entire transient event. With this purpose
in consideration, the s value election is essential.

We propose the Equations (10) and (11) to compute the scale
value in horizontal and vertical directions, respectively.

sx =
γ λ Fs

12
(10)

sy =
γ 1µV

12
(11)

where λ is the length in seconds covered by the patch, Fs is the
sampling frequency of the EEG signal (downsampled to 16 Hz)
and 1µV corresponds to the amplitude in microvolts that can
be covered by the height of the patch. The geometric structure
of the patch is determined by the waveform to be captured, thus
we discerned that by using s = sx = sy = 3 and γ = 4, the local
patch and the descriptor can identify events of 9µV of amplitude,
with a span of λ = 0.56 s. This also determines that 1 pixel
represents 1

γ
= 1

4µV on the vertical direction and 1
Fs γ

= 1
64

s on the horizontal direction. The keypoints pk are located at

FIGURE 4 | The scale of local patch is selected in order to capture the whole

transient event. The size of the patch is Xp × Xp pixels. The vertical size

consists of four blocks of size 3sy pixels which is high enough as to contain

the signal 1µV, the peak-to-peak amplitude of the transient event. The

horizontal size includes four blocks of 3sx and covers the entire duration in

seconds of the transient signal event, λ.

(xpk , ypk ) = (0.55Fs γ , zl(c)) = (35, zl(c)) for the corresponding
channel c and location l (see Equation 4). In this way the whole
transient event is captured. Figure 4 shows a patch of a signal
plot covering the complete amplitude (vertical direction) and the
complete span of the signal event (horizontal direction).

The number of channels C is equal to 8 for both datasets, and
the number of intensification sequences ka is fixed to 10. The
parameter k used to construct the set NT(q

(l,c)) is assigned to
k = 7, which was found empirically to achieve better results. In
addition, the norm used on Equations (8) and (9) is the cosine
norm, and descriptors are normalized to [−1, 1].

Lastly, in order to assess the validity of the HIST method,
the character recognition rate for both datasets is evaluated
replicating the methodology proposed by the ALS dataset’s
publisher, since authors Riccio et al. (2013) did not report
the Character Recognition Rate obtained for this dataset.
Frequency filtering, data segmentation and artifact rejection is
conducted according to section 2.1.1 yielding 16 x 8 samples
per epoch. A multichannel feature consists of time points
vector (Lotte et al., 2018), formed by concatenating all the
channels (Krusienski et al., 2006). A single-channel variant
consists of using time points from a single electrode and
performing the analysis on a channel-by-channel basis. Three
classification schemes are considered as well. A multichannel
version of the Stepwise Linear Discriminant Analysis (SWLDA)
classification algorithm. SWLDA is the methodology proposed
by the ALS dataset’s publisher. Additionally, a single-channel
and a multichannel variant of a linear kernel Support Vector
Machine (SVM) (Scholkopf and Smola, 2001) classifier are
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TABLE 1 | Character recognition rates for the public dataset of ALS patients using

the Histogram of Gradient (HIST) calculated from single-channel plots.

Participant bpc HIST (%) bpc Single channel

SVM (%)

1 Cz 35 Cz 15

2 Fz 85 PO8 25

3 Cz 25 Fz 5

4 PO8 55 Oz 5

5 PO7 40 P3 25

6 PO7 60 PO8 20

7 PO8 80 Fz 30

8 PO7 95 PO7 85

Performance rates using single-channel signals with the SVM classifier are shown for

comparison. The best performing channel bpc for each method is visualized.

utilized. SVM has been successfully used in several BCI
Competitions (Rakotomamonjy and Guigue, 2008).

3. RESULTS

Table 1 shows the results of applying the HIST algorithm to the
subjects of the public dataset of ALS patients. The percentage of
correctly spelled letters is calculated while performing an offline
BCI Simulation. From the seven words for each subject, the first
three are used for calibration, and the remaining four are used for
testing. The best performing channel bpc is informed as well. The
target ratio is 1:36; hence theoretical chance level is 2.8%. It can
be observed that the best performance of the letter identification
method is reached in a dissimilar channel depending on the
subject being studied. Tables 1, 2 show for comparison the
obtained performance rates using single-channel signals with the
SVM classifier. The best performing channel, where the best letter
identification rate was achieved, is also depicted.

The Information Transfer Rate (ITR), or Bit Transfer Rate
(BTR), in the case of reactive BCIs (Wolpaw and Wolpaw, 2012)
depends on the amount of signal averaging required to transmit
a valid and robust selection. Figure 5 shows the performance
curves for varying intensification sequences for the subjects
included in the dataset of ALS patients. It can be noticed that the
percentage of correctly identified letters depends on the number
of intensification sequences that are used to obtain the averaged
signal. Moreover, when the number of intensification sequences
tend to 1, which corresponds to single-intensification character
recognition, the performance is reduced. As mentioned before,
the SNR of the P300 obtained from only one segment of the
intensification sequence is very low and the shape of its P300
component is not very well defined.

In Table 2 the results obtained for 8 healthy subjects are
shown. It can be observed that the performance is above
chance level. It is verified that HIST method has an improved
performance at letter identification than SVM that process the
signals on a channel by channel strategy (Wilcoxon signed-rank
test, p = 0.004 for both datasets).

TABLE 2 | Character recognition rates for the own dataset of healthy subjects

using the Histogram of Gradient (HIST) calculated from single-channel plots.

Participant bpc HIST (%) bpc Single channel

SVM (%)

1 Oz 40 Cz 10

2 PO7 30 Cz 5

3 P4 40 P3 10

4 P4 45 P4 35

5 P4 60 P3 10

6 Pz 50 P4 25

7 PO7 70 P3 30

8 P4 50 PO7 10

Performance rates using single-channel signals with the SVM classifier are shown for

comparison. The best performing channel bpc for each method is visualized.

FIGURE 5 | Performance curves for the eight subjects included in the dataset

of ALS patients. Three out of eight subjects achieved the necessary

performance to implement a valid P300 speller.

Tables 3, 4 are presented in order to compare the performance
of the HIST method versus multichannel SWLDA and SVM
classification algorithms for both datasets. It is verified for the
dataset of ALS patients that it has similar performance against
other methods like SWLDA or SVM, which use a multichannel
feature (Quade test with p = 0.55) whereas for the dataset of
healthy subjects significant differences are found (Quade test with
p = 0.02) where only the HIST method achieves a different
performance than SVM (with multiple comparisons, significant
difference of level 0.05).

The P300 ERP consists of two overlapping components: the
P3a and P3b, the former with frontocentral distribution while the
later stronger on centroparietal region (Polich, 2007). Hence, the
standard practice is to find the stronger response on the central
channel Cz (Riccio et al., 2013). However, Krusienski et al. (2006)
show that the response may also arise in occipital regions. We
found that by analyzing only the waveforms, occipital channels
PO8 and PO7 show higher performances for some subjects.
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TABLE 3 | Character recognition rates and the best performing channel bpc for

the public dataset of ALS patients using the Histogram of Gradient (HIST)

(repeated here for comparison purposes).

Participant bpc

for HIST

HIST (%) Multichannel

SWLDA (%)

Multichannel

SVM (%)

1 Cz 35 45 40

2 Fz 85 30 50

3 Cz 25 65 55

4 PO8 55 40 50

5 PO7 40 35 45

6 PO7 60 35 70

7 PO8 80 60 35

8 PO7 95 90 95

Performance rates obtained by SWLDA and SVM classification algorithms with a

multichannel concatenated feature.

As subjects have varying latencies and amplitudes of their
P300 components, they also have a varying stability of the shape
of the generated ERP (Nam et al., 2010). Figure 6 shows 10
sample P300 templates patches for patients 8 and 3 from the
dataset of ALS patients. It can be discerned that in coincidence
with the performance results, the P300 signature is more clear
and consistent for subject 8 (A) while for subject 3 (B) the
characteristic pattern is more difficult to perceive.

Additionally, the stability of the P300 component waveform
has been extensively studied in patients with ALS (Sellers et al.,
2006; Madarame et al., 2008; Nijboer and Broermann, 2009;
Mak et al., 2012; McCane et al., 2015) where it was found that
these patients have a stable P300 component, which were also
sustained across different sessions. In line with these results we
do not find evidence of a difference in terms of the performance
obtained by analyzing the waveforms (HIST) for the group of
patients with ALS and the healthy group of volunteers (Mann–
Whitney U-Test, p = 0.46). Particularly, the best performance
is obtained for a subject from the ALS dataset for which, based
on visual observation, the shape of they P300 component is
consistently identified.

It is important to remark that when applied to binary
images obtained from signal plots, the feature extraction method
described in section 2.1.3 generates sparse descriptors. Under
this subspace we found that using the cosine metric yielded
a significant performance improvement. On the other hand,
the unary classification scheme based on the NBNN algorithm
proved very beneficial for the P300 Speller Matrix. This is
due to the fact that this approach solves the unbalance
dataset problem which is inherent to the oddball paradigm
(Tibon and Levy, 2015).

4. DISCUSSION

Among other applications of Brain Computer Interfaces, the goal
of the discipline is to provide communication assistance to people
affected by neuro-degenerative diseases, who are the most likely

TABLE 4 | Character recognition rates and the best performing channel bpc for

the own dataset of healthy subjects using the Histogram of Gradient (HIST)

(repeated here for comparison purposes).

Participant bpc

for HIST

HIST (%) Multichannel

SWLDA (%)

Multichannel

SVM (%)

1 Oz 40 65 40

2 PO7 30 15 10

3 P4 40 50 25

4 P4 45 40 20

5 P4 60 30 20

6 Pz 50 35 30

7 PO7 70 25 30

8 P4 50 35 20

Performance rates obtained by SWLDA and SVM classification algorithms with a

multichannel concatenated feature.

population to benefit from BCI systems and EEG processing
and analysis.

In this work, a method to extract an objective metric from
the waveform of the plots of EEG signals is presented. Its usage
to implement a valid P300-Based BCI Speller application is
expounded. Additionally, its validity is evaluated using a public
dataset of ALS patients and an own dataset of healthy subjects.

It was verified that this method has an improved performance
at letter identification than other methods that process the
signals on a channel by channel strategy, and it even has a
comparable performance against other methods like SWLDA
or SVM, which uses a multichannel feature. Furthermore, this
method has the advantage that shapes of waveforms can be
analyzed in an objective way. We observed that the shape of
the P300 component is more stable in occipital channels, where
the performance for identifying letters is higher. We additionally
verified that ALS P300 signatures are stable in comparison to
those of healthy subjects.

We believe that the use of descriptors based on histogram of
gradient orientation, presented in this work, can also be utilized
for deriving a shape metric in the space of the P300 signals which
can complement other metrics based on time-domain as those
defined by Mak et al. (2012). It is important to notice that the
analysis of waveform shapes is usually performed in a qualitative
approach based on visual inspection (Sellers et al., 2006), and a
complementary methodology which offer a quantitative metric
will be beneficial to these routinely analysis of the waveform
of ERPs.

The goal of this work is to answer the question if a
P300 component could be solely determined by inspecting
automatically their waveforms. We conclude affirmatively,
though two very important issues still remain:

First, the stability of the P300 in terms of its shape is crucial:
the averaging procedure, montages, the signal to noise ratio and
spatial filters all of them are non-physiological factors that affect
the stability of the shape of the P300 ERP.We tested a preliminary
approach to assess if the morphological shape of the P300 of the
averaged signal can be stabilized by applying different alignments
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FIGURE 6 | Ten sample P300 template patches for subjects 8 (A) and 3 (B) of the ALS Dataset. Downward deflection is positive polarity.

of the stacked segments (see Figure 2) and we verified that there
is a better performance when a correct segment alignment is
applied. We applied Dynamic Time Warping (DTW) (Casarotto
et al., 2005) to automate the alignment procedure but we were
unable to find a substantial improvement. Further work to study
the stability of the shape of the P300 signature component needs
to be addressed.

The second problem is the amplitude variation of the P300.
We propose a solution by standardizing the signal, shown in
Equation (2). It has the effect of normalizing the peak-to-peak
amplitude, moderating its variation. It has also the advantage
of reducing noise that was not reduced by the averaging
procedure. It is important to remark that the averaged signal
variance depends on the number of segments used to compute
it (Van Drongelen, 2006). The standardizing process converts
the signal to unit signal variance which makes it independent
of the number ka of signals averaged. Although this is initially
an advantageous approach, the standardizing process reduces
the amplitude of any significant P300 complex diminishing its
automatic interpretation capability.

To further extend the capabilities of this method, it would
be desirable to implement a multichannel version. The
straightforward extension of concatenating the obtained
descriptors results in high dimensional feature vector,
while other variants that merge descriptors per channel
may diminish the mutual information between different
channels. Hitherto variants using color versions of SIFT (Van
De Sande et al., 2010), where different color bands are
mapped to electrode channels, have been explored without
substantial success.

In our opinion, the best benefit of the presentedmethod is that
a closer collaboration of the field of BCI with physicians can be
fostered (Chavarriaga et al., 2017), since this procedure intent
to imitate human visual observation. Automatic classification
of patterns in EEG that are specifically identified by their
shapes like K-Complex, Vertex Waves, Positive Occipital Sharp
Transient (Hartman, 2005) are a prospect future work to be
considered. We are currently working in unpublished material
analyzing K-Complex components that could eventually provide
assistance to physicians to locate these EEG patterns, specially in
long recording periods, frequent in sleep research (Michel and
Murray, 2012). Additionally, it can be used for artifact removal
which is performed on many occasions by visually inspecting
signals. This is due to the fact that the descriptors are a direct
representation of the shape of signal waveforms. In line with these
applications, it can be used to build a database (Chavarriaga et al.,
2017) of quantitative representations of waveforms and improve
atlases (Hartman, 2005), which are currently based on qualitative
descriptions of signal shapes.
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APPENDIX

This section describes the differences between the
HIST algorithm proposed in this work and the SIFT
Descriptor (Vedaldi and Fulkerson, 2010).

The two most important modifications are:

• SIFT Detector and custom frame: The SIFT Detector provides
the keypoint localization information in the standard SIFT
method. The keypoint localization information is stored in
a frame data structure which is composed of the keypoint
center location (xkp, ykp), patch scale s and patch orientation
φ: (xkp, ykp, s,φ). In the HIST proposal the keypoint location
and patch parameters are directly specified over the plot image
in order to detect the signal waveform (see section 2.2.3) and
the SIFT Detector is not used.

• Patch scale: Whereas in the standard SIFT implementation
the patch is a squared region and there is only one SIFT
scale parameter, in HIST a different scale parameter can
be assigned to the horizontal and vertical axis. This is
a very important modification because otherwise signal
plots which extend only on the horizontal direction
of the plot image could not be entirely covered. By
using a rectangular patch, there isn’t any constraint on
its size and it can be adjusted by neurophysiological
priors to map any expected waveform based on equations
(10) and (11).

Additionally, other changes are implemented where specific steps
of the SIFT Descriptor were not found to be useful to characterize
signal waveforms:

• Patch orientation: We verified experimentally that the patch
orientation φ does not provide any extra utility for the
extraction of characteristic waveforms from plots. Hence, this
patch orientation is fixed to zero (vertical, pointing upwards
in Figure 4).

• Rotations: SIFT was designed to allow affine invariance, i.e.,
to be robust to rotations and scale modifications of patterns
in images. It was not found, so far, of any utility to rotate the
patch to capture the signal waveform.

• Octave selection: A gradient image is used to obtain the
oriented gradients and calculate the histogram of gradient
orientations. In SIFT, these gradient images are downsampled
and smoothed by a Gaussian filter. The SIFT Descriptor calls
octave to each downsampling level (Lowe, 2004; Rey-Otero
and Delbracio, 2014). The standard SIFT Descriptor estimates
the octave to use on the gradient image based on the image size
and patch parameters. The HIST method uses only the zero
octave which means that the gradient image has the same size
as the original image, without any downsampling operation.

• Gradient image smoothing: Additionally, the SIFT Descriptor
performs an initial smoothing operation by applying a
Gaussian filter on the gradient image regardless of the octave.
In the HIST method, this operation is not implemented.

• Descriptor Gaussian weighting: On the standard SIFT
Descriptor, a Gaussian weighting operation is performed on
the calculated SIFT descriptor to increase the importance of
gradients from pixels closer to the center of the patch. For the
HISTmethod, this is found to be in detriment of the waveform
characterization and is not used.

• SIFT descriptor codification: The SIFT descriptor d is a
128-dimension feature vector, as described in section 2.1.3.
Histogram values are floating point numbers, all positive, and
they are accumulated on each coordinate of this vector. Once
all the gradients are summarized, the following operations are
performed:

– The descriptor is ℓ-2 normalized (i.e., all the values are
divided by the euclidean norm of the descriptor).

– Each value is clamped to 0.2. This means that any value
above 0.2 is set to 0.2.

– The descriptor is ℓ-2 re-normalized again (Rey-Otero and
Delbracio, 2014).

This generates a 128-vector of floating point numbers, between
[

0, 1
]

. In the HIST implementation, these values are rescaled

to
[

− 1, 1
]

in order to use the cosine distance (Arandjelovic

and Zisserman, 2012) on Equations (9) and (8). Finally, output
values are cast to floating point numbers (i.e., floats). yielding an
effective 128-vector of floats between

[

− 1, 1
]

.
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