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Statistical learning is a learning mechanism based on transition probability in sequences

such as music and language. Recent computational and neurophysiological studies

suggest that the statistical learning contributes to production, action, and musical

creativity as well as prediction and perception. The present study investigated how

statistical structure interacts with tonalities in music based on various-order statistical

models. To verify this in all 24 major and minor keys, the transition probabilities of the

sequences containing the highest pitches in Bach’s Well-Tempered Clavier, which is a

collection of two series (No. 1 and No. 2) of preludes and fugues in all of the 24 major

and minor keys, were calculated based on nth-order Markov models. The transition

probabilities of each sequence were compared among tonalities (major and minor),

two series (No. 1 and No. 2), and music types (prelude and fugue). The differences in

statistical characteristics between major and minor keys were detected in lower- but

not higher-order models. The results also showed that statistical knowledge in music

might be modulated by tonalities and composition periods. Furthermore, the principal

component analysis detected the shared components of related keys, suggesting that

the tonalities modulate statistical characteristics in music. The present studymay suggest

that there are at least two types of statistical knowledge in music that are interdependent

on and independent of tonality, respectively.

Keywords: creativity, Markovmodel, n-gram, information theory, corpus, prediction, composition, implicit learning

INTRODUCTION

Prediction and Production in the Statistical Learning
The brain is innately equipped with statistical learning (SL) machineries that model external
phenomena as a dynamical system that encode the probability distributions. The SL is thought
as an implicit process in which the brain automatically calculate transitional-probability (TP)
distribution of sequential information such as music and language (Saffran et al., 1996; Cleeremans
et al., 1998). Furthermore, based on the internalized statistical model, it can predict a future
state and optimize action for achieving a given goal (Monroy et al., 2017a,c) to resolve the
uncertainty of information (Friston, 2010). The SL has also be thought to contribute to the
encoding of the complexity in the information (Hasson, 2017), and to acquisition of musical and
linguistic knowledge including tonality (Daikoku et al., 2016) and syntax (Daikoku et al., 2017a).
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For example, an increasing volume of literature also
demonstrates that SL and the knowledge associate with
human’s action (Zubicaray et al., 2013; Monroy et al., 2017a,b,
2018) and decision-making (Schwartenbeck et al., 2013; Friston
et al., 2014, 2015; Pezzulo et al., 2015). For example, motor
cortex activity contributes to SL of action words (Zubicaray
et al., 2013). Furthermore, cerebellum and cerebral cortex
partially share same network responsible for the interalized
statistical model. That is, statistical knowledge formed in
cerebral cortex may be sent to the cerebellum that is thought
to play important roles in prediction of sequences (Lesage
et al., 2012; Moberget et al., 2014), motor skill learning (Ito,
2008), habit learning (Friston et al., 2016), generalization or
abstraction based on transitional probabilities (Shimizu et al.,
2017), efficient performance in a learned context (Balsters et al.,
2014). These findings may suggest that the internalized statistical
model affects production of music (i.e., composition) (Daikoku,
2019a), the creativity (Wiggins, 2018), and individuality of
artistic expression (Daikoku, 2018b) as well as the prediction
and perception (Daikoku, 2019c). It is, however, unknown how
the acquired statistical knowledge influences the production
of music.

Statistical Learning Machinery in Musician
According to recent studies, musicians are better statistical
learners than non-musicians (Francois and Schön, 2011; François
et al., 2012; Hansen and Pearce, 2014; Przysinda et al., 2017;
Elmer and Lutz, 2018). Furthermore, it is suggested that, through
long-term musical training, musicians optimize the brain’s
probabilistic model of SL, and that the musically-optimized
SL model allow the brain to precisely and efficiently predict
tones during SL of another musical and auditory sequences
(Francois and Schön, 2011; Kim et al., 2011; Hansen and
Pearce, 2014; Przysinda et al., 2017). Recent computational
studies also suggested that, from early to late periods in the
composer’s lifetime, the transitional probabilities of familiar
phrase in each piece of music were gradually decreased (Daikoku,
2018d, 2019a). These findings were prominent in higher-,
rather than lower-order SL models. These studies suggest that
the higher-, rather than lower-, order statistical knowledge
(Daikoku, 2018a) may be susceptible to long-term experience
that modulates brain’s SL model (Hansen and Pearce, 2014).
Furthermore, computational studies on improvisation music
suggested that lower-order SL models represented general
characteristics shared amongmusicians, whereas higher-order SL
models detected specific characteristics unique to each musician
(Daikoku, 2018b). In this context, it can be hypothesized that
statistical models in music, which may reflect the composer’s
statistical knowledge, interact with the music-specific structures
of tonality. To our knowledge, however, few studies have
examined how TP in music interacts with the tonalities. To
understand the characteristics of music from interdisciplinary
aspects that include informatics, musicology, and psychology,
it is important to verify the interaction between tonality and
statistical structure in music, especially regarding strategies of
musical composition.

Computational Modeling
The computational model and simulation have been used
to understand SL systems (e.g., Pearce and Wiggins, 2012;
Rohrmeier and Rebuschat, 2012; Daikoku, 2018a, 2019b;
Wiggins, 2018). Particularly, the prediction and production
of SL is partially supported by chunking hypothesis that
learning is based on extracting, storing, and combining small
chunks. For example, information-theoretical models including
Markovian processes have been applied to neurophysiological
studies of SL in human brain as well as computational
simulation (Pearce et al., 2010; Pearce and Wiggins, 2012;
Daikoku et al., 2014, 2015, 2017b, 2018; Yumoto and Daikoku,
2016, 2018; Daikoku and Yumoto, 2017, 2019; Daikoku,
2018c). These neurophysiological experiments showed consistent
evidence: neural activities for stimuli with high information
content (i.e., low probability) are larger than those with
low information content (i.e., high probability). This neural
phenomenon is in agreement with a Bayesian hypothesis in
theoretical neurobiology that the brain encodes probabilities
(beliefs) about the causes of sensory data, and that these beliefs
are updated in response to new sensory evidence based on
Bayesian inference (Kersten et al., 2004; Knill and Pouget,
2004; Doya et al., 2007; Friston, 2010; O’Reilly et al., 2012;
Parr and Friston, 2018; Parr et al., 2018). That is, information-
theoretical computationalmodels includingMarkovian processes
can capture a variety of neurophysiological phenomena on
prediction, chunk formation, action, and production in the
framework of SL theory.

The Aim of the Present Study
This study aimed to examine how the statistical structure
interacts with tonality. To verify the statistical relationships in
all the keys of Western classical music (Figure 1), the TPs of
the sequences containing the highest pitches in Bach’s Well-
Tempered Clavier, BWV 846–893, which is a collection of
two series (No. 1 and No. 2) of preludes and fugues in all
of the 24 major and minor keys (Figure 1), were calculated
using six different orders of Markov or n-gram models (i.e.,
first- to sixth-order Markov chains). Johann Sebastian Bach
(1685–1750) was a composer during the Baroque period, who
contributed to the development of musical tonality and the
Western classical music theory (Rohrmeier and Cross, 2008).
His music is often used to verify the probabilities of musical
sequences (Rohrmeier and Cross, 2008; Kim et al., 2011).
Particularly, to understand the relationships between tonality
and statistical structure in music, the Well-Tempered Clavier
may be one of the best mediums because it is a collection of
music containing all 24 of the major and minor keys by a
single composer in Western classical music. Thus, the statistics
in each piece of music with a key in the Well-Tempered
Clavier could be, in part, regarded as an approximation of
the statistics of the entire range of Western classical music
in each key. Thus, to extract statistical knowledge dependent
on keys and tonalities, the present study verified the statistical
structure in each key and tonality. The TPs of each sequence
were compared among tonalities (major and minor), two series
(No. 1 and No. 2), and music types (prelude and fugue). It was
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FIGURE 1 | Circle of fifths showing all 24 major and minor keys in Western classical music. A related key is one sharing many common tones with an original key, as

opposed to a distant key. In music, such a key shares all, or all except one, pitches with a key with which it is being compared, and it is adjacent to it on the circle of

fifths and its relative majors or minors. In a related key, a subdominant key has one more flat around the circle of fifths, and a relative key has the same key signature.

hypothesized that the statistical structure in music interacts with
the tonality in music. If so, these findings suggest that music-
specific knowledge of tonality modulates statistical knowledge
in music.

METHODS

TheWell-Tempered Clavier, BWV 846–893, which is a collection
of two series (No. 1 and No. 2) of Preludes and Fugues in all 24
major and minor keys that was composed for solo keyboard by
Johann Sebastian Bach, was used in the present study. Electronic
scoring data of highest pitch were extracted from the Extensible
Markup Language (XML) files. The highest pitches were chosen
based on the following definitions (Figure 2): the grace notes
were excluded, the pitches with slurs can be counted as one,
and the highest pitches that can be played at a given point in
time. According to SL theory, the brain automatically computes
nth-order TPs of sequence. The transitional probability is a
conditional probability of an event B given that the latest event
A has occurred, written as P(B|A). The first- to six-order TPs of
an event in SL were calculated from conditional probability (P)

of an event en+1, given the preceding n events, based on the first-
to six-order Markov models (n= 1–6):

P (en+1|en) =
P(en+1 ∩ en)

P(en)

From the perspective of psychology, the formula can be
interpreted as positing that the brain predicts a subsequent event
en+1 based on the preceding events en in a sequence (for more
details, see Daikoku, 2018c). In other words, learners expect the
events with higher TPs based on the latest n states (i.e., nth-
order), whereas they are likely to be surprised by events with
lower TPs. Then, all of the pitch transitions were numbered
so that the first pitch was 0 in each sequential pattern, and an
increase or decrease in a semitone was 1 and −1 based on the
first pitch, respectively (Figure 2). This reveals interval patterns
but not pitch pattern, and eliminates the effects of the change
of key on sequential patterns. This procedure was employed
because the interpretation of the change of key depends on
musicians, and it is difficult to define it in an objective manner.
Thus, the results in this study may represent statistics based on
relative, rather than absolute pitches. To verify the difference in
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FIGURE 2 | Representative phrases of sequential patterns with mean highest (left and red) and lowest (right and blue) probabilities in the six different hierarchical

models of TPs for the Well-Tempered Clavier, BWV 846–893, which is a collection of two series (No. 1 and No. 2) of Preludes and Fugues in all 24 major and minor

keys that was composed for solo keyboard by Johann Sebastian Bach.

statistical structures between prelude and fugue, the sequential
patterns that appear in all pieces of music that were divided
between prelude and fugue were only used in the present study

(1st: 4). In the second- to sixth-order Markov chains, sequential
patterns that appear in all music could not be detected. The
empirical logit transformation was applied to normalize the
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TPs. The empirical logit transform allows data distribution to
be normalized, and is used for a tolerence such that infinity is
not returned when the argument is zero (0%) or one (100%).
Thus, it is applicable when the TP values, which often show 0%
and 100%, are analyzed. Then, we conducted repeated-measure
analysis of variances (ANOVAs) based on a factor type (prelude
vs. fugue), a factor tonality (major vs. minor), a factor number
(No. 1 vs. No. 2), and a factor sequence (4 sequences) for the 1st-
order Markov model. Bonferroni-corrected post-hoc tests were
conducted for further analysis (Statistical significance levels: p <

0.05). It has been suggested that the TP distribution represents
statistical characteristics in music (Daikoku, 2018b). Thus, using
the nth-order TP distributions, the musical characteristic in each
tonality was verified by correlation analysis. Furthermore, based
on the result of correlation analysis, the TPs, in which there are
a number of correlations of at least 0.3 (30), were analyzed by
principal component analysis (PCA). The criteria of eigenvalue
were set over 1. The first three components (i.e., the first to
third highest cumulative contribution ratios) were adopted in
the present study. The present study focus on the values of
“loadings.” The loading has generally been understood as the
weights for each original variable when calculating the principal
component. The representative phrases of sequential patterns
with mean highest and lowest probabilities were decoded as
musical scores (Figure 2). The criterion of the eigenvalue was set
over 1 (Statistical significance levels: p < 0.05).

RESULTS

ANOVA
Higher-order of model represents exponentially larger numbers
of sequential patterns: over forty in the first-order models, 600 in
the second-order models, 3,500 in the third-order models, 9,000
in the fourth-order models, 15,000 in the fifth-order models,
20,000 in the sixth-order models. The results were shown in
Figure 3. The main tonality effect showed that TPs of sequence
that appear in all music in major key were lower than those
in minor key [F(1, 11) = 9.83, p = 0.009, partial η

2 = 0.47;
Figure 3A]. The main type effect showed that TPs of sequence
that appear in all music in preludes were lower than those in
fugues [F(1, 11) = 140.74, p< 0.001, partial η2 = 0.93; Figure 3B].
The main sequence effect were significant [F(2.16,23.76) = 26.54,
p < 0.001, partial η2 = 0.71; Figure 3C]. The TPs of [0, −2] was
significantly higher compared with those of [0,−1], [0, 1], and [0,
−3] (all: p< 0.001). The TPs of [0,−1] was higher compared with
those of [0, 1] (p= 0.005) and [0,−3] (p < 0.001). The TPs of [0,
1] was higher compared with those of [0, −3] (p < 0.001). The
tonality-number interactions were significant [F(1, 11) = 7.57, p=
0.019, partialη2 = 0.41; Figure 3D]. In No. 1 of a collection of two
series, the TPs in major key were significantly lower than those in
minor key (p= 0.001). Inminor key, the TPs in No. 1 were higher
compared with those in No. 2 (p= 0.044). The tonality-sequence
interactions were significant [F(1.68,18.46) = 5.35, p= 0.019, partial
η
2 = 0.33; Figure 3E]. In sequences of [0, −1], the TPs in major

key were significantly lower than those in minor key (p= 0.001).
In sequences of [0, 1], the TPs in major key were significantly
lower than those in minor key (p= 0.019). In major key, the TPs

of [0, −2] was higher compared with those of [0, −1], [0, 1], and
[0, −3] (all: p < 0.001). The TPs of [0, −1] was higher compared
with those of [0, −3] (p < 0.001). The TPs of [0, 1] was higher
compared with those of [0, −3] (p = 0.002). In minor key, the
TPs of [0, −2] was higher compared with those of [0,−1] (p =

0.001), [0, 1] (p < 0.001), and [0, −3] (p < 0.001). The TPs of
[0,−1] was higher compared with those of [0, 1] (p= 0.006) and
[0, −3] (p < 0.001). The TPs of [0, 1] was higher compared with
those of [0,−3] (p < 0.001).

The type-sequence interactions were significant [F(1.85,20.34)
= 7.64, p = 0.004, partial η

2 = 0.41]. In sequences of [0, −2],
the TPs in prelude were significantly lower than those in fugue
(p < 0.001). In sequences of [0, −1], the TPs in prelude were
significantly lower than those in fugue (p = 0.012). In sequences
of [0, 1], the TPs in prelude were significantly lower than those
in fugue (p = 0.005). In prelude, the TPs of [0, −2] was higher
compared with those of [0,−1], [0, 1], and [0,−3] (all: p< 0.001).
In fugue, the TPs of [0, −2] was higher compared with those of
[0, −1], [0, 1], and [0, −3] (all: p < 0.001). The TPs of [0, −1]
was higher compared with those of [0, 1] (p= 0.006) and [0,−3]
(p = 0.001). The TPs of [0, 1] was higher compared with those
of [0, −3] (p = 0.010). In fugue, the TPs of [0, −2] was higher
compared with those of [0,−1], [0, 1], and [0,−3] (all: p< 0.001).
The TPs of [0, −1] was higher compared with those of [0, 1] (p
= 0.047) and [0, −3] (p < 0.001). The TPs of [0, 1] was higher
compared with those of [0,−3] (p < 0.001).

Correlation Analysis
All the results of the correlation analysis are shown in
Supplementary Material. In the first-order TPs, all the
pieces of music are strongly (0.7 ≦ |r| < 1.0, p < 0.01;
Supplementary Material, red) or moderately (0.4 ≦ |r|
<0.7, p < 0.01; Supplementary Material, green) related
to each other (Figure 4A). In the second-order TPs, all
the pieces of music are moderately (0.4 ≦ |r| < 0.7, p <

0.01; Supplementary Material, green) or weakly (0.2 ≦ |r|
< 0.4, p < 0.01; Supplementary Material, yellow) related
to each other (Figure 4B). In the third- and fourth-order
TPs, some of the music is weakly (0.2 ≦ |r| < 0.4, p <

0.01; Supplementary Material, yellow) related to each other
(Figures 4C,D). There are more weak correlations in the third-
order than in the fourth-order TPs. In the fifth- and sixth-order
TPs, no strong, moderate, or weak correlations were detected
(Figures 4E,F).

Principal Component Analysis
Based on the results of correlation analysis, the first- and second-
order TPs, in which there are a number of correlations of at least
0.3 (Tabachnick and Fidell, 2007), were analyzed by principal
component analysis. In the first-order TP, the decision was
made to specify two principal component solutions (eigenvalue
>1; Table 2A and Figure 5). The two principal components
accounted for 92.4% of the total variance. All of the music
loaded higher than 0.58 on component 1. The “loadings” can
be understood as the weights for each original variable when
calculating the principal component. Thus, the result explains the
general component of the Well-Tempered Clavier. The C major
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FIGURE 3 | The results of ANOVA in analysis 2. The main effects of (A) tonality, (B) type, and (C) sequence. The interactions of (D) tonality-number, (E)

tonality-sequence, and (F) type-sequence.

and D minor in the first series (No. 1) of the Well-Tempered
Clavier loaded higher than 0.45 on 2. This explains a component
of related keys (i.e., the relative key of the subdominant key;
Table 1) between C major and D minor. In the second-order TP,
the decision was made to specify a three principal component
solution (eigenvalue >1; Table 2B and Figure 5). The three
principal components accounted for 83.2% of the total variance.
All of the music loaded higher than 0.55 on 1,. This explains the
general component of the Well-Tempered Clavier. On the other
hand, compared to the other music, the C major and D minor in
No. 1 of theWell-Tempered Clavier loaded<0.57 on component
1. The C minor in No. 1 and E♭ major in No. 2 of the Well-
Tempered Clavier loaded at 0.41 or higher on component 2. This
explains shared components of a related key (i.e., relative keys).
The only D minor in No. 1 of the Well-Tempered Clavier loaded
heavily (0.52) on component 3.

DISCUSSION

Psychological Aspects of TP in Musical
Sequence
Based on the information theory (Shannon, 1948) covering
multi-order Markov models and the cognitive models, a tone
with a higher TP may be one that a composer is more
likely to choose than those with lower TPs. Thus, the TP
distributions sampled from music may represent the musical
characteristics based on a composer’s statistical knowledge
underlying prediction. The present study aimed to examine
how the statistical structure interacts with tonality in music.
To verify it in all 24 major and minor keys (Figure 1), the
TPs of the sequences containing the highest pitches in Well-
Tempered Clavier were calculated based on Markov stochastic
models. It was hypothesized that the statistical structure in
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FIGURE 4 | (A) The first-, (B) second-, (C) third-, (D) fourth-, (E) fifth-, and (F) sixth-order TPs in each sequential pattern. The horizontal and vertical axes represent

sequential patterns and the TPs, respectively. The sequential patterns were arranged in descending order in each hierarchy.

music interacts with tonality in music and that music-specific
knowledge of tonality may modulates statistical knowledge
in music.

The Relationships Between Tonality and
Hierarchy of Stochastic Structure in Music
The present study adopted the sequences that appear in all
pieces of music (i.e., universal sequences in the Well-Tempered

Clavier). The TP differences between major and minor keys
could be detected in lower-order (1st and 2nd in Figure 3A)

but not in higher-order hierarchical models. This implies that

these sequences may have specific semantics in each major

and minor key. In the context of statistical learning, the
tonality may modulate a lower- rather than a higher-order

statistical knowledge of music. The TPs in the fugue were
higher than those in the prelude (Figure 3B), and the difference
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was prominent in sequences in which the interval was not
more than a whole step (i.e., ±2), such as those found in
musical scales (Figure 3F). It is well-known that the prelude less
strictly follows the rules of Western classical music compared
to the fugue. The findings in the present study may reflect
the difference in statistical knowledge related to strategies for
musical composition.

As a general tendency, the TPs of universal sequences were
higher in minor than in major keys (Figures 3A,E). However,
the difference became weaker in the series of No. 2 compared
to that in No. 1 (Figure 3D). Statistical knowledge of universal
sequences might be modulated from composition periods in No.
1 to No. 2. It would be interesting if the time-course variation
of statistical structures may reflect the time-course variation of
statistical knowledge. It is of note, however, that this study did not
directly investigate the composer’s statistical knowledge of music,
as only the statistics of musical scores were analyzed. There may
be other possible explanations for the findings of this study. For
instance, it might have been Bach’s intentional plan to compose
music based on the statistical structure of music. Future studies
should examine the effects of statistical knowledge on music
compositions and neurological responses in parallel.

In the first- and second-order TPs, all of the pieces ofmusic are
related to each other (Supplementary Material and Figure 4). In
the third- and fourth-order TPs, some of the music is related to
each other, regardless of tonalities. There are more correlations

TABLE 1 | Related key in all 24 major and minor keys.

Major Relative

minor

Subdominant, dominant, and

their relatives

Parallel

minor

C Am F, G, Dm, Em Cm

G Em C, D, Am, Bm Gm

D Bm G, A, Em, F#m Dm

A F#m D, E, Bm, C#m Am

E C#m A, B, F#m, G#m Em

B G#m E, F#, C#m, D#m Bm

G♭ E♭m C♭, D♭, A♭m, B♭m F#m

D♭ B♭m G♭, A♭, E♭m, Fm C#m

A♭ Fm D♭, E♭, B♭m, Cm G#m

E♭ Cm A♭, B♭, Fm, Gm E♭m

B♭ Gm E♭, F, Cm, Dm B♭m

F Dm B♭, C, Gm, Am Fm

in the third-order than fourth-order TPs. In the fifth- and sixth-
order TPs, no remarkable correlations were detected. These
results suggest that there are statistical characteristics that are
shared among each piece of music at least in the first- and
second-order hierarchical levels of statistical structure. In other
words, there may be universal implicit knowledge of music

FIGURE 5 | Principal component analysis scatter plots. The dots represent

each piece of music in the Well-Tempered Clavier, which is a collection of two

series (No. 1 and No. 2) in all 24 major and minor keys that was composed for

solo keyboard by Johann Sebastian Bach. The dots in each circle represent

pieces of music with the component of each related key: between D minor

and C major, Eb major and C minor, and C major and D minor.

TABLE 2A | The results of principal component analysis.

1st-order transition probability 2nd-order transition probability

Total Variance * Cumulative * Total Variance * Cumulative *

Component 1 42.814 89.196 89.196 37.073 77.236 77.236

Component 2 1.548 3.225 92.421 1.528 3.184 80.419

Component 3 1.331 2.773 83.193

The eigenvalue and percentages of variance and comulative variance.

*Percentage.
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TABLE 2B | The eigenvectors for the principal components.

1st-order transitonal probability 2nd-order transition probability

Component 1 Component 2 Component 1 Component 2 Component 3

No. 1 C major 0.644 0.454 0.550 −0.109 −0.212

C minor 0.968 −0.018 0.752 0.539 0.090

Db major 0.912 0.243 0.809 −0.011 0.201

Db minor 0.940 −0.063 0.918 −0.150 0.137

D major 0.940 −0.100 0.864 0.040 −0.109

D minor 0.589 0.547 0.567 −0.073 0.523

Eb major 0.971 −0.030 0.947 −0.177 −0.017

Eb minor 0.976 −0.175 0.952 −0.031 −0.200

E major 0.946 −0.132 0.879 0.202 −0.289

E minor 0.973 −0.053 0.926 −0.046 0.074

F major 0.954 0.127 0.883 0.144 0.107

F minor 0.990 −0.119 0.955 −0.093 −0.130

Gb major 0.871 0.329 0.742 0.176 0.068

Gb minor 0.980 −0.075 0.874 −0.222 −0.089

G major 0.966 0.151 0.918 −0.190 0.173

G minor 0.975 −0.160 0.953 0.055 −0.128

Ab major 0.955 0.200 0.822 0.306 0.175

Ab minor 0.953 −0.132 0.858 0.154 −0.173

A major 0.943 0.128 0.874 −0.175 0.008

A minor 0.988 −0.116 0.978 −0.077 −0.083

Bb major 0.958 0.106 0.887 −0.195 0.051

Bb minor 0.938 −0.197 0.926 0.003 −0.042

B major 0.943 −0.238 0.922 0.029 −0.313

B minor 0.968 −0.177 0.944 −0.086 −0.109

No. 2 C major 0.974 −0.051 0.880 0.344 −0.034

C minor 0.977 −0.016 0.892 0.160 0.106

Db major 0.901 0.261 0.865 −0.045 −0.026

Db minor 0.983 −0.053 0.930 0.007 0.032

D major 0.926 0.118 0.874 −0.364 0.171

D minor 0.977 0.063 0.896 −0.154 0.063

Eb major 0.955 0.162 0.718 0.411 0.342

Eb minor 0.889 0.083 0.842 −0.270 0.251

E major 0.987 −0.111 0.950 0.118 −0.011

E minor 0.981 −0.103 0.924 −0.229 −0.167

F major 0.979 −0.167 0.957 0.033 −0.169

F minor 0.890 0.164 0.803 −0.038 0.214

Gb major 0.967 0.090 0.887 0.076 0.026

Gb minor 0.986 −0.047 0.923 0.059 0.046

G major 0.863 0.408 0.749 −0.050 0.350

G minor 0.947 0.020 0.870 0.079 −0.019

Ab major 0.995 −0.042 0.965 −0.027 −0.050

Ab minor 0.945 −0.130 0.898 −0.021 0.025

A major 0.980 −0.110 0.841 0.307 −0.044

A minor 0.924 −0.206 0.801 −0.186 −0.070

Bb major 0.978 −0.113 0.950 0.028 −0.199

Bb minor 0.982 −0.140 0.955 −0.001 −0.159

B major 0.985 0.034 0.949 −0.102 0.052

B minor 0.978 −0.114 0.936 0.013 −0.050
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in the composer at the lower hierarchical levels, regardless of
tonalities and pitch frequencies. The higher the hierarchical
levels of TPs, the less the music was correlated with each other.
From information theoretical viewpoint, the statistical models at
lower hierarchical levels increases joint probability and mutual
information, whereas statistical structures at higher hierarchical
levels are less correlated, and interpreted as surprisal information
(Gupta and Bahmer, 2019). The combined increase in mutual
information at lower hierarchical level and surprisal information
at higher hierarchical level would serve as the basis of specific
knowledge about music (Gupta and Bahmer, 2019). These results
also suggest that the higher the hierarchical level of statistical
structure, the stronger the independence of characteristics in
each piece of music. The specific characteristics in each piece
of music may exist in higher hierarchical levels of statistical
structure. This may imply that greater creativity is attributed
at higher hierarchical level (Daikoku, 2018b). Thus, it could be
assumed that the general statistical structure that is shared among
many pieces of music is formed by low-hierarchical implicit
knowledge, whereas the specific structure that is independent
of each piece of music is formed by high-hierarchical implicit
knowledge (Gupta and Bahmer, 2019).

J.S. Bach’s Music for Study on Implicit and
Explicit Knowledge
Johann Sebastian Bach (1685–1750), a German composer
and musician of the Baroque period, is considered to have
contributed to the development of musical tonality and has
been central to Western classical music theory until the present
(Rohrmeier and Cross, 2008). His music is often used to
investigate the probabilities of musical sequences. Furthermore,
to investigate the relationships between tonality and statistical
structure in music, the Well-Tempered Clavier is considered an
excellent medium because it is a collection of music containing
all the keys of Western classical music (i.e., 24 major and minor
keys). Thus, the statistical characteristics of each piece of music
with a key in the Well-Tempered Clavier could be, in part,
regarded as approximations of the statistical characteristics of
the entire range of Western classical music in each key. In other
words, the findings in the present study may reflect the implicit
knowledge in each musical key in humans who explicitly learn
the music-specific knowledge based on Western classical music
and who intentionally follow these frameworks when composing
music. Furthermore, the present study may suggest that there are
at least two types of implicit knowledge that are dependent on
and independent of tonality, respectively. This study, however,
did not directly demonstrate that the implicit musical knowledge
is reflected in music, as only the statistics of musical scores
were analyzed. Future studies should investigate, in parallel,
how implicit learning in music is reflected in the neurological
response and how the learned knowledge is expressed when
composing music.

The representative phrases of sequential patterns with mean
highest and lowest probabilities were decoded as musical scores
in Figure 2, based on each hierarchical level of first- (highest:
P[−2|0], lowest: P[−16|0]), second- (highest: P[−3|0, −2],

lowest: P[10|0, −1]), third- (highest: P[−5|0, −2, −4], lowest:
P[−6|0,−4,−8]), fourth- (highest: P[−7|0,−2,−4,−5], lowest:
P[0|0, 5, 1,−2]), fifth- (highest: P[−9|0,−2,−4,−5,−7], lowest:
P[−2|0, −7, −8, −7, −3]), and sixth- (highest: P[−3|0, −1, −3,
−5, −6, −5], lowest: P[−3|0, 8, 6, 7, 0, −2]). The sequential
patterns with the highest sequential patterns are familiar ones
in Western classical music, suggesting that implicit statistical
knowledge and explicit music-specific knowledge interact, in
part, with each other. The principal component analysis detected
the shared components of related keys (Figure 5). This suggests
that tonalities modulate implicit knowledge in music. However,
these findings are not detected in all the types of related
keys (Supplementary Material). Future studies will be needed
to clarify the relationships between statistical structure and
tonalities in music. In the present study, all of the pitch
transitions were numbered to understand how the pitches,
but not the notes, were transitioned to from the first pitch.
This was performed to eliminate the effects of the change of
key on sequential patterns. Thus, the results may represent
statistics based on relative pitches rather than absolute pitches.
Nonetheless, the present study suggests that explicit knowledge
on tonality could, in part, modulate implicit knowledge in music.

CONCLUSION

The present study indicated that, in the lower hierarchical levels
of statistical structure (first and second orders), all the pieces
of music are related to each other. However, the higher the
hierarchical levels of TPs, the less the music was correlated
with each other, regardless of tonality. These findings suggest
that the general statistical structure that is shared among
many pieces of music is formed by low-hierarchical implicit
knowledge, whereas the specific structure that is independent
of each piece of music is formed by high-hierarchical implicit
knowledge. This may imply that greater creativity is attributed
at higher hierarchical level. On the other hand, the principal
component analysis detected the shared components of related
keys, suggesting that tonalities modulate implicit knowledge in
music. The implicit statistical knowledge and explicit music-
specific knowledge could, in part, interact with each other. It is
suggested that there are at least two types of implicit knowledge
that are dependent on and independent of tonality, respectively.
The present study sheds new light on novel methodologies
that can be employed to evaluate the implicit knowledge of a
composer using musical scores in interdisciplinary studies that
include psychology, informatics, and musicology.
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