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Alzheimer’s disease (AD), including its mild cognitive impairment (MCI) phase that

may or may not progress into the AD, is the most ordinary form of dementia. It is

extremely important to correctly identify patients during the MCI stage because this is

the phase where AD may or may not develop. Thus, it is crucial to predict outcomes

during this phase. Thus far, many researchers have worked on only using a single

modality of a biomarker for the diagnosis of AD or MCI. Although recent studies show

that a combination of one or more different biomarkers may provide complementary

information for the diagnosis, it also increases the classification accuracy distinguishing

between different groups. In this paper, we propose a novel machine learning-based

framework to discriminate subjects with AD or MCI utilizing a combination of four

different biomarkers: fluorodeoxyglucose positron emission tomography (FDG-PET),

structural magnetic resonance imaging (sMRI), cerebrospinal fluid (CSF) protein levels,

and Apolipoprotein-E (APOE) genotype. The Alzheimer’s Disease Neuroimaging Initiative

(ADNI) baseline dataset was used in this study. In total, there were 158 subjects

for whom all four modalities of biomarker were available. Of the 158 subjects, 38

subjects were in the AD group, 82 subjects were in MCI groups (including 46 in

MCIc [MCI converted; conversion to AD within 24 months of time period], and

36 in MCIs [MCI stable; no conversion to AD within 24 months of time period]),

and the remaining 38 subjects were in the healthy control (HC) group. For each

image, we extracted 246 regions of interest (as features) using the Brainnetome

template image and NiftyReg toolbox, and later we combined these features with

three CSF and two APOE genotype features obtained from the ADNI website for

each subject using early fusion technique. Here, a different kernel-based multiclass

support vector machine (SVM) classifier with a grid-search method was applied.

Before passing the obtained features to the classifier, we have used truncated singular

value decomposition (Truncated SVD) dimensionality reduction technique to reduce

high dimensional features into a lower-dimensional feature. As a result, our combined

method achieved an area under the receiver operating characteristic (AU-ROC)
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curve of 98.33, 93.59, 96.83, 94.64, 96.43, and 95.24% for AD vs. HC, MCIs vs.

MCIc, AD vs. MCIs, AD vs. MCIc, HC vs. MCIc, and HC vs. MCIs subjects which are

high relative to single modality results and other state-of-the-art approaches. Moreover,

combined multimodal methods have improved the classification performance over the

unimodal classification.

Keywords: Alzheimer’s disease, MCIs (MCI stable), MCIc (MCI converted), sMRI, FDG-PET, CSF, apolipoprotein-E

(APOE) genotype, support vector machine

INTRODUCTION

Alzheimer’s disease (AD) is an age-related neurodegenerative
disorder that is commonly seen in the aging population. Its
prevalence is expected to increase greatly in the coming years
as it affects one out of nine people over the age of 65 years
(Bain et al., 2008). AD involves progressive cognitive impairment,
commonly associated with early memory loss, leading patients to
require assistance for activities of self-care during its advanced
stages. AD is characterized by the accumulation of amyloid-
beta (Aβ) peptide in amyloid plaques in the extracellular brain
parenchyma and by intra-neuronal neurofibrillary tangles caused
by the abnormal phosphorylation of the tau protein (De Leon
et al., 2007). Amyloid deposits and tangles are necessary for the
postmortem diagnosis of AD. A prediction of an AD dementia in
a predictable time-period, i.e., within 1–2 years, appears much
more pertinent in a clinical outlook than a prediction of AD
dementia in the faraway future, e.g., in 10–20 years. Individual
classified to be at “short-term risk” can receive more active
treatment and counseling. Mild cognitive impairment (MCI) is
a prodromal (predementia) stage of AD, and recent studies have
shown that individuals with amnestic MCI tend to progress to
probable AD at a rate of ∼10–15% per year (Braak and Braak,
1995; Braak et al., 1998). Thus, accurate diagnosis of AD, and
especially MCI, is of great size for prompt treatment and likely
delay of the progression of the disease. MCI patients who do
not progress to AD either develop another form of dementia,
retain a stable condition or revert to a non-demented state.
Therefore, predicting which MCI patients will develop AD in
the short-term and who will remain stable is extremely relevant
to future treatments and is complicated by the fact that both
AD and MCI affect the same structures of the brain. In subjects
with MCI, the effects of cerebral amyloidosis and hippocampal
atrophy on the progression to AD dementia differ, e.g., the
risk profile is linear with hippocampal atrophy but reaches a
ceiling with higher values for cerebral amyloidosis (Jack et al.,
2010). In subsequent investigations, biomarkers of neural injury
appeared to best predict AD dementia from MCI subjects at
shorter time intervals (1–2 years) in particular (Dickerson, 2013).
This demonstrates the great importance of developing a sensitive
biomarker that can detect and monitor early changes in the
brain. The ability to diagnose and classify AD or MCI at an early
stage allows clinicians to make more knowledgeable decisions
at a later period regarding clinical interventions or treatment
planning, thus having a great impact on reducing the cost of
longtime care.

Over the past several years, several classification methods
have been implemented to overcome these problems using only
a single modality of biomarkers. For example, many high-
dimensional classification techniques use only the sMR images
for classification of AD and MCI. sMRI captures the disease-
related structure patterns by measuring the loss of brain volumes
and decreases in cortical thickness (Davatzikos et al., 2008;
Cuingnet et al., 2011; Salvatore et al., 2015; Beheshti et al.,
2016, 2017; Jha et al., 2017; Lama et al., 2017; Long et al.,
2017) for the early prediction of AD and MCI. A number of
studies, covering volume of interest, region of interest (ROI),
shape analysis and voxel-based morphometry, have reported
that the amount of atrophy in several sMRI brain regions, such
as the entorhinal cortex, hippocampus, parahippocampal gyrus,
cingulate, and medial temporal cortex (Cuingnet et al., 2011;
Moradi et al., 2015; Beheshti et al., 2016; Gupta et al., 2019),
are sensitive to the disease progression and prediction of MCI
conversion. In addition to the sMRI, another important modality
of biomarkers thoroughly established neuroimaging tool in
the diagnosis of neurodegenerative dementia (AD or MCI) is
18F-FDG-PET image, which mainly measures hypometabolism,
reflecting neuronal dysfunction (Minoshima et al., 1997; Foster
et al., 2007; Li et al., 2008; Förster et al., 2012; Nozadi et al.,
2018; Samper-González et al., 2018). With FDG-PET image,
some recent studies have reported the reduction of glucose
metabolism or an alternations of hypometabolism occurs in the
posterior cingulated cortex, precuneus, and posterior parietal
temporal association cortex (Förster et al., 2012), and it usually
precedes cortical atrophy (Minoshima et al., 1997; Li et al.,
2008) and clinical cognitive symptoms in AD patients. Besides
these neuroimaging biomarkers, there are also some biochemical
(blood-protein level) and genetic (gene-protein level) biomarkers
for the diagnosis of AD and MCI subjects. Biochemical changes
in the brain are reflected in the cerebrospinal fluid (CSF)
(Chiam et al., 2014; Zetterberg and Burnham, 2019), decreased
CSF levels of amyloid-beta (Aβ) 1 to 42 peptide (Aβ1−−42; a
marker of amyloid mis-metabolism) (Blennow, 2004; Shaw et al.,
2009; Frölich et al., 2017), and elevations of total tau (t-tau)
and hyperphosphorylated tau at the threonine181 (p-tau181p)
protein (markers of axonal damage and neurofibrillary tangles)
(Andreasen et al., 1998; Anoop et al., 2010; Fjell et al., 2010),
are considered to be CSF best established predictive biomarkers
of AD dementia in patients with MCI. Recent studies have
shown that alternation or reduction of polymorphism (genetics)
also play a vital role in AD and MCI patients (Gatz et al.,
2006; Spampinato et al., 2011; Dixon et al., 2014). Perhaps,
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the most commonly considered polymorphism in cognitive and
neurodegenerative aging is apolipoprotein E (APOE; rs7412;
rs429358). It involved in lipid transfer, cell metabolism, repair
of neuronal injury due to oxidative stress, amyloid-beta peptide
accumulation, and in elderly process. A gene on chromosome 19
in a locus synthesizes APOE with three alleles (ε2, ε3, and ε4)
and it is expressed in the central nervous system in astrocytes
and neurons. The APOE ε4 allele has been consistently linked
to normal cognitive decline in MCI and AD dementia patients
(Luciano et al., 2009; Brainerd et al., 2011; Alzheimer’s Disease
Neuroimaging Initiative et al., 2016; Sapkota et al., 2017). It is
also said that especially APOE ε4 is the strongest genetic risk
factor that increases the occurrence with a 2-to 3-fold risk for
AD, and it lowers the age of onset AD. These all research focuses
using only a single modality of biomarkers and their proposed
algorithm performance is low compared to a recently published
multimodal method (Zhang et al., 2011; Suk et al., 2014; Ritter
et al., 2015; Frölich et al., 2017; Li et al., 2017; Gupta et al.,
2019). These studies suggest that classification performance will
improve when combining all different modalities of biomarkers
into one form because different biomarkers offer a piece
of different complementary information (or capture disease
information from different outlooks) which are useful for the
early classification of the AD and MCI patients.

Recently, Jack et al. (2016, 2018) proposed the A/T/N system,
as shown in Table 1, in which seven major AD biomarkers are
divided into three binary categories based on the nature of the
pathophysiology that each subject exhibits.

Based on the above system, we propose to combine
four different modalities of biomarkers, fluorodeoxyglucose
positron emission tomography (FDG-PET), structural magnetic
resonance imaging (sMRI), cerebrospinal fluid (CSF) protein
levels, and the apolipoprotein E (APOE) genotype, of each
patient. Over the past few years, several techniques have been
proposed using either a combination of two or three different
biomarker modalities, such as the combination of MRI and CSF
biomarkers (Vemuri et al., 2009; Fjell et al., 2010; Davatzikos
et al., 2011);MRI and FDG-PET biomarkers (Chetelat et al., 2007;
Li et al., 2008, 2017; Shaffer et al., 2013); MRI, FDG-PET, and
CSF (Walhovd et al., 2010; Zhang et al., 2011; Shaffer et al., 2013;
Ahmed et al., 2014; Ritter et al., 2015); and MRI, FDG-PET, and
APOE (Young et al., 2013). Although these published approaches
have utilized a combination of different types of biomarkers to
develop neuroimaging biomarkers for AD, the above methods

TABLE 1 | A/T/N biomarker grouping.

A T N

Aggregated Aβ or

associated pathological

state

Aggregated tau

(neurofibrillary tangles) or

associated pathological

state

Neurodegeneration

or neural injury

CSF Aβ42, or Aβ42/Aβ40

ratio

CSF phosphorylated tau Anatomical MRI

Amyloid PET Tau PET FDG-PET, CSF total

tau

may be limited. They have used brain atrophy from a few
manually extracted regions as a feature for sMRI and PET images
to classify different groups. However, using only a small number
of brain regions as features from any imaging modality may not
be able to reflect the spatiotemporal pattern of structural and
physiological abnormalities in their entirety (Fan et al., 2008).
Furthermore, by only increasing the number of biomarkers, their
combination did not lead to an increase in predictive power.
As Heister et al. (2011) explained, a combination of impaired
learning ability withmedial temporal atrophy was associated with
the greatest risk of developing AD in a group of MCI patients.

In this study, we propose a novel approach for the early
detection of AD with other groups and to differentiate the
most similar clinical entities of MCIs and MCIc by combining
biomarkers from two imaging modalities (sMRI, FDG-PET) with
CSF (biochemical protein level) and APOE genotype biomarkers
obtained from each patient. As the A/T/N system defines that
each modality of biomarkers offers a different complementary
information, which is useful for the early classification of AD
and MCI subjects, so in our study we have used four different
modalities of biomarkers, sMRI, FDG-PET, CSF (biochemical
protein level), and APOE genotype for the early prediction of
AD and MCI subjects. Moreover, using early fusion method we
have combined the measurement from all four (sMRI, FDG-PET,
CSF, and APOE) different biomarkers to discriminate between
AD and HC, MCIc and MCIs, AD and MCIs, AD and MCIc,
HC and MCIs, and HC and MCIc. We compare classification
performance for different groups using typical measures of gray
matter atrophy (from sMR image), average intensity of each
region (from FDG-PET image), t-tau, p-tau181p, and Aβ42 scores
(from biochemical level), and ε3/ε4, ε4/ε4 values from APOE
genotype biomarker. To distinguish between these groups, we
used a different kernel-based multiclass SVM classifier with a
10-fold stratified cross-validation technique that helps to find
the optimal hyperparameter for this classifier. Our experiment
results show that the grouping of different measurements from
four different modalities of biomarkers exhibits much better
performance for all classification groups than using the best
individual modality of the biomarkers.

MATERIALS AND METHODS

Participants
Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (http://adni.loni.usc.edu/ADNI). The ADNI was
launched in 2003 as a public-private partnership led by
Principal Investigator, Michael W. Weiner, MD. The primary
goal of the ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease (AD).
For up-to-date information, see https://www.adni-info.org.

In total, we included 158 different subjects from the ADNI
database. Included subjects were African-American, Asian, and
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white who stay in America and their age were between 50 and 89
years and spoke either Spanish or English. Patients with specific
psychoactive medications have been excluded from the study
while taking scans and the general inclusion/exclusion norms
were as follows: for an HC subject, a Clinical Dementia Rating
(CDR) (Morris, 1993) of 0, Mini-Mental State Examination
(MMSE) score must be between 24 and 30 (inclusive), non-MCI,
non-depressed, and non-demented. MCI subjects had a CDR
level of 0.5, MMSE scores between 24 and 30 (inclusive), a slight
memory complaint, having objective memory loss measured by
education adjusted scores on Wechsler Memory Scale Logical
Memory II (Elwood, 1991), absence of significant levels of
impairment in other cognitive domains, essentially preserved
activities of daily living, and an absence of dementia, and for an
AD patients the MMSE scores between 20 and 26, CDR level
of 0.5 or 1.0, and meets the National Institute of Neurological
and Communicative Disorders and Stroke and the Alzheimer’s
Disease and Related Disorders Association (NINCDS/ADRDA)
criteria for probable AD. We selected all subjects for whom
all four modalities of biomarkers were available. The four
obtained biomarkers were 1.5-T T1-weighted sMRI, FDG-PET,
CSF measures of three protein levels (t-tau, p-tau181p, and Aβ42),
and APOE genotype. Of the 158 subjects, 38 subjects were in the
AD group (MMSE ≤ 24), 82 subjects in the MCI group (46 with
MCIc [converted to AD within 24 months of the time-period]
and 36 with MCIs [patients who did not convert to AD within
24 months of the time-period]) (MMSE≤ 28). The remaining 38
subjects were healthy controls (MMSE ≤ 30).

Table 2 shows the neuropsychological and demographic
information for the 158 subjects. To measure the statistically
important difference in demographics and clinical features,
Student’s t-test was applied using age data, were the significance
value was set to 0.05. No any significant differences were found
for any groups. In all groups, the number of male subjects was
higher than the number of female subjects. Compared to the
other groups, the HC group had higher scores on the MMSE.
Healthy subjects had a significantly lower Geriatric Depression
Scale (GDS) scores than the other groups. The Functional
Activities Questionnaire (FAQ) was higher for the AD group than
the other groups.

MRI and FDG-PET Datasets
MRI Protocol
Structural MRI scans were acquired from all data centers
using Philips, GE, and Siemens scanners. Since the acquisition
protocols were different for each scanner, an image normalization
step was performed by the ADNI. The imagining sequence
was a 3-dimensional sagittal part magnetization prepared of
rapid gradient-echo (MPRAGE). This sequence was repeated
consecutively to increase the likelihood of obtaining at least
one decent quality of MPRAGE image. Image corrections
involved calibration, geometry distortion, and reduction of the
intensity of non-uniformity applied on each image by the
ADNI. More details concerning the sMRI images is available
on the ADNI homepage (http://adni.loni.usc.edu/methods/mri-
tool/mri-analysis/). We used 1.5-T sMRI T1-weighted images
from the ADNI website. Briefly, raw (NIFTY) sMRI scans were

TABLE 2 | Demographical and neuropsychological characteristics of the studied

sample.

Groups AD MCIs MCIc HC

No. of Subjects 38 36 46 38

Male/female 22/16 26/10 29/17 25/13

Age 77.15* ± 6.88 74.22* ± 5.65 76.71* ± 7.71 76.68* ± 5.01

MMSE 21.21* ± 4.45 26.91* ± 2.43 26.19* ± 2.79 29.05* ± 1.23

FAQ 17.42* ± 6.92 3.80* ± 4.06 7* ± 5.90 0.315* ± 1.02

Subject weight 73.90* ± 13.18 78.44* ± 14.64 73.51* ± 13.17 74.43* ± 14.38

GDS 1.68* ± 1.52 1.58* ± 1.58 1.63* ± 1.50 0.86* ± 1.12

*Values are presented as mean ± and standard deviation (SD).

downloaded from the ADNI website. All scans were 176× 256×
256 resolution with 1mm spacing between each scan.

FDG-PET Protocol
The FDG-PET dataset was acquired from the ADNI website.
A detailed explanation of the FDG-PET image acquisition
is available on the ADNI homepage (http://adni.loni.usc.edu/
pet-analysis-method/pet-analysis/). Briefly, FDG-PET images
were acquired from 30 to 60min post-injection. First, images
were averaged and then spatially aligned. Next, these images
were interpolated to a standard voxel size, and later intensity
normalization was performed. Finally, images were smoothed
to a common surface of 8mm (FWHM) full width at half
maximum. First, the FDG-PET images were downloaded in the
Digital Imagining and Communication in Medicine (DICOM)
format. In the second step, we use the dcm2nii (Li et al., 2016)
converter to convert DICOM images into the Nifty format. All
scans were 160 × 160 × 96 resolution with 1.5mm spacing
between each scan.

CSF and APOE Genotype
CSF
We downloaded the required CSF biomarker values for each
selected MRI and FDG-PET image from the ADNI website. A
brief description regarding the collection procedure is available
on the ADNI website. As the manual describes, a 20-ml volume
was obtained from each subject using a lumbar puncture with
a 24 or 25 gauge atraumatic needle around the time of their
baseline scans. Subsequently, all samples were stored on dry ice
on the same day and later they were sent to the University of
Pennsylvania AD Biomarker Fluid Bank Laboratory where the
levels of proteins (Aβ42, total tau, and phosphorylated tau) were
measured and recorded. In this study, the three protein levels,
Aβ42, t-tau, and p-tau181p, were used as features.

APOE Genotype
APOE genotype is known to affect the risk of developing sporadic
AD in carriers. Basically, there are three types of the APOE
gene, called alleles: APOE2, APOE3, and APOE4. Everyone has
two copies of gene and their combination (ε2/ε2, ε2/ε3, ε2/ε4,
ε3/ε3, ε3/ε4, and ε4/ε4) determines our APOE genotype score.
The APOE (ε2) allele is the rarest form of APOE and carrying
even one copy appears to reduce the risk of developing AD by
up to 40%. APOE (ε3) is the most common allele and doesn’t
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seem to influence risk whereas APOE (ε4) allele which present
in ∼10–15% of people, and having one copy of ε4 (ε3/ε4) can
increase the risk of having AD by 2–3 times while having the two
copies (ε4/ε4) of APOE ε4 can increase the risk by 12 times. The
APOE genotype of each subject was recorded as a pair of numbers
representing which two alleles were present in the blood. The
APOE genotype was obtained from 10ml of a blood sample taken
at the time of the scan and sent immediately to the University of
Pennsylvania AD Biomarker Fluid Bank Laboratory for analysis.
The APOE genotype value was available for all subjects for whom
we had imagining data.

Overview of Proposed Framework
The proposed framework consists of three processing stages:
feature extraction and fusion of multiple features into the
single form using early fusion technique, optimal feature subset
selection using truncate SVD dimensionality reduction method,
and classification. Figure 1 illustrates the block diagram of the
proposed framework. The set of participants were randomly split
into two groups in a 75:25 ratios as a training and testing sets,
respectively, before passing them to the kernel-based multiclass
SVM classifier. Moreover, during the training stage, a gray matter
atrophy (from sMR image) and average intensity of each region
(from FDG-PET image) which had automatically extracted using
NiftyReg toolbox, as well as a set of t-tau, p-tau181p, and Aβ42
(from biochemical level) CSF scores, and (ε3/ε4, ε4/ε4) values
from APOE genotype biomarker, were downloaded from the
ADNI website. Here, we have used random tree embedding
(Geurts et al., 2006; Moosmann et al., 2008) method to transform
low dimensional data into a higher dimensional state, to make
sure that the complementary information found across all
modalities is still used while classifying AD subjects. In addition,
we have used an early fusion technique for the combination
of different features into one form before passing them to the
feature selection process. Moreover, a feature selection technique
using truncate SVD was employed to select the optimal subsets
of features from the bunch of features, including the sMRI, FDG-
PET, CSF, and APOE extracted features to train the classifiers to
distinguish between AD andHC,MCIc andMCIs, AD andMCIs,
AD and MCIc, HC and MCIs, and HC and MCIc groups. In
the testing stage, a remaining 25% of the dataset is then passed
to the kernel-based multiclass SVM classifier to measure the
performance of our proposed method.

Image Analysis and Feature Extraction
Image preprocessing was performed for all sMR and FDG-PET
images. First, we performed anterior commissure (AC)–posterior
commissure (PC) correction for all subjects. Afterward, we used
N4 bias field correction using ANTs toolbox (Tustison et al.,
2010) to correct the intensity of inhomogeneity for each image.
In our pipeline, skull striping was not necessary as images were
already preprocessed. Therefore, we reduced the total number of
required pre-processing steps for the original images. Later high-
dimensional data from the images were preserved for the feature
extraction step. For sMR images, we first aligned them to the
MNI152 T1-weighted standard image using SPM12 (Ashburner
and Friston, 2000) toolbox in Matlab 2018b. For the purpose

of anatomical segmentation or parcellation of whole-brain into
anatomic regions and to quantify the features of each specific
regions of interest (ROI) from each sMR image, we have used
NiftyReg toolbox (Modat et al., 2010) with 2-mm Brainnetome
atlas template (Fan et al., 2016) image, which is already
segmented into 246 regions, 210 cortical and 36 subcortical
regions. Moreover, we processed the sMRI image using open
source software, NiftyReg (Modat et al., 2010), which is an
automated registration toolkit that performs fast diffeomorphic
non-rigid registration. After the registration process, we gained
the subject-labeled image based on a 2-mm Brainnetome atlas
template with 246 segmented regions. For the 246 ROI in the
labeled sMR images, we computed the volume of gray matter
tissues in that ROI and used it as a feature. For the FDG-PET
images, the first step was to register the FDG-PET image to its
corresponding sMRI T1-weighted image, using the reg_aladin
command from the NiftyReg software. Once the FDG-PET
images were registered with their respective MR images, we
again used NiftyReg toolbox for non-rigid registration between
processed FDG-PET image and the 2-mm Brainnetome atlas
template image. After registration, we obtained 246 segmented
regions for each FDG-PET image. Again, we computed the
average intensity of each region for the ROI and used it as
a feature for classification. Figure 2 shows the pipeline for
extraction of 246 regions from sMRI and FDG-PET image.

Therefore, for each subject, we obtained 246 ROI’s features for
each sMRI image, another 246 features for each FDG-PET image.
Three features from CSF biomarkers for each subject, and two
feature values from APOE genotype for all selected images.

Combining Multimodality of Biomarkers
After assessing the performance for each individual modality,
we combined different modalities in order to study possible
improvements in classification performance. Here, a general
framework based on an early fusion (or straightforward feature
concatenation) method which use special combination rules to
combine (or to concatenate) complementary information from
different modalities of biomarker into single feature vector is
used, and later we have used kernel-based multiclass SVM
classifier to train that single feature vector. In this context, various
authors have combined sMRI-based features with the features
calculated from FDG-PET, DTI, and fMRI (Zhang et al., 2011,
2012; Young et al., 2013; Schouten et al., 2016; Bron et al.,
2017; Bouts et al., 2018) for early classification of AD subjects.
Moreover, in our case, we have combined four (sMRI, FDG-PET,
CSF, and APOE) modality of biomarkers into one form using
early fusion technique for the early classification of AD and MCI
subjects. Here, the value of the features for the APOE and CSF
are of small dimensional compared to the sMRI and FDG-PET
extracted features values. Therefore, if classification algorithms
trained on (high + low) dimensional combined features then it
may produce prediction models that effectively ignore the low
dimensional features. Moreover, to overcome this problem, we
have transformed low dimensional extracted features into a high
dimensional state using random tree embedding method, which
ensures that the complementary information found across all
modalities is still used while classifying several groups. This step
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FIGURE 1 | Overview of the proposed framework. (A) Selection of four (sMRI, FDG-PET, CSF, and APOE) important biomarkers. (B) Feature extraction using NiftyReg

toolbox for sMRI and FDG-PET image. (C) Feature selection using truncate SVD method. (D) Ten-fold stratified cross-validation method. (E) Kernel-based multiclass

SVM classifier. (F) Diagnosis output.

is followed for every classification problem. Figure 3 shows the
early fusion pipeline. Moreover, here 1st (APOE), 2nd (CSF),
3rd (sMRI), and 4th (FDG-PET) features are concatenated
with each other using early fusion technique before passing
them further. We assessed the classification performance for
individual and combined modalities by calculating the AUC for
each group.

Feature Selection
With the help of automated feature extraction methods, we
extracted 246 ROIs from each sMRI and FDG-PET image.
As in the neuroimaging analysis, the number of features per
subjects is very high relative to the number of patients, a
phenomenon normally referred to as the curse of dimensionality.
Furthermore, because of the computational difficulties of dealing
with high dimensional data, dealing with many features can
be a challenging task, which may result in overfitting. Feature
selection is an additional helpful stage prior to the classification
problem, which helps to reduce the dimensionality of a feature

by selecting proper features and omitting improper features. This
step helps to speed up the classification process by decreasing
computational time for the training and testing datasets and
increases the performance of classification accuracy. At first,
we normalized the extracted features using the standard scalar
function from Scikit-learn library (0.19.2) (Pedregosa et al.,
2011), which transforms the dataset in such way that its
distribution will have a mean of 0 and unit variance of 1
to reduce the redundancy and dependency of the data. After
that, we performed high dimensional transformation of the data
using random tree embedding (Geurts et al., 2006; Moosmann
et al., 2008) from Scikit-learn library (0.19.2) (Pedregosa et al.,
2011) and a dimensionality reduction process using truncated
singular value decomposition (SVD) method. Random tree
embedding system works based on the decision tree ensemble
learning (Brown, 2016) system that execute an unsupervised data
transformation algorithm to solve a random tree embedding
task. It uses a forest of complete random trees, that encodes
the data by the indices of the leaves where a data sample point
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FIGURE 2 | Overview of the feature extraction pipeline for sMRI and FDG-PET image. Here, NiftyReg toolbox is used for the image registration and as well as for the

non-linear registration between the (sMRI and FDG-PET) image with 2mm Brainnetome template image. Above pipeline shows that, we have successfully extracted

246 ROI’s from each (sMRI and FDG-PET) images.

ends up. This index is then encoded in a one-of-k encoder,
which maps the data into a very high-dimensional state which
might be beneficial for the classification process. The mapping
process is completely unsupervised and very efficient for any
dataset. After mapping the dataset into the very high dimensional
state, we applied the truncated SVD function for dimensionality
reduction purposes, which only selects the important features
from the complete set of features. The truncated SVD is similar
to principal component analysis (PCA) but differs in that it
works on the sample matrices X directly instead of working on

their covariance matrices. When performed column-wise (per-
feature), i.e., means of X are deducted from the value of the
feature, the truncated SVD of the resulting matrix corresponds
to PCA. Truncated SVD implements an irregular SVD that only
calculates the k largest singular values, where k is a user-specified
parameter. Mathematically, the truncated SVD can be applied to
train data X, which produces a low-rank approximation of X:

X = Xk = Uk6kV
T
k (1)
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FIGURE 3 | Multimodal fusion pipeline shows the fusion of four modality of biomarkers, from which two biomarkers sMRI and FDG-PET belongs to imaging modality,

CSF biomarker from biochemical, and APOE biomarker from genetics.

After this process,Uk6
T
k
is transformed into the training set with

k features. To transform a test set X, we can multiply it by Vk:

X′ = XVk (2)

In this way, we can perform the truncated SVD method on the
training and testing dataset.

Classification
Support Vector Machine
SVM is a supervised learning method. SVM (Cortes and Vapnik,
1995) works by finding a hyperplane that best separates two data
groups. It is trained by training data in n-dimensional training
space after which test subjects are classified according to their
position in n-dimensional feature space. It has been used in
several neuroimaging areas (Cui et al., 2011; Zhang et al., 2011;
Young et al., 2013; Collij et al., 2016) and is known to be one of the
most powerful machine learning tools in the neuroscience field in
recent research. In mathematical representation, for a 2D space,
a line can discriminate the linearly separable data. The equation
of a line is y = ax + b. By renaming x with x1 and y with x2,
the equation will change to a(x1 − x2) + b = 0. If we stipulate
X = (x1, x2) and w = (a, −1), we get w.x + b = 0, which is an
equation of hyperplane. The linearly separable output with the
hyperplane equation has the following form:

f
(

y
)

= zT∅.(y)+ b (3)

Where y is an input vector, zT is a hyperplane parameter, and
∅(y) is a function used to map feature vector y into a higher-
dimensional space. The parameters z and b are scaled suitably by
the same quantity, the decision hyperplane given by the Equation
(2) remains unchanged. Moreover, in order to make any decision
boundary surface (hyperplane) correspond to the exclusive pair
of (z, b), the following constraints are familiarized:

min
∣

∣

∣
zT∅.(yi)+ b

∣

∣

∣
= 1, i = 1, . . . .,N, (4)

Where y1, y2, y3, . . . ., yN are the given training points. Equation
(4) hyperplanes are known as the canonical hyperplanes. For a

given hyperplane (or decision surface) which is described with
the equation;

zT∅.(y)+ b = 0, which is same as zT∅.
(

y
)

= 0 (which has more dimensions) (5)

And, for a vector x that does not belong to the hyperplane,
the following equation is satisfied (Cortes and Vapnik, 1995,
Madevska-Bogdanova et al., 2004, Cui et al., 2011):

zT∅.(x)+ b = ±s ‖z‖ (6)

Where s is the distance of a point x to the given hyperplane. The
different signs determine the vector’s x side of the hyperplane.
Therefore, the output f

(

y
)

(or predictive value) of the SVM is
truly proportional to the norm of vector z and the distance s(x)
from the chosen hyperplane. Moreover, in our study, we have
used kernel-support vector machine, which is used to solve the
non-linear problem with the use of linear classifier and involved
in exchanging linearly non-separable data into linearly separable
data. The idea behind this concept is linearly non-separated data
in n-dimensional space might be linearly separated in higher
m-dimensional space. Mathematically, the kernel is indicated as,

K
(

a, b
)

= < F (a) , F
(

b
)

> (7)

Where, K is a kernel function and a, b are inputs in n-
dimensional space. F is a mapping function which maps from
n-dimensional to m-dimensional space (i.e., m > n). Moreover,
in our case, we have used three different kinds of kernel function
which is defined as follow:

• Polynomial type: It represents the resemblance of vectors
(training samples) in a feature space over the polynomials
of the original variables, allowing the learning of non-linear
models. A Polynomial kernel is defined as;

K
(

x, y
)

= (x, y)d (8)

Where x and y are vectors in the input space. d is the
kernel parameter.
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• Gaussian radial basis type: Radial basis functions mostly with
Gaussian form and it is represented by;

K
(

x, y
)

= exp(−

∥

∥x− y
∥

∥

2

2σ 2
) (9)

Where, x and y are the two input samples, which represented

as a feature vector in input space.
∥

∥x− y
∥

∥

2
may be seen as a

squared Euclidean distance between two feature vectors. σ is a
kernel parameter.

• Sigmoid type: It comes from the neural networks field, where
the bipolar sigmoid function is often used as an activation
function for an artificial neuron. And, it is represented by;

K
(

x, y
)

= tanh(∝ xTy+ c) (10)

Where, x and y are vectors in the input space and ∝, c are the
kernel parameters.

For our study, we used a different kernel-based multiclass
SVM from Scikit-learn 0.19.2 library (Pedregosa et al., 2011).
Scikit-learn library internally use LIBSVM (Chang and Lin,
2011) to handle all computations. The hyperparameter of the
kernel-based SVM must be tuned to measure how much
maximum performance can be augmented by tuning it. It
is important because they directly control the behavior of
the training algorithm and have a significant impact on the
performance of the model is being trained. Moreover, a good
choice of hyperparameter can really make an algorithm smooth.
Therefore, to find an optimal hyperparameter for the kernel-
based multiclass SVM, C (explains the SVM optimization
and percentage of absconding the misclassified trained data.
For high C values, training data will classify accurately by a
hyperplane; similarly, for low C values, optimizer looks for a
higher margin separating hyperplane while it will misclassify the
more data points) and γ (Gaussian kernel width describes the
impact of specific training data. The high gamma values result
in consideration of datasets that are near to separation line.
Likewise, for low gamma values, datasets that are away from the
separation line, will also be taken into consideration while in the
calculation line) parameters are optimized using a grid search and
a ten-fold stratified cross-validation (CV) method on the training
dataset. This validation technique gives an assurance that our
trained model got most of the patterns from the training dataset.
Moreover, CV works by randomly dividing training dataset into
10 parts, one of which was left as a validation set, while the
remaining nine were used by a training set. In this study, ten-
fold stratified cross-validation was performed 100 times to obtain
more accurate results. Finally, we computed the arithmetic mean
of the 100 repetitions as the final result. Note that, as a different
feature had different scales, so in our case, we linearly ascend
each training feature to imitate to a range between 0 and 1; the
same scaling technique was then applied to the test dataset. As the
number of selected features is small, in our case the RBF kernel
performs better than other kernels.

Measuring the Classification Performance
To assess the classification performance of each group we have
applied two method: (i) ROC-AUC curve analysis and (ii)
Statistical analysis using Cohen’s kappa method.

ROC-AUC Analysis
The ROC-AUC is a fundamental graph in the evaluation of
diagnostic tests and is also often used in biomedical research to
test classification problem performance and prediction models
for decision support, prognosis, and diagnosis. ROC analysis
examines the accuracy of a proposed model to separate positive
and negative cases or distinguish AD patients from different
groups. It is particularly useful in assessing predictive models
since it records the trade-off between specificity and sensitivity
over that range. In a ROC curve, the true positive rate (known
as the sensitivity) is arranged as a function of a false positive
rate (known as the 1-specificity) for different cut-off values of
parameters. Each point’s level of the ROC curve characterizes
a sensitivity/specificity pair, which corresponds to a specific
decision threshold. This is generally depicted in a square box
for convenience and it’s both axes are from 0 to 1. The area
under curve (AUC) is an effective and joint measure of sensitivity
and specificity for assessing inherent validity of a diagnostic test.
AUC curve shows us how well a factor can differentiate between
two binary diagnostic groups (diseased/normal). A result with
perfect discrimination has a 100% sensitivity, 100% specificity
ROC curve. Therefore the closer the ROC curve to the upper left
corner, the higher the overall accuracy of the test as suggested
by Greiner et al. (2000). The AUC is commonly used to visualize
the performance of binary classes, producing a classifier with two
possible output classes. Accuracy is measured using the AUC.
Here, an AUC of one signifies a perfect score, and an area of 0.5
represents a meaningless test.

The AUC plot provides two parameters:

1. True positive rate (TPR): the TPR is a performance measure
of the whole positive part of a dataset.

2. False positive rate (FPR): the FPR is a performance measure
of the whole negative part of a dataset.

Moreover, classification accuracy measures the effectiveness of
predicting the true class label, but in our case, it should be noted
that the number of subjects was not the same in each group, so
only calculating accuracymay result in amisleading estimation of
the performance. Therefore, fourmore performancemetrics have
been calculated, namely specificity, sensitivity, precision, and
F1-score. We have reported the accuracy, specificity, sensitivity,
precision, and F1-score values corresponding to the ideal point
of the ROC curve.

Accuracy =
TP + TN

TP + FP + FN + TN
(11)

F1− score = 2∗

[

precision∗recall

precision+ recall

]

(12)

where,

Precision =
TP

TP + FP
; Recall = Specificity =

TP

TP + FN
(13)
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TABLE 3 | Obtained best CV score for six classification groups.

Group Regularization constant (c) Gamma (g or γ) Best CV score

AD vs. HC 7 0.00316227766017 0.98742

AD vs. MCIs 5 0.01 0.96207

AD vs. MCIc 6 0.004 0.92201

MCIs vs. MCIc 9 0.001 0.94782

HC vs. MCIc 4 0.001 0.94036

HC vs. MCIs 9 0.001 0.93103

With TP, FP, TN, and FN denoting true positive, false positive,
true negative, and false negative, respectively. Specificity (true
negative rate) provides a amount for those not in the class, i.e., it
is the percentage of those not in the class that were found not to be
in the class. Precision [which is also termed as positive predictive
value (PPV)] is the fraction of relevant incidences among the
retrieved incidences, and F1-score (which is also called F-score
or F-measure) is a amount related to a test’s accuracy. Moreover,
in our case, we have repeated the procedure 100 times, the
reported AUC-ROC, accuracy, sensitivity, specificity, precision,
and F1-score are the average over the 10 repetitions of the 10-
fold stratified cross-validation procedure. We have followed this
method for every classification groups.

Statistical Analysis Using Cohen’s Kappa Method
Cohen’s kappa statistic value for each classification problem was
computed. This function calculates Cohen’s kappa score, which
demonstrate the level of agreement between two annotators or
the level of agreement between two dissimilar groups in a binary
classification problem defined as,

k = (po − pe)/(1− pe) (14)

where, po is the empirical probability of an agreement on the
label assigned to any example (the observed agreement ratio),
and, pe is the predictable agreement when both annotators assign
labels randomly. Here, pe was assessed using a per-annotator
empirical prior over the class labels. The kappa statistic value is
always between −1 and 1. The maximum value means complete
agreement between two groups, zero or lower value means a low
probability of agreement.

RESULTS

Here, all classification problems were performed using Ubuntu
16.04 LTS, running python 3.6, and using Scikit-learn library
version 0.19.2. In this study, there were four classes of data,
AD, MCIc, MCIs, and HC, separated using four different types
of biomarker, sMRI and FDG-PET for imaging modalities, and
CSF as a biochemical (or fluid vessel) that show results reflecting
the formation of amyloid plaques inside the brain, and APOE
genotypes as genetic features. Thus, we validated our proposed
method on six different types of classification problem, i.e., six
binary class problem (AD vs. HC, MCIc vs. MCIs, AD vs. MCIc,
HC vs. MCIs, HC vs. MCIc, and AD vs. MCIs). At first, we

FIGURE 4 | CV best score obtained for AD vs. HC and MCIs vs. MCIc groups.

Best CV score is computed by taking the average of 10 folds CV values. CV

score, Cross-validation score; C, regularization constant; and g or γ , gamma,

C and γ are the hyperparameter value for the kernel-based multiclass SVM.

extracted the featured from each sMRI and FDG-PET images by
using the NiftyReg registration process with 2-mm Brainnetome
atlas template image. In total, we obtained 497 features for a
single image, 246 ROI-based features from the sMRI and FDG-
PET images, three feature values from the CSF data, and two
features from the APOE genotype data. Moreover, we have
applied a random tree embedding method which transformed
obtained low dimension features into a higher dimensional state,
after that an early fusion technique is processed to combine the
multiple features into single form before passing them for further
process. Additionally, we have also applied a feature selection
technique using a truncated SVD dimensionality reduction
method, which will select the effective features from all 497
high dimensional features and send these selected features to the
classifier, to measure the performance of identifying each group.
In our case, we used a kernel-based multiclass SVM as a classifier
from a Scikit-learn library (0.19.2).

In order to attain unbiased estimates of performance, the set of
participants were randomly split into two groups in a 75:25 ratios
as training and testing sets, respectively.

In the training set, to find the right values for the
hyperparameter (C and γ ) is very difficult, and their values
influence the classification result. Moreover, we know that the
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parameter C, trades off the misclassification of training samples
against the simplicity of a decision surface, a small C value makes
the decision surface flat, while a high C value aims to classify all
training samples correctly. Moreover, a γ value shows howmuch
influence a single training sample has. The larger γ is, the closer
other samples must be to be affected. Therefore, we have used
cross-validation technique to get good optimal hyperparameter
values for the regularization constant (C) and gamma (γ ). We
can’t know the best value for a model hyperparameter on a
given problem. With the right values of hyperparameters will
eliminate the chances of overfitting and underfitting. Therefore,
to find the optimal hyperparameter values for a kernel-based
SVM, have used a grid-search (which perform a comprehensive
search over the specified parameter values for an estimator) and
ten-fold stratified cross-validation technique on the training set.
The grid search was performed over the ranges of C = 1 to
9 and γ = 1e-4 to 1. For each method, the gained optimized
value of the hyperparameter was then used to train the classifier
using the training set, and later the performance of the resulting
classifier was then evaluated on the remaining 25% of data in
the testing dataset, which was not used during the training
step. The obtained optimized hyperparameter (C and γ ) value
and their best CV accuracy are shown in Table 3. Figure 4 is
a plot of the classifier’s CV accuracy with respect to (C and
γ ) for AD vs. HC and MCIc vs. MCIs groups. In Figure 4,
we can see the impact of having different C and γ values on
the model. Moreover, the best found optimal hyperparameter
combination for an AD vs. HC are C= 7, γ = 0.00316227766017
and for MCIs vs. MCIc are C = 9, γ = 0.001, these tuned
optimal hypermeter values are automatically chosen from the
given range of C = 1 to 9 and γ = 1e-4 to 1 with the help of
grid search and ten-fold CV. In this way, we achieved unbiased
estimates of the performance for each classification problem. In
our experiment, the number of subjects was not the same in
each group. Therefore, only calculating accuracy does not enable
a comparison of the performances of the different classification
experiments. Thus, we have considered five measures. For each
group, we have calculated the accuracy, sensitivity, specificity,
precision, and F1-score performance measure values. Table 4
show the classification results for AD vs. HC, MCIc vs. MCIs, AD
vs. MCIs, AD vs. MCIc, HC vs. MCIc, and HC vs. MCIs.

We conduct the AD vs. HC experiment using extracted
APOE, CSF, FDG-PET, and sMRI features, and the classification
outcome is shown in Table 4. For AD vs. HC classification,
we had 38 AD and 38 HC subjects and only sMRI individual
biomarker performed well while compared to other individual
modalities of biomarkers. Moreover, the early fusion technique
that we used to combine features from different modalities
resulted in an AUC of 98.33, 98.42% of accuracy, 100% of
sensitivity, 96.47% of specificity, 97.89% of precision, and 98.42%
of F1-score. Furthermore, Cohen’s kappa value is 0.93 for the
combined method, which is very close to 1. Likewise, for
the MCIs vs. MCIc classification problem, 82 subjects were
included. Forty-six were in the MCIc group and the remaining
36 patients were in the MCIs group. Table 4 shows the computed
performance measure for this classification problem. Compared
to other classification group problem this classification group

(MCIs vs. MCIc) is difficult to classify because both groups show
similar brain structure; however, there are slight differences in
structure. For this group, APOE genotype individual biomarker
performed well while compared to other individual modalities of
biomarkers.Moreover, our proposedmethod has performed even
better than the best output obtained by individual biomarkers for
this group and the achieved measures are AUC of 93.59%, with
94.86% accuracy, 100% sensitivity, 88.71% specificity, 89.62%
precision, and an F1-score of 91.67% compared to those of the
single modalities. For MCIs vs. MCIc, Cohen’s kappa value was
0.86, which is better than those of the single modalities. Our
proposed method has performed very well when classifying this
group. For AD vs. MCIs group, there were 38 AD and 36 MCIs
subjects. First, we extracted the features from each subject and
then we combined both imaging (PET and MRI) feature values
with the other two (CSF and APOE genotype) feature values to
measure the performance of AD vs. MCIs classification. Table 4
shows the results from passing obtained features to the kernel-
based multiclass SVM classifier. As can be seen from Table 4, our
proposed method to combine all four modalities of a biomarker
for distinguishing between AD and MCIs achieved good results
compared to single modality biomarkers. For this classification
problem, our proposedmethod achieved 96.65% of accuracy with
a Cohen’s kappa of 0.91. For AD vs. MCIc group, there were
38 AD and 46 MCIc. We trained kernel-based multiclass SVM
classifiers using dimensionality-reduced features from truncated
SVD to measures the performance of AD vs. MCIc group. The
best performance was attained using a combination of four
modalities of features, i.e., sMRI, FDG-PET, APOE and CSF,
which had an accuracy of 92.26%, a sensitivity of 91.67%, a
specificity of 92.86%, and an AUC of 94.64% with Cohen’s kappa
of 0.84. For the HC vs. MCIc distinction, our proposed method
achieved 96.43%AUC, 94.13% accuracy, 94.75% sensitivity, 100%
of specificity and precision, and 96.72% of F1-score. Table 4
shows the classification performance result for HC vs. MCIc
classification. In this case, the obtained Cohen’s kappa index
value is 0.88, which is near to themaximum level agreement value
of 1. For the HC vs. MCIs classification problem, 74 subjects were
included. Thirty-six were in the MCIs group and the remaining
38 patients were in the HC group. Table 4 shows the results from
passing obtained features to the kernel-based multiclass SVM
classifier. As can be seen from Table 4, our proposed method
to combine all four modalities of a biomarker for distinguishing
between HC and MCIs achieved good results compared to
single modality biomarkers. For this classification problem, our
proposed method had achieved 95.24% of AUC, and 95.65% of
accuracy with a Cohen’s kappa of 0.90. Therefore, we can say that
for all classification groups our proposed method has achieved a
high level of performance while compared to single modality of
biomarkers, ranging from 1 to 5%, and our proposed method has
also achieved a high level of agreement between each other for
all six classification groups while compared with single modality-
based methods. For AD vs. MCIs, AD vs. MCIc, HC vs. MCIs,
and HC vs. MCIc groups, CSF individual biomarkers performed
very well-compared to other individual modality of biomarkers,
and the CSF achieved AUC for these groups are 94.17, 89.58,
94.05, and 92.5%.
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TABLE 4 | Classification results for AD vs. HC, MCIs vs. MCIc, AD vs. MCIs, AD vs. MCIc, HC vs. MCIc, and HC vs. MCIs groups.

Groups Features Classifier Performance measure

AUC ACC SEN SPEC PRE F1-score Cohen’s kappa

AD vs. HC APOE genotype SVM 90.83 88.96 90.91 89.46 86.92 87.33 0.79

CSF 91.54 91.3 88.48 91.67 90.91 93.15 0.82

sMRI 93.33 92.5 100 89.74 88.47 92.86 0.85

FDG-PET 92.5 92.56 89.74 90 93.62 91.63 0.84

Combined 98.33 98.42 100 96.47 97.89 98.42 0.93

MCIs vs. MCIc APOE genotype SVM 91.21 92 86.67 100 100 92.86 0.83

CSF 87.73 88 85.71 90.91 92.31 88.89 0.75

sMRI 86.54 85.43 84.55 83.92 86.96 81.82 0.69

FDG-PET 90.38 89 100 85 76.92 86.96 0.76

Combined 93.59 94.86 100 88.71 89.62 91.67 0.86

AD vs. MCIs APOE genotype SVM 90 89.96 100 82.73 84 88.89 0.75

CSF 94.17 93.33 91.3 100 86.67 92.86 0.86

sMRI 88.33 87.67 82.61 86.49 73.33 84.62 0.73

FDG-PET 89.17 90 89.96 91.73 89.96 88.89 0.75

Combined 96.83 96.65 100 91.67 93.33 96.55 0.91

AD vs. MCIc APOE genotype SVM 88.89 88.46 77.78 94.12 87.2 82.35 0.71

CSF 89.58 86.39 86.92 90 87.5 88.67 0.73

sMRI 84.52 80.36 80.77 81.82 80 78.26 0.69

FDG-PET 84.03 80.77 66.67 88.24 75 70.59 0.65

Combined 94.64 92.26 91.67 92.86 91.67 91.67 0.84

HC vs. MCIc APOE genotype SVM 87.5 87.12 82.64 87.5 86.67 92.33 0.73

CSF 94.05 92.31 91.67 90.44 92.26 95.22 0.83

sMRI 89.58 88.46 90.91 86.67 83.33 86.96 0.76

FDG-PET 91.07 87.5 88.46 100 82.35 85.71 0.76

Combined 96.43 94.13 94.75 100 100 96.72 0.88

HC vs. MCIs APOE genotype SVM 90.83 87.08 86.96 92.86 86.67 89.66 0.72

CSF 92.5 90.47 100 72.73 80 88.89 0.73

sMRI 91.27 90.16 98.26 86.67 90.91 92 0.71

FDG-PET 89.68 87.3 92.31 80 85.71 88.89 0.73

Combined 95.24 95.65 100 88.89 93.33 96.55 0.90

Figure 5 shows Cohen’s kappa statistics score for six
classification problems, AD vs. HC,MCIs vs. MCIc, AD vs.MCIs,
AD vs. MCIc, HC vs. MCIs, and HC vs. MCIc. From this graph,
we can see that our proposed method has achieved a good level
of agreement between different classification groups.

Here, Figure 6 shows the AUC curve for AD vs. HC, MCIs
vs. MCIc, AD vs. MCIs, AD vs. MCIc, HC vs. MCIs, and HC
vs. MCIc. Total AUC-ROC curve is a single index for measuring
the performance of a test. The larger the AUC, the better is the
overall performance of the diagnostic test to correctly pick up
diseased and non-diseased subjects. For AD vs. HC, our proposed
model achieved 98.33% AUC, showing that our proposed model
performed well when distinguishing positive and negative values.
For MCIs vs. MCIc, our proposed model correctly distinguished
converted patients from stable patients with an AUC of 93.59%,
which is a great achievement for this complex group. Likewise,
for AD vs. MCIs, AD vs. MCIc, HC vs. MCIs, and HC vs.
MCIc, our proposed model achieved AUCs of 96.83, 94.64, 95.24,
and 96.43%. Overall, for all classification methods, our proposed

model performed well and its probabilities for the positive classes
are well-separated from those of the negative classes.

DISCUSSION

In this experiment, we proposed a novel technique to fuse
data from multiple modalities for the classification of AD
from different groups, using a kernel-based multiclass SVM
method. In addition, earlier studies aimed only for AD vs.
HC classification groups. In this paper, we studied six binary
classification problem, AD vs. HC, MCIs vs. MCIc, AD vs. MCIs,
AD vs. MCIc, HC vs. MCIs, and HC vs. MCIc. More importantly,
we combined not only sMRI and FDG-PET images but also their
CSF (biochemical) and APOE (genetic) genotype values. Our
experiment result shows that each modality (sMRI, FDG-PET,
CSF, and APOE) is indispensable in achieving good combination
and good classification accuracy.

Some studies (Zhang et al., 2011, 2012; Young et al., 2013)
have used a small number of features extracted from automatic
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or manual segmentation processes for the classification of AD
from different groups. Their proposed model has achieved
good performance for AD vs. HC; however, for MCIc vs.
MCIs, the performance of their proposed model is poor.

FIGURE 5 | Cohen’s kappa score for AD vs. HC, MCIs vs. MCIc, AD vs. MCIc,

AD vs. MCIs, HC vs. MCIs, and HC vs. MCIc (each experiment obtained

kappa value is shown by different solid color lines). This Cohen’s kappa plot

shows that combined features outperform the single modality features in all

experiments.

Therefore, in our study, we tried to extract as many ROI
from two imaging modalities using the 2-mm Brainnetome
template image. To the best of our knowledge, this is the first
experiment where 246 ROI was extracted from all 158 subjects
and all features were used in the classification of AD and
MCI subjects.

Furthermore, we later fused features from these two imaging
modalities with three CSF and two APOE genotype features
offered by the ADNI website for the distinction of AD from
different groups using early fusion technique. Moreover, we
use a more advanced segmented template image for feature
extraction from both imaging modalities with the NiftyReg
registration toolbox, compared to other studies (Walhovd et al.,
2010; Davatzikos et al., 2011; Zhang et al., 2011; Beheshti et al.,
2017; Li et al., 2017; Long et al., 2017). As we can see that
from Table 4, single modality biomarkers (sMRI and APOE
genotype) achieved a good performance for AD vs. HC andMCIs
vs. MCIc (using all 246 extracted features and as well as with
two APOE genotype feature from each subject) groups, when
compared with the obtained outputs reported before (Zhang
et al., 2011; Young et al., 2013). Likewise, from same Table 4,
we can see that CSF individual modality of biomarkers has
outperformed other individual biomarkers with 94.17, 89.58,
94.05, 92.5% of AUC for AD vs. MCIs, AD vs. MCIc, HC vs.
MCIc, and HC vs. MCIs. Moreover, a lot of studies have shown
that different modalities of biomarkers contain complementary

FIGURE 6 | Comparison of the ROC-AUC curve corresponding with the best performance of combined fusion method in each experiment is displayed by the green

dashed lines. We also compare these ROC-AUC curves with those of single modality features. This comparison shows that combined features outperform the single

modality features in all experiments, which can be seen from above figure (A) AD vs. HC, (B) MCIs vs. MCIc, (C) AD vs. MCIs, (D) AD vs. MCIc, (E) HC vs. MCIc, and

(F) HC vs. MCIs.
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FIGURE 7 | Comparison of single modality results with multi-modality

classification result based on obtained accuracy and AUC score. From above

figure we can see that in every group combined feature (or multimodal

method) has outperformed the single modality results.

information for the discrimination of AD and MCI subjects.
Here, we quantitatively measure the discrimination agreement
between any two different classification groups using the kappa
index. For combined features (for AD vs. HC, AD vs. MCIs,
and AD vs. MCIc), the obtained level of agreement between
each group is 0.93, 0.91, and 0.84, respectively. Likewise,
for HC vs. MCIs and HC vs. MCIc, the obtained level of
agreement between each group are 0.90 and 0.88. Moreover,
for MCIs vs. MCIc group the obtained level of agreement
between each other is the 0.86, respectively. These all scores
are achieved using a 10-fold stratified CV method on combined
dataset. These results indicate that the combined feature
(for AD vs. HC) group has the highest level of agreement
between each other while compared to other groups and as
well as while compared to the individual performance of
each modality.

Recently, many studies have been published using a single
modality of biomarkers (Chetelat et al., 2007; Fjell et al., 2010;
Chen and Ishwaran, 2012; Beheshti et al., 2016; Jha et al., 2017;
Lama et al., 2017; Long et al., 2017), including sMRI, FDG-PET,
CSF, and APOE. Most of these studies used biomarkers from
the sMRI, because it is practically difficult to get biomarkers

from all modalities for the same patients due to the various
reasons, including the availability of imaging equipment, cost,
lack of patient consent, and patient death in longitudinal
studies. Previously proposed models using a single modality
have achieved good performance for AD vs. HC classification,
where for MCIs vs. MCIc their classification accuracy is very low
compared to our proposed multimodal technique. Here, we have
performed an experiment to assess the classification performance
using features from every single modality independently, as well
as with the combination of multimodal biomarkers. A kernel-
based multiclass SVM classifier was utilized, and the comparison
of the obtained single modality results with the multimodal
classification results are shown in Figure 7. In terms of accuracy
and AUC, the classification performance using features from
CSF is generally better than those using genetic and imaging
features, which highlights the importance of Aβ plaques as
biomarkers in the classification of AD, while in comparison to
the performance with multimodal biomarkers, its performance is
slightly lower. In addition, we can see that for the MCIs vs. MCIc
comparison, each modality of biomarker has performed well.
Different methods were used to evaluate the classification of AD
using multimodal data. First, we combine all high-dimensional
features from four modalities into a single feature vector for
classification of AD and MCI subjects. After that, all features
were normalized (to have a zero mean± unit standard deviation)
before using them in the classification process. This combined
multimodal method provides a straightforward method of using
multimodal data. Subsequently, we passed these features to
the kernel-based multiclass SVM classifier for classification
purposes with a 10-fold stratified CV strategy as described above,
and obtained results are shown in Table 4 and Figure 7. As
we can see in Table 4, our early fusion combination method
consistently outperforms the performance of individual modality
of biomarkers.

Recently, several studies have investigated neuroimaging
techniques for the early detection of AD, with the main focus on
MCI subjects, whomay or may not convert to AD, and separating
patients with AD from healthy controls using multimodal data.
However, it is difficult to make direct comparisons with these
state-of-the-art methods since a majority of the studies have used
different validation methods and datasets, which both crucially
influence the classification problem. The first study by Zhang
et al. (2012) obtained an accuracy of 76.8% (sensitivity and
specificity of 79 and 68%) for the classification of converters and
stable MCI subjects within 24 months.

These results were achieved using a multi-kernel SVM on
a longitudinal ADNI dataset. Another study (Young et al.,
2013) used a Gaussian process method for classification of
MCIs vs. MCIc using several modalities. They reported an
accuracy of 69.9% and AUC of 79.5%. Another study by Suk
et al. (2014) used shared features from two imaging modalities,
MRI and PET, using a combination of hierarchical and deep
Boltzmann machines for a deep learning process; their proposed
method achieved 74.66% accuracy and 95.23% AUC when
comparing MCI-C vs. MCI-NC. In another study (Cheng et al.,
2015), the authors introduced domain transfer learning using
multimodal data (i.e., MRI, CSF, and PET) with an accuracy
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TABLE 5 | Classification performance for the proposed method compared with published state-of-the art methods for differentiating between MCIs vs. MCIc.

Method Modality Subjects AUC ACC SEN SPEC

Zhang et al. (2012) Longitudinal (MRI + PET) 88 76.8 78.4 79 68

Young et al. (2013) MRI + PET + APOE 143 79.5 69.9 78.7 65.6

Suk et al. (2014) PET + MRI 204 74.66 75.92 48.04 95.23

Cheng et al. (2015) MRI + PET + CSF 99 84.8 79.4 84.5 72.7

Moradi et al. (2015) MRI + AGE +

Cognitive measure

264 90.20 81.72 86.65 73.64

Beheshti et al. (2017) MRI 136 75.08 75 76.92 73.23

Liu et al. (2017) MRI + PET 234 80.8 73.5 76.19 70.37

Long et al. (2017) MRI (AMYG) 227 93.2 88.99 86.32 90.91

Proposed method MRI + PET + CSF +

APOE genotype

82 93.59 94.86 100 88.71

of 79.4% for MCIs vs. MCIc with an AUC of 84.8%. In
another study (Moradi et al., 2015), the authors employed a
VBM analysis of gray matter as a feature, combining age and
cognitive measures. They reported an AUC of 90.20% with
81.72% accuracy comparing MCIc vs. MCIs sample. Another
study (Beheshti et al., 2017), used feature ranking and a genetic
algorithm (GA) for selection of optimal features for the classifier.
Their method achieved an accuracy of 75%, sensitivity of 76.92%,
specificity of 73.23%, and AUC of 75.08% for pMCI vs. sMCI.
Liu et al. (2017) proposed combining two imaging modalities
using independent component analysis and the Cox model for
prediction of MCI progression. They achieved 80.8% AUC with
73.5% accuracy in comparisons of MCIc vs. MCIs. Recently,
another author (Long et al., 2017) used Free surfer software
to segment 3-T T1 images into many different parts and later
used a multi-dimensional scaling method for feature selection
before sending the selected features to the classifier. Their
proposedmethod achieved an AUC of 93.2%, accuracy of 88.88%,
sensitivity of 86.32, and specificity of 90.91% when differentiating
sMCI from pMCI using only specific amygdala features. As
shown in Table 5, the performance of the proposed system
was highly competitive in performance terms when compared
to the other systems reported in the literature for MCIs vs.
MCIc classification.

CONCLUSION

In this study, we have proposed a novel method that shows
how to extract 246 ROI from two imaging modalities, PET
and sMRI, using a Brainnetome template image and then
combined these features obtained from imaging with CSF
and APOE genotype features from the same subjects. In the
proposed method, we used a random tree embedding method
to transform obtained features to a higher dimensional state
and later we used a truncated SVD dimensionality reduction
method to select only the important features, which increased
the classification accuracy using kernel-based multiclass SVM
classifier. The obtained experimental results prove that a
combination of biomarkers from all four modalities is a reliable
technique for the early prediction of AD or prediction of

MCI conversion, especially with regards to high-dimensional
data pattern recognition. In addition, our proposed method
achieved 94.86% accuracy with 93.59% AUC and a Cohen’s
kappa index of 0.86 when distinguishing between MCIs vs.
MCIc subjects. The performance of the proposed computer-
aided system was measured using 158 subjects from the ADNI
dataset with a 10-fold stratified cross-validation technique.
The experimental results show that the performance of the
proposed approach can compete strongly with other state-of-
the-art techniques using biomarkers from all four modalities
mentioned in the literature.

In future, we plan to combine demographic information of
the studied subjects as features with the proposed model for the
classification of AD and we will also carry out an investigation of
the multimodal multiclass classification of AD using AV-45 and
DTI modality of biomarkers.
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