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Prediction of overall survival based on multimodal MRI of brain tumor patients is a

difficult problem. Although survival also depends on factors that cannot be assessed via

preoperative MRI such as surgical outcome, encouraging results for MRI-based survival

analysis have been published for different datasets. We assess if and how established

radiomic approaches as well as novel methods can predict overall survival of brain

tumor patients on the BraTS challenge dataset. This dataset consists of multimodal

preoperative images of 211 glioblastoma patients from several institutions with reported

resection status and known survival. In the official challenge setting, only patients with

a reported gross total resection (GTR) are taken into account. We therefore evaluated

previously published methods as well as different machine learning approaches on the

BraTS dataset. For different types of resection status, these approaches are compared

to a baseline, a linear regression on patient age only. This naive approach won the 3rd

place out of 26 participants in the BraTS survival prediction challenge 2018. Previously

published radiomic signatures show significant correlations and predictiveness to patient

survival for patients with a reported subtotal resection. However, for patients with

reported GTR, none of the evaluated approaches was able to outperform the age-only

baseline in a cross-validation setting, explaining the poor performance of approaches

based on radiomics in the BraTS challenge 2018.
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1. INTRODUCTION

The high-grade glioma, a subtype of brain tumors, is one of the most aggressive and dangerous
diseases worldwide. For the US, a 5-year survival rate of glioblastoma patients of only 5.6% was
reported for 2000–2015 (Ostrom et al., 2018). Automatic analysis of these tumors is challenging,
as their shape, location and extent can differ substantially. Since 2012, the BraTS challenge (Menze
et al., 2015) is held annually to allow an unbiased comparison of different segmentation algorithms.
Since 2017, an overall survival (OS) prediction task is included to assess whether quantitative image
features based on these segmentations can provide further clinical insight. In the OS task, patients
need to be classified in long-survivors (OS>15 months), short-survivors (OS <10 months), andmid-
survivors (10 months <OS <15 months). While data is provided for patients with different resection
status, the official evaluation is carried out only on patients with a reported gross total resection
(GTR). A total of 41 teams took part in this survival prediction task in 2017 and 2018.
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Using the age as sole feature with a linear regressor, we
achieved an accuracy of 0.56 (n = 77) on the test set in the
BraTS challenge 2018. In comparison, the first placed approaches
of 2017 (Shboul et al., 2018) and 2018 (Feng et al., 2019)
achieved accuracies of around 0.58 and 0.62, respectively (Bakas
et al., 2018b). Shboul et al. relied on automatic radiomic
feature extraction combined with a Random Forest Regressor
(RFR), while Feng et al. used geometric features in combination
with a linear model. The developers of other top performing
algorithms chose similar strategies of combining either hand-
selected or automated radiomic features with a supervised
machine learning algorithm: Radiomic feature extraction was
used in combination with an RFR (Sun et al., 2019) or a
Multilayer Perceptron (MLP) (Baid et al., 2019). Geometric
features only were used with an MLP (Jungo et al., 2018), and
finally atlas locations together with relative tumor sizes and an
RFR were also employed (Puybareau et al., 2019). These teams
achieved accuracies between 0.55 and 0.6. Further submitted
approaches ranged from deep learning algorithms to radiomic
feature analysis to handcrafted feature engineering, that achieved
accuracies between 0.15 and 0.55. As three classes were equally
subdivided, a random choice would result in an accuracy of 0.33.

On other brain tumor datasets, encouraging results for OS
prediction have been published. A successful radiomic-based
brain tumor patient OS and progression-free survival prediction
on a private dataset comprising 119 patients was described
by Kickingereder et al. (2016). Positive findings with data-mining
algorithms have also been reported when including Diffusion-
MRI and relative cerebral blood volume data (Zacharaki et al.,
2012) or Perfusion-MRI data (Jain et al., 2014) next to the MR-
sequences used in the BraTS dataset. Deep learning based OS
prediction has been successfully used on another, smaller (n =
93) private dataset (Nie et al., 2019). However, as the BraTS
summary (Bakas et al., 2018b) indicates, deep learning techniques
performed rather poorly on the open-access data. Quantitatively
comparing deep learning to classical regression on radiomic
features for OS on the BraTS data was also carried out by Suter
et al. (2019). They concluded that radiomic feature are better
suited, as features extracted from deep learning networks seemed
to be unstable for this task.

Radiomic feature extraction describes the process of
automatically computing a variety of quantitative image
features. By quantifying lesions, radiomics can not only be
used for prognosis, but can also help increase precision in
diagnosis. For example, radiomics has been successfully used
to distinguish between high- and low-grade glioma (Cho et al.,
2018) on the BraTS dataset. An overview of radiomics and its
applications is given by Rizzo et al. (2018). For brain tumor
analysis in particular, a review of radiomics-based techniques for
quantitative imaging is given by Zhou et al. (2018).

Radiomic features combined with a machine learning model
is thus a natural choice for OS prediction. We initially evaluated
different radiomics-based machine learning techniques for the
BraTS challenge, too. However, when thoroughly validating the
results, all considered approaches could not outperform a linear
regressor based on the patients age only. We thus decided to
submit an age-only linear regressor (Weninger et al., 2019), and
won the third place in the BraTS challenge 2018.

In this paper, we analyze different radiomic-based approaches
to survival prediction on the BraTS data. To be independent of
segmentation inaccuracies, we only use the BraTS training data
for all experiments. For this data, groundtruth segmentations are
publicly available, approved by experts and reviewed by a single
board-certified neuro-radiologist (Bakas et al., 2017c). The data
can be subdivided by resection status into patients with reported
GTR, subtotal resection (STR) and patients with unavailable
resection status (NA). The official evaluation was carried out only
on the GTR subset. First, we re-evaluate previously published
radiomic signatures on the different resection status subsets.
We show that these methods are predictive for OS on the STR
subset. Second, different machine learning tools are evaluated
on the radiomic feature set. Third, as the number of extracted
radiomic features is very large and important features could
remain undetected, two different feature reduction methods
are assessed.

For the patients with GTR, neither previously published
methods, nor different machine learning models, nor
unsupervised feature reduction techniques could establish a
robust signature for patient survival prediction. Finally, the
importance of thoroughly assessing the robustness of radiomic
markers is discussed, and ideas on how to improve survival
prediction based on MRI images even after tumor resection
are provided.

2. MATERIALS

2.1. Dataset
In our evaluation, we discard the BraTS test- and validation
datasets, as no groundtruth segmentations and no OS
information are available, and use only the training dataset.
All subjects of the BraTS 2018 dataset are included in the BraTS
2019 dataset; thus, the analysis is focused on the larger BraTS
2019 dataset. The BraTS survival data training dataset consists of
data from 211 brain tumor patients from different institutions.
For each patient, the following data is available:

• 4 MRI acquisitions: T1, T1 post contrast agent (T1CE), T2
and T2-FLAIR. All are resampled to an isotropic resolution of
1× 1× 1mm3, co-registered and skull stripped.

• Segmentation map: Edema (ED), enhancing tumor (ET), and
non-enhancing / necrotic tumor core (NEC).

• The age of the patient.
• Resection status.

The resection status is either reported as GTR, subtotal resection
(STR), or unknown (NA). For a few subjects (n = 21), the
resection status was given as STR in the BraTS 2018 dataset, but
omitted for the 2019 dataset. These statuses were re-entered into
the dataset. Next, two patients were reported as still alive. Their
overall survival in the database was set to the maximum survival
time in the dataset, 1,767 days.

2.2. Cohort Study
Most data are provided either by the Center for Biomedical
Image Computing andAnalytics fromUniversity of Pennsylvania
(CBICA, n = 128) or by The Cancer Imaging Archive (TCIA, n =
76) (Bakas et al., 2017a,b). A small amount of the data (n = 7)
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originates from other sources. All subjects have a pathologically
confirmed diagnosis of primary de novo glioblastoma (Bakas
et al., 2018b). Nevertheless, as population or differences in
treatment could influence clinical outcome, an overview over
differences and similarities of the different provenances is given.

For all TCIA subjects, the resection status is unknown. In
contrast, 94 of the 101 subjects with GTR as well as all subjects
with STR originate from one institution, CBICA. In the dataset,
there are no statistically significant differences between age or
survival for the different data provenances or the different types
of resection status (ANOVA: p >0.05). However, the relative brain
tumor volume, as determined as tumor volume divided by brain
volume, is significantly smaller in the TCIA data than in the
CBICA data (p <0.0001). Between the resection status STR and
GTR, in contrast, there is no significant relative brain tumor
volume difference (Figure 1).

3. METHODS

Our OS prediction pipeline can be divided into the following
substeps: (1) Image preprocessing, (2) extraction of radiomic
features, (3) unsupervised feature reduction, and (4) statistical
inference and out-of-sample prediction. These major substeps
of the pipeline are visualized in Figure 2. For the BraTS
challenge, only out-of-sample prediction is necessary. In order
to determine whether radiologic features are appropriate for the
given problem, we supplement out-of-sample prediction with
classical hypothesis testing.

3.1. Image Preprocessing
The data was acquired with various MRI scanners and
different clinical protocols. In consequence, absolute image
intensities, and, subsequently, radiomic features, can be strongly
influenced. This was counteracted with a bias-filed correction
and subsequent normalization of the images. First, the ANTs
N3 (Tustison et al., 2010) bias-field correction was applied
to all images, removing local differences in image intensities.
Second, in order to harmonize the MRI acquisitions from
different institutions, all images were normalized with z-score
normalization to zero mean and unit variance.

Histogram equalization was considered as alternative
normalization technique, but discarded as it did not improve
the results. This could be due to the properties of tumor tissue
in MRI images: Parts of the brain tumor are often the brightest
or darkest area in the acquisitions, while occupying only a small
proportion of the brain. The contrast-enhancing part is especially
bright in T1CE acquisitions while covering just a small single-
digit percentage of the brain volume. Histogram equalization
or other nonlinear brightness adaptation techniques will thus
shrink the contrast for these outlier points, actually leading to
less contrast in the examined regions. For a comparison of the
results using histogram equalization, all evaluations relying not
only on tumor shape and/or age were repeated with histogram
equalization instead of z-score normalization. The results can be
found in the Supplementary Materials.

3.2. Feature Extraction
Using the package PyRadiomics (van Griethuysen et al., 2017),
shape features were extracted from the provided segmentation
masks, and image intensity and texture features were extracted
from the four different image modalities for each segmentation
mask. Image intensity and texture features were calculated for the
original image and on wavelet decomposed images. In total, the
following features were extracted:

Shape features comprise volume, surface area, sphericity,
maximum diameter, elongation, axis lengths and flatness.
These were extracted for the different tumor classes, resulting
in 42 features.
Gray-level features include gray-level co-occurrence (glcm),
gray-level run length (glrlm), gray-level dependence matrix
(gldm), gray-level size zone, and neighboring gray tone
difference features. As these were extracted for the original and
wavelet transformed images and four image modalities, this
resulted in 7,884 features.
Image intensity statistics consists of features such as
minimum, maximum, mean, median, percentiles, standard
deviation, skewness, kurtosis, and uniformity. In combination
with different modalities and filters, 1,944 features resulted
from this category.

Combined with the age, a total of 9871 features were obtained. In
contrast, the total number of observations was 211—the number
of variables p is much bigger than the number of samples n.
Such a setting is actually common for pattern-learning methods
in neuroscience (Bzdok, 2017), and is referred as wide data, in
contrast to long data where the number of samples is bigger
than the number of variables. Using such wide data directly for
inference often leads to non-robust results and to overfitting
on the training set. Consequently, before inference the number
of features needs to be reduced as much as possible while
maintaining the characteristics of the data.

3.3. Preselection of Features
Radiomic features are typically redundant (Rizzo et al., 2018),
i.e., they are multicollinear. Different techniques exist to reduce
the number of features and thus the multicollinearity. For the
present problem, a subset of features should be kept after feature
reduction. In contrast to synthetic features obtained by a PCA,
a feature selection method offers more interpretable results.
Further, in order to use the complete BraTS training dataset, the
method should be unsupervised. With an unsupervised method,
the complete BraTS OS training data (n = 211) can be used
for feature selection, as features of preoperative images should
be independent of resection status. In contrast, for this study, a
supervised method could only be done on the specific resection
status subset (GTR: n = 101). As splitting into train- and test set
would further be necessary, an even smaller number of examples
could be employed for feature selection.

Thus, a method relying on correlation matrix clustering
and Variance-Inflation-Feature (VIF) iterative reduction (James
et al., 2014) was chosen as the most appropriate. As a first
step to reduce multicollinearity, single redundant features
were discarded. For this purpose, each feature was linearly
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FIGURE 1 | Difference in age and tumor-to-brain volume by resection status, and survival by provenance.

FIGURE 2 | Methodology used to evaluate the predictiveness of radiomic features for OS with the available acquisitions and labels.

regressed against every other single feature, thus obtaining the
coefficient of determination r2 and creating an r2 correlation
matrix. This matrix was then reordered using a hierarchical
clustering algorithm. For this, we relied on the Voor Hees
Algorithm (Voorhees, 1986) implemented in SciPy (Jones et al.,
2001) for linkage, and Euclidian distances between rows or
columns of the correlation matrix. A visual impression of the
obtained clustered correlation matrix is given in Figure 3.

As proposed by Gillies et al. (2016), representative features
can be chosen from each cluster to reduce redundant elements.
For this, areas of high correlation (R2 > 0.95) were reduced
to the element with the highest inter-patient variability. Using
this method, only features having a pairwise collinear correlation
can be identified and omitted. Multicollinearity, i.e., highly
related associations between more than two features, is not taken
into account.

Multicollinear features were excluded in a second step. Those
features can be identified by checking the VIF. Iteratively, by
removing the feature with the highest VIF, the multicollinearity
can be reduced until a predefined threshold is obtained. A
maximum VIF of 10 is chosen, as thresholds of either 5 or
10 are recommended for this method (James et al., 2014). The
number of features retained with a threshold of 10 should not
pose problems to the machine learning models, so we did not
consider lower thresholds.

Next to the VIF-based feature preselection method, we
evaluated a principal component analysis (PCA) based feature
reduction pipeline. One PCA feature reduction was carried
out independently for the shape features, gray-level features
and image intensity features of the original image. A fourth
PCA was performed on all features of wavelet decomposed
images. For each analysis, the minimum number of principal
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FIGURE 3 | Reordered correlation matrix and obtained dendrogram of the

radiomic features obtained from the normalized MRI images. Green designates

strongly correlated features while red indicates an r2 close to zero.

components explaining 95% of variance in the data were
kept. The obtained features are finally concatenated, and the
predictiveness for survival prediction can be evaluated via
machine learning models.

3.4. Statistical Hypothesis Testing on
Single Features
Null hypothesis testing with false discovery rate correction on
the original dataset is not beneficial, as there are too many
correlated features. The subset selected by the VIF feature
selection (section 3.3), however, is much smaller and hypothesis
tests can now reveal if single features are actually predictive for
OS. Asmultiple radiomic features remained, a false discovery rate
correction still needs to be used. We relied on the Benjamini–
Hochberg procedure (Benjamini and Hochberg, 1995), that
controls the false discovery rate at a specific level α = 0.05.

3.5. Multivariate Prediction
The statistical hypothesis testing can only reveal if single features
are significantly predictive for OS. Nonlinear relationships
of single predictors to the target variable as well as feature
interactions cannot be detected. Different machine learning
models that are able to surpass this limitation are available,
ranging in complexity from basic linear regressors to complex
neural networks.

We evaluated different machine learning models: linear, lasso
and ridge regressors, k-nearest neighbors (kNN), random forests
regressors (RFR), support vector regressors (SVR), and support
vector classifiers (SVC). Furthermore, the Boruta (Kursa and
Rudnicki, 2010) feature selection algorithm in combination with

one random forest classifier (RFC) as estimator and one for
the final prediction was evaluated. The regression models were
directly fitted to the survival days, while the classifier can only
predict the classes. As classes, the three classes as proposed by
the BraTS challenge (long-survivors (OS >15 months), short-
survivors (OS <10 months), and mid-survivors (10 months <OS
<15 months) were used.

Different radiomic features are represented by absolute values
at very different scales. Furthermore, outliers of single features
may strongly influence the results. Consequently, the radiomic
features were first normalized: The feature median is subtracted,
and the features were scaled by the interquartile range, i.e., the
range between the 25th quantile and the 75th quantile.

The different machine learning models were first employed on
the complete feature set for the different resection status. The
same methods were then also tested on the VIF-based feature
subset as well as on the PCA reduced feature set, in order to
evaluate whether these models could improve robustness on
GTR patients.

All machine learning models were implemented with scikit-
learn v0.21.2 (Pedregosa et al., 2011) or scikit-learn-contrib using
default settings. Next to the methodology presented in this paper,
we further evaluated the linear regressor on the age only as
submitted during the BraTS challenge 2018, as well as a linear
regression on age and the features remaining significant after
Benjamini–Hochberg correction.

3.6. Evaluation of Previously Published
Methods
Previously reported relationships between radiomic signatures
and survival time were evaluated on the BraTS dataset. Gutman
et al. (2013) reported that the length of the lesion’s major axis
and the proportion of contrast-enhanced tumor were negatively
correlated with survival on the TCGA glioblastoma dataset.
It should be noted that this dataset is included in the BraTS
dataset with the resection status NA. It has also been shown that
volumetric features of enhancing tumor, non-enhancing tumor
core and necrosis, and edema normalized to brain volume are
associated with shorter survival time on different independent
datasets (Zhang et al., 2014; Macyszyn et al., 2015).

Kickingereder et al. (2016) proposed a supervised principal
component analysis of radiomic features for glioblastoma
patients. In this study, a set of MRI acquisitions also comprising
diffusion and susceptibility-weighted MR imaging was used.
Thus, compared to our analysis, the study relied on a different
set of radiomic features. Nevertheless, their statistical analysis
pipeline with z-score feature normalization and supervised
principal component analysis is directly applicable to the features
described in section 3.2.

4. RESULTS

First, the predictiveness of state-of-the art methods
and machine learning model using radiomic features
is evaluated for the different types of resection status in
sections 4.1 and 4.2.
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FIGURE 4 | Age-only regression for the different types of resection status on

BraTS 2019 training dataset. The obtained regression line is plotted together

with the 95% confidence interval. This model is used as baseline against

radiomics based approaches.

These sections show that a predictive radiomic signature can
be extracted for STR patients. For these patients, radiomics
based approaches to survival prediction outperform the age-
only approach that can be seen in Figure 4. However, on the
patients that underwent total resection of the tumor, the findings
are different: The established radiomic features as well as all
considered machine learning models fail to improve the survival
prediction. Regression on age-only, however, is significantly
correlated with shorter survival for GTR patients (Figure 4).

Then, as the results of different models show a high variability,
it is assessed in section 4.3 whether models based on a
selected subset of features can lead to more robust results for
GTR patients.

4.1. Repeatability of Previous Methods on
Dataset
As a first step, previously reported relationships between
radiomic signatures and survival time (section 3.6) were
evaluated on the BraTS dataset. For evaluation, the dataset was
first divided by the three different reported types of resection
status. The published radiomic signatures were evaluated on each
subset individually.

The two features proposed by Gutman et al. (2013) and
the volumetric features of ET and NEC normalized to brain
volume proposed by Zhang et al. (2014), Macyszyn et al. (2015)
can be seen in Figure 5. These findings can be reproduced on
the STR, and the same trends can also be seen on the NA
subset (Pearson’s r: p <0.05). Especially the ET volume and the
lesions’ major axis achieve a high significance (p ≈ 0.003) on the
STR subset. Of the reported features, the only non-significant
relationships are ED volume, that shows a negative, but non-
significant (p >0.05) correlation on both subsets, and the ET
tumor proportion, that shows a significant negative correlation
on the STR subset, but only a non-significant negative correlation
on the NA subset. However, on the subset with reported GTR, no
correlation can be identified for any feature.

Next, the statistical analysis pipeline for radiomic features of
glioblastoma patients proposed by Kickingereder et al. (2016)
was applied to the different resection status subsets. In the
original publication,MRI acquisitions that are not available in the
BraTS data (e.g., diffusion MRI) and slightly different radiomic
features were used. Nevertheless, the proposed z-score feature
normalization and supervised principal component analysis is
directly applicable to the present dataset, and can give a good
baseline model. Using the proposed model parameters, the
analysis was repeated on the radiomic features described in
section 3.2 in a leave-one-out cross-validation. The results are
compared to the age-only baseline approach for the different
resections status in Table 1. It can be seen that the proposed
supervised PCA approach achieves a higher accuracy and better
mean square error than the age-only approach. In contrast, even
as the age is included in the feature set, this approach fails on the
GTR subset.

4.2. Multivariate Prediction
All methods were cross-validated in a leave-one-out setting, e.g.,
100 samples were used to infer the 101th sample for the GTR
dataset. From the 101 obtained results, the major test statistics
as used in the BraTS challenge were computed: Accuracy (based
on the three different time intervals described in section 1),
mean squared error (MSE), median error, and Spearman rank
correlation. For classifiers, all metrics are computed with respect
to the class value (long-survivors: 824 days, mid-survivors: 379
days, short-survivors: 150 days). For the accuracy, we also
assessed the statistical significance of the result with a binomial
test and provide the p-value. All results can be seen in Table 2.

On the GTR subset, no model achieved better results than the
age-only baseline. However, on the STR subset, most models were
more predictive of survival than the age-only approach.

4.3. Feature Reduction Approaches
Several publications have shown the predictiveness of radiomics
for survival prediction on different datasets (see section 1). On
top, the re-implemented methods could reveal predictiveness of
radiomic features for survival on patients with subtotal resection.
However, these methods, as well as different machine learning
models presented in this paper and as well as the majority of
radiomic approaches submitted in the BraTS challenge 2018
failed on patients that underwent GTR. Thus, in this subsection,
we focus on the GTR patients.

Even as all presented models performed worse than the age-
only regressor, it can also be observed that the results of different
machine models achieve strongly varying results. This could
be due to the high number of radiomic features. Thus, it is
evaluated whether the two proposed feature reduction techniques
can produce more robust outcomes on the GTR dataset.

The presented unsupervised feature subset selection has two
subsequent steps: First, the correlation matrix clustering, which
suppresses pairwise correlated features, reduced the number of
radiomic features from 9,870 to 5,338. Then, the VIF-based
feature reduction, that checks also for multicollinearity, further
reduced the number of features to 94. Combined with the age,
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FIGURE 5 | Linear relationship between previously reported significant features and the different resection status.

TABLE 1 | Age-only linear regression compared to the supervised PCA (sPCA)

model for the different types of resection status.

Model Accuracy p (Binomial) MSE Median err. SpearmanR

GTR

Age-only 0.48 0.00 109966 159 0.47

sPCA 0.27 0.20 148421 208 −0.41

STR

Age-only 0.23 0.40 186772 194 −0.64

sPCA 0.46 0.21 148028 205 0.31

NA

Age-only 0.37 0.49 136866 196 0.29

sPCA 0.26 0.20 159227 231 −0.03

The metrics are explained in section 4.2.

95 features were obtained, which is slightly less than the number
of examples.

On this reduced feature set, hypothesis testing is feasible.
Without any correction for false positives, 5 of the 95 features
would have been considered significant (p <0.05). However, after
Benjamini–Hochberg correction, only the age of the patient
(p = 5.8 × 10−5) and one radiomic feature, the Wavelet LHH
ImageIntensity Kurtosis on the necrotic part in the T2 acquisition
remained significant. All statistically significant features can be
seen in Table 3.

Next, the unsupervised feature selection method based
on PCA is considered. After applying PCA as explained in
section 3.3, 15 principal components representing tumor shape
were kept, 38 for the image intensity statistics features, 55 for the
gray level features, and 98 for the wavelet features. The extracted
features were concatenated together with the age in order to be
used for multivariate prediction.

These features, as well as the features selected by the VIF-
analysis, were separately employed for survival prediction (see
Table 4). Consistent to 4.2, all features were normalized with
a robust scaler, subtracting the median and scaling by the by
the interquartile range, and the same machine learning models
were utilized.

5. DISCUSSION

Previous findings, especially those using volumetric features,
could be reproduced for patients with subtotal resection.
Furthermore, different considered machine learning models also
showed predictiveness of survival. Thus, even as the sample size
was limited, and different machine learning models show varying
results, radiomic features seem to be correlated to patient survival
for patients with subtotal resection.

However, when applying these methods to patients that
underwent GTR, no significant relationship between radiomic
features and overall survival could be identified. In effect, for
this subgroup, the considered previously published and newly
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TABLE 2 | Performance comparison of different machine learning models for the

different types of resection status.

Model Accuracy p (Binomial) MSE Median err. SpearmanR

GTR

Regression 0.43 0.04 1778965427 394 0.11

Lasso 0.44 0.03 3070271 272 0.24

Ridge 0.42 0.07 1765220107 394 0.11

kNN 0.29 0.40 159451 248 −0.04

RFR 0.36 0.46 154447 190 0.14

SVR 0.27 0.20 140088 189 −0.77

SVC 0.41 0.11 175014 229 0.12

Boruta+RFC 0.45 0.02 133497 229 0.36

STR

Regression 0.54 0.03 13748742 271 0.32

Lasso 0.46 0.20 415488 228 0.18

Ridge 0.54 0.03 13754344 272 0.32

kNN 0.50 0.09 173798 211 0.21

RFR 0.58 0.01 144744 125 0.43

SVR 0.23 0.40 175720 157 −0.65

SVC 0.31 0.99 221768 229 −0.43

Boruta+RFC 0.50 0.09 92744 229 0.45

NA

Regression 0.32 0.91 1434873 412 −0.02

Lasso 0.39 0.25 533963 282 0.11

Ridge 0.32 0.91 1435941 412 −0.02

kNN 0.25 0.13 166072 254 −0.18

RFR 0.33 1.00 146459 247 0.20

SVR 0.25 0.13 155827 225 −0.78

SVC 0.40 0.16 169944 229 0.00

Boruta+RF 0.30 0.56 162734 229 −0.13

All features as described in section 3.5 including the age were used as input. For the

age-only approach as comparison, see Table 1.

TABLE 3 | Correlation analysis of VIF—selected features with OS for GTR patients.

Feature Correlation with OS p-value

Age −0.46 0.000001

Wavelet LHH ImageIntensity Kurtosis T2 NEC 0.39 0.00002

Wavelet LLL ngtdm Complexity T2 ET 0.22 0.03

Wavelet LHL ImageIntensity Kurtosis T1CE nec 0.22 0.03

Wavelet LLL ImageIntensity Minimum T1 ET −0.20 0.05

developed radiomic models could not identify any connection
between image based features and survival that went beyond
the predictiveness of patient age. In previously published
findings, the resection status is often not known or not clearly
stated (Gutman et al., 2013; Macyszyn et al., 2015; Kickingereder
et al., 2016; Lao et al., 2017; Li et al., 2017), or radiomic features
are not assessed dependent on resection status (Zhang et al.,
2014; Nie et al., 2019). Patient age, a clinical marker that is not
strongly predictive of survival for patient without total tumor
resection (cf. Figure 4) seems to be the strongest predictor of
patient survival after GTR. One single feature, the Wavelet LHH

TABLE 4 | Performance comparison of different feature selection methods and

machine learning models for GTR patients.

Model Accuracy p (Binomial) MSE Median err. SpearmanR

VIF-BASED FEATURE SUBSET

Regression 0.47 0.01 28154236838 1,112 0.18

Regr. BH 0.46 0.07 109618 148 0.46

Lasso 0.36 0.60 2293591760 557 0.05

Ridge 0.33 1.0 16655918658 672 −0.02

kNN 0.30 0.53 159553 223 −0.08

RFR 0.35 0.75 149299 207 0.15

SVR 0.27 0.20 140181 189 −0.77

SVC 0.40 0.17 194331 445 0.06

FEATURES EXTRACTED by PCA

Regression 0.39 0.17 672193 478 0.03

Lasso 0.36 0.59 688037 559 0.04

Ridge 0.38 0.25 558488 457 0.02

kNN 0.34 0.92 149014 194 0.07

RFR 0.34 0.92 163826 218 0.02

SVR 0.27 0.20 140298 189 −0.79

SVC 0.40 0.17 198655 445 0.05

Regr. BH, Regression on all features that were significant after Benjamini–Hochberg

multiple test correction.

ImageIntensity Kurtosis T2 NEC, was statistically significant
after Benjamini–Hochberg correction. However, after leveraging
this finding in a predictive regression model, no clear benefit
could be observed. Why radiomic features were not predictive
on GTR patients remains unclear. It can only be hypothesized
that survival for STR patients depends on the malignancy of
the primary subtotally resected tumor, while survival for GTR
patients relates to possible metastases that are not directly
dependent on image features of the original tumor.

It can nevertheless be concluded that OS of brain tumor
patients given radiomic images is strongly dependent not only
on the preoperative images themselves. Given a high number
of features and strong influences that cannot be assessed with
preoperative MRI images, survival prediction is an ill-posed
problem on a limited dataset. Researchers need to pay attention
to the problems that arise when using radiomics or other big data
methods on wide data, i.e., datasets with much more features
than observations. Specifically, challenge participants and other
researchers in clinical data analysis need to be fully aware of
overfitting pitfalls, not only on the training set, but even on the
validation dataset.

In radiomics, a very high number of features are extracted.
In our case, a total of 9,871 features were initially considered.
Combined with a limited dataset, as is often the case for medical
applications, problems arise due to the curse of dimensionality.
One problem encountered is the robustness of significance:
The features that are significant on the whole dataset are not
necessarily significant on the training subset, and vice versa,
features identified as significant on a small dataset do not need
to be significant on larger datasets. Although it is impossible to
test all possible combinations of different radiomic features and
machine learning models, we think that our evaluation shows the
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limitations of radiomic analysis on glioblastoma patients with
GTR. To be as robust as possible against such subset biases, we
used extensive cross-validation and determined an orthogonal
subset of features.

Next to the difficulties encountered when applying radiomics
to patients that underwent GTR, we believe one main limitation
in the BraTS challenge 2018 was the small training dataset in
combination with overfitted approaches. In the BraTS setting,
a predefined validation set was released by the organizers,
and could be used by all contributors to evaluate their
algorithms during development. Thus, if contributors test
different algorithms or hyperparameter settings on this left-
out validation set, it has to be taken into account that one
may accidentally overfit on this validation set. Such “result-
peeking” invalidates accuracy scores on this left-out dataset,
i.e. the developed approaches may generalize poorly to other
samples. In fact, it seemed that this actually happened during
the BraTS challenge. As can be seen on the official BraTS
challenge online leaderboard (Bakas et al., 2018a), a total of nine
different teams obtained accuracy scores at least as good as ours
on the validation dataset. However, on the test set, our naïve
algorithm scored the 3rd place out of 26 participants. On this
dataset, segmentation and OS results could not be evaluated by
participants, making this part of the data impossible to overfit.
In contrast to private datasets, algorithm developers cannot—be
it deliberately or accidentally—invalidate the obtained results by
result-peeking in such a setting.

Thus, challenges such as the BraTS challenge are important for
unbiased algorithm comparison and to assess whether findings
from research are robust and can be applied to translational
medicine. Here, it was assessed whether findings in radiomics
of glioblastoma patients can be transferred to patients that
underwent GTR. In this case, classical radiomic features seem not
to be suited for robust results in survival prediction. In contrast,
positive findings, with previously reported approaches as well as
with different machine learning techniques can be reported for
patients with subtotal resection.

Nevertheless, the approaches presented in this paper are not
exhaustive. We do not want to present the new “best” survival
prediction algorithm. Default parameter settings were utilized for
all machine learning techniques, as exhaustive hyperparameter
tuning—as employed by most winning approaches in machine
learning challenges—on a small dataset would invalidate the
results. The approaches presented in this manuscript, especially
those relying on orthogonal feature subset selection, were utilized
to analyze the robustness of radiomic features. They may not
be the “best” algorithms for survival prediction. Thus, C-index,
hazard ratio, or KM analysis were not regarded, as the focus of
this analysis lies on robustness of radiomic features, and not on a
single survival prediction algorithm.

6. CONCLUSION

The BraTS survival prediction challenge focuses on glioblastoma
patients that underwent GTR. This paper shows that adding

information from radiomic features to the age of the patient
does not necessarily improve accuracy for this task. To show
this, we evaluated different published techniques as well as a
sophisticated radiomic feature extraction combined with modern
machine learning techniques. However, no helpful information
could be extracted, and our baseline—a linear regression on the
age of the patient—could not be consistently outperformed on
this limited dataset. In contrast, on patients with a different
resection status—either where the resection status was not
available or the tumor was subtotally resected—previously
published findings could be reproduced, and different machine
learning techniques could extract information predictive for
overall survival.

In order to move from fundamental research to translational
medicine, future research in brain tumor radiomics should
focus on finding novel radiomic features that are applicable
if the patient undergoes surgery. A possible set of features
that was not assessed in this study are location based features.
Location based features are not as established as shape
or texture features in radiomics. However, they could be
more promising for survival prediction even for patients that
underwent GTR, as the position of the tumor in the brain could
influence prognosis.
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