
ORIGINAL RESEARCH
published: 13 November 2019

doi: 10.3389/fncom.2019.00078

Frontiers in Computational Neuroscience | www.frontiersin.org 1 November 2019 | Volume 13 | Article 78

Edited by:

Mayank R. Mehta,

University of California, Los Angeles,

United States

Reviewed by:

John E. Lewis,

University of Ottawa, Canada

Cees van Leeuwen,

KU Leuven, Belgium

*Correspondence:

Chiara Gastaldi

chiara.gastaldi@epfl.ch

Received: 10 April 2019

Accepted: 21 October 2019

Published: 13 November 2019

Citation:

Gastaldi C, Muscinelli S and

Gerstner W (2019) Optimal

Stimulation Protocol in a Bistable

Synaptic Consolidation Model.

Front. Comput. Neurosci. 13:78.

doi: 10.3389/fncom.2019.00078

Optimal Stimulation Protocol in a
Bistable Synaptic Consolidation
Model
Chiara Gastaldi*, Samuel Muscinelli and Wulfram Gerstner

School of Computer and Communication Sciences and School of Life Sciences, École Polytechnique Fédérale de Lausanne,

Lausanne, Switzerland

Synaptic changes induced by neural activity need to be consolidated to maintain memory

over a timescale of hours. In experiments, synaptic consolidation can be induced by

repeating a stimulation protocol several times and the effectiveness of consolidation

depends crucially on the repetition frequency of the stimulations. We address the

question: is there an understandable reason why induction protocols with repetitions

at some frequency work better than sustained protocols—even though the accumulated

stimulation strength might be exactly the same in both cases? In real synapses, plasticity

occurs on multiple time scales from seconds (induction), to several minutes (early phase

of long-term potentiation) to hours and days (late phase of synaptic consolidation). We

use a simplified mathematical model of just two times scales to elucidate the above

question in a purified setting. Our mathematical results show that, even in such a simple

model, the repetition frequency of stimulation plays an important role for the successful

induction, and stabilization, of potentiation.

Keywords: synaptic consolidation, plasticity, LTP, stimulation frequency, bistability

1. INTRODUCTION

Synaptic plasticity, i.e., the modification of the synaptic efficacies due to neural activity, is
considered the neural correlate of learning (Hebb, 1949; Martin et al., 2000; Caroni et al.,
2012; Nabavi et al., 2014; Hayashi-Takagi et al., 2015; Holtmaat and Caroni, 2016). It involves
several biochemical mechanisms which interact on multiple timescales. The induction protocols
for short-term plasticity (STP, on the order of hundreds of milliseconds) (Turrigiano et al.,
1996; Markram et al., 1998) and for the early phase of long-term potentiation or depression
(LTP or LTD, on the order of minutes to hours) (Levy and Stewart, 1983; Brown et al., 1989;
Artola et al., 1990; Bliss and Collingridge, 1993; Markram et al., 1997; Sjöström et al., 2001)
are well-established and have led to numerous models (Bienenstock et al., 1982; Gerstner et al.,
1996; Song et al., 2000; Van Rossum et al., 2000; Senn et al., 2001; Shouval et al., 2002; Rubin
et al., 2005; Pfister and Gerstner, 2006; Brader et al., 2007; Graupner and Brunel, 2007; Clopath
et al., 2010; Gjorgjieva et al., 2011; Nicolas and Gerstner, 2016). On the other hand, various
experiments have shown that the further evolution of synaptic efficacies on the timescale of
hours depends in a complex way on the stimulation protocol (Frey and Morris, 1997; Dudai and
Morris, 2000; Nader et al., 2000; Redondo and Morris, 2011). This phenomenon is called synaptic
consolidation, to be distinguished from memory consolidation, which is believed to take place
through the interaction between hippocampus and cortex and which occurs on an even longer
timescale (Hasselmo, 1999; Roelfsema, 2006; Brandon et al., 2011). Such a richness of plasticity
mechanisms across multiple timescales has been hypothesized to be fundamental in explaining
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the large storage capacity of memory networks (Fusi et al., 2005;
Benna and Fusi, 2016).

Synaptic consolidation is often studied in hippocampal or
cortical slices, in which it is induced by extra-cellular stimulation
of afferent fibers with short current pulses (Frey and Morris,
1997; Sajikumar and Frey, 2004a,b). Experimental protocols
are typically organized in multiple repetitions of stimulation
episodes, with variable repetition frequency and duration of
each episode (Figure 1A). The dependence of the consolidation
dynamics on the parameters of the experimental protocol is
complex and has remained elusive. Both the intra-episode pulse
frequency and the inter-episode delay play an important role in
determining whether a synapse gets potentiated or not after the
stimulation (Kumar and Mehta, 2011; Larson and Munkácsy,
2015). Furthermore, recent evidence suggests the existence of
optimal parameters to achieve consolidation (Kumar and Mehta,
2011; Larson andMunkácsy, 2015). Existing models succeeded in
reproducing experimental results on early and late LTP (Clopath
et al., 2008; Barrett et al., 2009; Ziegler et al., 2015; Kastner

FIGURE 1 | Schematic experimental setup and modeling framework. (A) Schematic of extra-cellular stimulation in experiments. The plasticity-inducing stimulus

consists of several episodes of duration ton with inter-episode interval toff. Zoom: Each episode contains several high-frequency pulses. (B) Schematic of

single-synapse consolidation model. The synapse is described by a weight variable w with time constant τw and a slower consolidation variable z with time constant

τz ≥ τw. Each episode corresponds to a rectangular plasticity-inducing stimulus I(t). (C) Phase-plane for a specific choice of f (w, z) and g(w, z), I(t) = 0, and τz = 7τw.

The fixed points in (w, z) = (−1,−1) and (w, z) = (1, 1) are stable and correspond to an unpotentiated and potentiated synapse, respectively. The black line separates

the basins of attraction of the two stable fixed points. (D) Evolution of the system dynamics in the phase-plane. The system is initialized in the unpotentiated state and

it evolves under the effect of a plasticity-inducing stimulus made of three pulses.

et al., 2016), by a mathematical description of the interaction of
different synaptic mechanisms. However, the complexity of those
models prevents a complete characterization of the dynamics,
that links stimulation protocols to synaptic consolidation. Here
we address the following question: why is the temporal structure
of stimulation, i.e., the timing of repetitions, so important for
synaptic consolidation? (Zhou et al., 2003; Kramár et al., 2012;
Benna and Fusi, 2016).

We introduce a phenomenological model of synaptic
consolidation (Figures 1B–D) in which, as suggested by
experiments (Petersen et al., 1998; O’Connor et al., 2005; Bosch
et al., 2014), both model variables are bistable. We find that,
despite the simplicity of our model, potentiation of a synapse
depends in a complex way on the temporal profile of the
stimulation protocol. Our results suggest that not just the total
number of stimulation pulses, but also the precise timing within
an episode and across repetitions of episodes are important, in
agreement with anecdotal evidence that changes in protocols can
have unexpected consequences.
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2. METHODS

In what follows, we introduce the synaptic consolidation model
that we analyze in the Results section. Since describing the
details of molecular interactions inside a synapse as a system
of differential equations (Bhalla and Iyengar., 1999; Lisman
and Zhabotinsky, 2001) would be far too complicated for our
purpose, we aim to capture the essential dynamics responsible
for synaptic consolidation with an effective low-dimensional
dynamical system. In this view, variables are mathematical
abstractions that represent the global state of a network of
biochemical molecules inside a synapse, e.g., during a transition
from onemetastable configuration to another (Bosch et al., 2014).

2.1. Choice of the Model
A one-dimensional dynamical system is not expressive enough
to capture experimental data. Indeed, in a one-dimensional
differential equation, it would be sufficient to know the
instantaneous state of a single variable of the synapse (such as
the weight) to predict its evolution, while this is not the case
in experiments. As a natural step toward more complexity, we
consider a general autonomous two-dimensional model

dw

dt
= f (w, z)

dz

dt
= g(w, z),

(1)

where w represents the measured efficacy of a synaptic contact
point (e.g., the amplitude of the EPSP caused by pre-synaptic
spike arrival), while z is an abstract auxiliary variable. For
simplicity, both variables will be considered unit-less. We choose
the functions f and g, such that

τw
dw

dt
= −Kw(w− w0)(w+ w0)w+ Cw

(

z −
z0

w0
w

)

+ I

τz
dz

dt
= −Kz(z − z0)(z + z0)z + Cz

(

w−
w0

z0
z

)

,

(2)

where (w, z) = ±(w0, z0) are the stable fixed points of the two-
dimensional system in the presence of a fixed coupling Cw ≥ 0,
Cz ≥ 0 and in the absence of a drive, i.e., I = 0. In our
simulations, we always choose w0 = z0 = 1. For Kw 6= 0 and
Kz 6= 0, we could divide Equation (2) by Kw and Kz to further
reduce the numbers of parameters. However, we will stick to a
notation with explicit Kw and Kz since we do not want to exclude
the choice Kw = 0 or Kz = 0. Without loss of generality, we will
chooseKw,z ∈ {0, 1}, i.e., either zero or unity. Note that the choice

Kz = 0 implies that the dynamics of the auxiliary variable z are

linear, while Kz = 1 implies full non-linearity. The choice of the

model is explained in the next section.

2.2. Simplification Steps of the
2D-Dynamics
In this section we present the arguments leading from Equation

(1) to (2). Readers not interested in the details may jump to
the next sections. One way to tackle the very general system in

Equation (1) is to perform a Taylor expansion around w = 0 for
the first equation

dw

dt
= A(z)+ B(z) · w+ C(z) · w2 + D(z) · w3 + . . . (3)

and around z = 0 for the second one

dz

dt
= A′(w)+ B′(w) · z + C′(w) · z2 + D′(w) · z3 . . . . (4)

An expansion up to the third order enables us to implement the
bistable dynamics (Petersen et al., 1998; O’Connor et al., 2005)
of single contact points. Bistability requires the system to have
at least two stable fixed points at finite value. This condition
cannot be met by degree 1 or degree 2 polynomials since they
can have at most one stable fixed point. Therefore, bistability
requires a polynomial of degree 3 or higher in at least one
equation. To be more general, we will consider a system in which
both polynomials are of degree 3. We restrict our analysis to
the situation in which we have linear coupling between the two
variables, of the form A(z) = A0 + A1 · z, B(z) = B, C(z) = C,
and D(z) = D. Analogously, in the second equation we set
A′(w) = A′

0 + A′
1 · w, B

′(w) = B′, C′(w) = C′, and D′(w) = D′.
Bistability is be obtained with a negative coefficient of the

third power in both equations. Before we start the analysis, we
rewrite Equations (3) and (4) in a more symmetric form. To
do so we proceed in three steps. (i) Assuming that the degree
3 polynomial has three real roots, we rewrite our system in the
more intuitive form

τw
dw

dt
= −K1(w− w1)(w− w2)(w− w3)+ C1z

τz
dz

dt
= −K2(z − z1)(z − z2)(z − z3)+ C2w,

(5)

where C1 and C2 are coupling constants and the roots w1, w2, w3

correspond to the fixed points of the equations in the uncoupled
case (C1 = C2 = 0). The parameters τw and τz can be interpreted
as time constants since they do not influence the location of the
fixed points but only the speed of the dynamics. K1 and K2 are
two positive constants that scale the whole polynomial, while C1

and C2 are positive constants that control the amount of coupling
between the two variables. If we exclude the coupling terms,
each equation corresponds to an over-damped particle moving
in a double-well potential (Strogatz, 2014). The parameters K1,
K2, τw, τz , C1, C2, w1, w2, w3 are simple transformations of the
parameters A0, A1, B, C, D, A

′
0, A

′
1, B

′, C′, D′ of the original
system. For example K1 = D. (ii) In order to further simplify our
study, we assume that in both equations one of the three roots is
zero, one is positive and one negative, equally distant from zero.
Following (Zenke et al., 2015), we add a plasticity induction term
to the first equation that describes the drive provided by an LTP
induction protocol. The equations now read

τw
dw

dt
= −K1(w− w̄)(w+ w̄)w+ C1z + I

τz
dz

dt
= −K2(z − z̄)(z + z̄)z + C2w.

(6)
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In the absence of coupling, the double well potential related to
Equation (6) has minima in w = ±w̄, z = ±z̄ and a local
maximum in w = 0 (z = 0). Notice that this seems to imply
that a synaptic weight can take both positive and negative values,
which is biologically implausible. However, this choice simplifies
the calculations without loss of generality, since it is always
possible to go back to a system with positive weights by applying
a coordinate translation.

(iii) In the absence of a drive (I = 0), the system has eight free
parameters, which all influence the location of the fixed points.
In a final transformation step we rewrite Equation (6) such that
the location of two stable fixed points becomes independent of
the coupling constants C1 and C2. The reason for doing this
is that the stable fixed points of the system are easier to access
experimentally than other constants. In particular, the value of w
at the stable fixed point should be related to the synaptic weight
measured experimentally. We, therefore, rewrite the system in
the form of Equation (2), where w0 and z0 are the absolute values
of the stable fixed point and the parameters can be mapped from
Equation (6) to (2), for example, Kw = K1 and Cw = (K1w̄

2 −

K1w
2
0)w0/z0 and analogously for Cz and Kz .

2.3. Nullclines and Phase-Plane Analysis
Since the system is two-dimensional, it can be studied using
phase-plane analysis, following a well-established tradition
in computational neuroscience (Wilson and Cowan, 1972;
Ermentrout, 1996, 2002; Rinzel and Ermentrout, 1998). The
fixed points of the system are graphically represented by the
intersections of the nullclines (i.e., the curves defined by either
dw
dt

= 0 or dz
dt

= 0), which in our system are:

w− nullcline: z =
z0

w0
w+

Kw

Cw
(w− w0)(w+ w0)w−

I

Cw

z − nullcline: w =
w0

z0
z +

Kz

Cz
(z − z0)(z + z0)z.

(7)

The maximum number of fixed points for the system in Equation
(2) can be easily computed. To do so, consider a more general
form of two nullclines:

w− nullcline: z = Pn(w)

z − nullcline: w = Qm(z),
(8)

where Pn(z) is a polynomial of degree n in w and, analogously,
Qm(w) is a polynomial of degree m in z (cf. Equation 7). To find
the fixed points of the system (Equation 8) we need to solve:

w = Qm(Pn(w)). (9)

Equation (9) is a polynomial equation of degree n · m in w and
therefore it allows a number of real solutions s, 0 ≤ s ≤ n · m.
Applying this formula to our case, we find that we can have a
maximum of nine fixed points.

In order to reduce the number of parameters from 8 to 4, we
first consider the symmetric case (section 2.4) in which the two
equations have the same parameters. Moreover, since we make
the choice z0 = w0 = 1, the actual number of free parameters

is three. In the next section, we show the effect of changing the
coupling coefficients. Then, we briefly comment on the effect of
the time constants and of a constant plasticity-inducing stimulus
I. We will move to the analysis of the asymmetric cases in
section 2.5.

2.4. Symmetric Changes of Coupling
Coefficients Reveal Two Bifurcations
We study the case of symmetric coupling Cw = Cz =

C and analyze how a change of coupling strength influences
the dynamics of the system. As an aside, we note that
for symmetric coupling we can define a pseudopotential
(Cohen and Grossberg, 1983)

V(w, z) =
Kw

4
w4 +

Kz

4
z4 −

1

2w0

(

Kww
3
0 − z0C

)

w2

−
1

2z0

(

Kzz
3
0 − w0C

)

z2 − Cwz + I (10)

in which the dynamical variables move according to τw
dw
dt

=

− ∂V
∂w and τz

dz
dt

= − ∂V
∂z .

We fix τw = τz , Kw = Kz = 1, I = 0, w0 = z0 = 1 and vary C
in Equation (2). In the case C = 1, the system is in a rather simple
regime: there are two stable fixed points in (w, z) = (−1,−1) and
(w, z) = (1, 1) and a saddle fixed point at the origin (Figure 2).
The basins of attraction of the stable fixed points are separated by
the z = −w diagonal.

If we decrease the coupling C, we encounter two bifurcations.
A first pitchfork bifurcation takes place at C = 1/2, when the two
nullclines are tangent to each other in the saddle point. Beyond
the bifurcation point of the coupling coefficient, we observe the
creation of two additional saddle points (Figure 2B). The stability
properties, the location and the basins of attraction of the other
two fixed points remain unchanged, but the local field strength
changes, as shown by the colored arrows. The second pitchfork
bifurcation takes place at C = 1/3. For this coupling value,
each of the two new saddle points splits into a stable fixed point
and two further saddle points. Therefore, for very weak coupling
we observe four basins of attractions, whose shape is shown in
Figure 2C. The stability of the fixed points in (w, z) = (−1,−1)
and (w, z) = (1, 1) is not affected by the bifurcations.

On the other hand, if we increase the coupling coefficient to a
value C > 1, then the two nullclines will progressively flatten, but
the location of the three fixed points is unchanged with respect
to the case C = 1. These observations have been summarized
in the bifurcation diagram of Figure 3A. We observe that there
are actually three pitchfork bifurcations, but that two of them are
degenerate since they happen for the same value of C.

2.5. Asymmetric Parameter Choices Shape
the Basins of Attraction
As a more general case, we consider asymmetric coupling C
or timescale τ . When the coupling coefficients are asymmetric,
we can plot the position of the bifurcation points in the Cw—
Cz plane (Figure 3B). The choice Cw = Cz of the previous
section corresponds to the dashed gray line. We notice that in the
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FIGURE 2 | Phase-plane diagram and basins of attractions for the symmetric case with equal coupling constants, Cw = Cz = C. The plasticity-inducing stimulus is

null, I = 0. (A) C = 1, phase-plane with field arrows. The color of the arrows is proportional to the field strength. w− and z− nullclines are indicated in red and blue,

respectively. The line that separates the two basins of attraction is indicated in black. (B) Same as (A), but C = 0.4. Compared to (A), we notice the creation of two

saddle points. (C) Same as (A), but C = 0.2. The maximum number of fixed points is achieved. In this case we have four basins of attraction.

FIGURE 3 | Bifurcations diagrams. (A) Fixed points in the symmetric case. Dashed lines indicate unstable fixed points while continuous lines indicate stable fixed

points. Orange and green dots indicate bifurcation points. (B) Bifurcation points in the Cw – Cz plane (black) for the general (asymmetric) case. The dashed gray line

corresponds to Cw = Cz. The orange and green dots indicate the corresponding bifurcations in (A). Note that, in (B), the bifurcation at Cw = Cz =
1
3 (green dot) is a

degenerate point.

asymmetric case it is possible to have three distinct bifurcations
(for example, we can fix Cw = 0.3 and decrease Cz , from 1
to 0). We find that, for Cw + Cz > 1, the number of fixed
points is always three and no bifurcation is possible. On the
other hand, if Cw + Cz < 1, the system enters in the regime
with minimum five fixed points. Moreover, we can analytically
compute the bifurcation value of one coupling constant, given
the other. An asymmetric choice Cw 6= Cz influences the shape
of the basins of attraction (Figure 4A).

If we keep Cw = Cz but consider instead τz > τw, the system
in Equation (2) may be interpreted as two different molecular
mechanisms that act on different timescales. For example, the
variable z can be interpreted as a tagging mechanism or a

consolidation variable whilew is the weight variable or amplitude
of a post-synaptic potential. A comparison of Figure 2A and
Figure 4B shows that the changes in τ do not affect the nullclines
but change the flow field and the basin of attraction.

Another way by which we can introduce asymmetry in the
system is by adding a plasticity-inducing stimulus I. It follows
from Equation (7) that a value I > 0 will cause a down shift of
the w−nullcline. The case of Cw = Cz = 1, τw = τz = 1 s,
Kw = Kz = 1 and I > 0 is shown in Figure 4C. A plasticity-
inducing stimulus I > 0 also implies a reduction of the basin of
attraction of the lower stable fixed point in favor of an increase
of the basin of attraction of the upper stable fixed point. For
high values of I, the basin of attraction of the lower fixed point
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FIGURE 4 | Asymmetric parameter choices. (A) In the case Cw = 3 > Cz = 1, the curvature of the w−nullcline (red) is smaller than that of the z−nullcline (blue) and the

basins of attraction are deformed compared to Figure 2A. (τz = τw = 1) (B) For τz/τw = 3 and Cw = Cz = 1, nullclines are not affected (compare to Figure 2A) but

the basins of attraction are. (C) For I = 0.5 (all other parameters set to 1), the basin of attraction of the fixed point at (−1,−1) is smaller than of the fixed point at (1, 1).

disappears via a steady state bifurcation. Therefore, when I > 0
is large enough, the system is forced to move to the upper fixed
point that can be interpreted as a potentiated state of the synapse.
Analogously, when I < 0, the attraction basin of the lower fixed
point is enlarged and leads, eventually, to a bifurcation in which
the upper fixed point and the saddle point are lost.

A possible generalization of the model would be to consider
the coupling coefficients Cw and Cz as dynamical variables, as
it has been explored in previous work (Ziegler et al., 2015). In
these models, the coupling parameters Cw and Cz of the two
dynamical variables alternates between Cw = 0 and Cz = 1
or Cw = 1 and Cz = 0, implementing a write-protection
mechanism. The price we pay is the introduction of additional
differential equations and parameters for the dynamics of the
coupling coefficients. In the specific implementation of Ziegler
et al. (2015), the dynamical coupling is controlled by a low-pass
filter of the plasticity-inducing stimulus I and the concentration
of neuromodulators on plasticity.

2.6. Numerical Simulations
All figures were obtained using Python 2.7, except for the
bifurcation plot in Figure 3, which was created with Wolfram
Mathematica. In the phase-plane plots, the separatrix between
the basins of attraction was obtained doing a mesh-grid search:
we initialized the dynamical system (Equation 2) in each point
of a 100 × 100 grid in the w, z space (w, z ∈ [−1.5, 1.5]) and
checked to which stable fixed point it converges. Therefore we
interpolated the separation line. The trajectory of the system in
the phase-plane was obtained by solving the system in Equation
(2) using the Runge-Kutta 4 method with integration step dt =
0.01. In Figures 6, 7, we inject an external stimulus into the
dynamical equations. The system trajectory is always initialized
in the depotentiated state (−1,−1) and the simulation is stopped
when the trajectory enters into the basin of attraction of the
potentiated state (1, 1). The position of the stable fixed points

depends on the choice w0 = z0 = 1, which we made for
simplicity. In fact, we can remap the values of the synaptic weight
w the desired (positive range) with an affine transformation,
without loss of generality.

3. RESULTS

The two-dimensional model, introduced Methods section,
predicts a complex dependence of the synaptic consolidation
dynamics upon the parameters of the experimental protocol. This
complex dependence has similarities with the behavior observed
in experiments (Sajikumar et al., 2005; Larson and Munkácsy,
2015; cf. Figure 1). First, we describe how we abstract the
experimental protocol into a time-dependent plasticity-inducing
stimulus I(t). Then, we show the response of our model to
different stimulation protocols. In our model, the plasticity-
inducing stimulus I(t) drives the synaptic weight w via a non-
linear equation characterized by a time constant τw. The weight
w is coupled to a second variable z with time constant τz
(Equation 2). The variable z is an abstract description of the
complex metastable states (potentiated or unpotentiated) caused
by consolidation (Redondo and Morris, 2011; Bosch et al.,
2014). After an analysis of a single rectangular stimulation (one
episode), in section 3.2, we will move to the more realistic case of
repetitive stimulation across multiple episodes. Throughout the
results section, we will focus on synaptic potentiation. Since the
self-interaction term in Equation (2) is symmetric with respect
to w = z = 0, synaptic depression of a potentiated state is the
mirror image of synaptic potentiation of a unpotentiated state.

3.1. Abstraction of the Stimulation Protocol
In their seminal work, Bliss and Lømo (1973) showed that
repeated high-frequency stimulation of afferent fibers can lead
to long-lasting synaptic potentiation. In later work it was shown
that low-frequency stimulation can lead to long-lasting synaptic
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depression (Bashir and Collingridge, 1994). In order to keep
the analysis transparent, we use a time-dependent, real-valued
quantity I(t) as an abstraction for such experimental protocols.
In what follows, we will refer to I(t) as to the plasticity-inducing
stimulus. Note that, we do not perform an explicit mapping from
the electrical current used in LTP experiments for the stimulation
of pre-synaptic fibers onto the plasticity-inducing stimulus I(t)
that influences the dynamics of Equation (2). A precise mapping
would require additional assumptions on (i) how extra-cellular
stimulation triggers axonal spikes in multiple fibers, (ii) how pre-
synaptic spike arrivals cause post-synaptic firing and (iii) how
pre- and post-synaptic neural activity leads, potentially via a
Hebbian model, to the induction of early-LTP. This means that,
in principle, the model’s dynamics is rich enough to reproduce
the four classical synaptic-consolidation experiments (Frey and
Morris, 1997; Nader et al., 2000), however, we would need to set
at least four free parameters, corresponding to the amplitudes of
the external input I, needed for strong and weak LTP and LTD.
Instead, we model a set of extra-cellular high-frequency pulses
as a single rectangular plasticity-inducing stimulus of positive
amplitude (Figure 1B). The larger the stimulation frequency, the
larger the amplitude of I(t). Analogously, a set of extra-cellular
current pulses at low frequency is modeled as a single negative
rectangular plasticity-inducing stimulus. The compression of
multiple extra-cellular pulses into a single rectangular episode
I(t) is justifiable since the time between single pulses, even in
the case of low-frequency stimulation, is very short compared
to the timescale of plasticity. This implies that multiple short
pulses in experiments can be well approximated by a single
episode, described by one prolonged rectangular stimulus in
our model (Figures 1A,B). In agreement with well-established
plasticity models (Bienenstock et al., 1982; Senn et al., 2001;
Pfister and Gerstner, 2006; Clopath et al., 2010; Gjorgjieva et al.,
2011), we use I > 0 to describe a high-frequency stimulation
since a positive I leads to potentiation (see section Methods
and Figure 4C). Conversely, a negative I favors depotentiation.
On the other hand, experiments that involve global variables,
such as cross-tagging (Sajikumar and Frey, 2004a,b), can not be
explained by our model.

3.2. One Episode
We consider the case in which our two-variable synapse
model is stimulated with a single rectangular plasticity-inducing
stimulus I(t) of variable amplitude and duration ton (Figure 5A).
Experimentally, this would correspond to single-episode, high-
frequency protocols of variable stimulation intensity (i.e., pulse
frequency) and duration. For each choice of duration and
amplitude, we initialize the system in the unpotentiated state,
defined by the initial value (w, z) = (−1,−1) and we numerically
integrate the system dynamics until convergence. We then
measure the final state of the synapse, i.e., whether it converged
to the potentiated or returned to the unpotentiated state. In
Figure 5, we plot the curve that separates the region of the
parameter space that yields potentiation (shaded area) from
the one that does not. Different curves correspond to different
time constants τw and τz of the synaptic variables w and z in
Equation (2).

Figure 5C illustrates a rather intuitive result, i.e., if the
amplitude of the plasticity-inducing stimulus is increased, the
duration needed for potentiation decreases. Moreover, if the
amplitude is too small, we cannot achieve potentiation, even for
an infinite pulse duration. The limit of infinite pulse duration is in
the following called the “DC” limit. The effect of DC-stimulation
can be easily understood from a phase-plane analysis (Figure 4).
Indeed, the introduction of a constant term I > 0 in the w
equation (DC term), yields a shift in the w-nullcline vertically
downward. However, if the term is too small to cause the loss of
the low fixed point, potentiation cannot be achieved (Figure 4C).

The separation curves in Figure 5C indicate that the minimal
duration of an episode necessary for potentiation decreases as
the intensity of the plasticity-inducing stimulus increases. We
wondered whether the relevant parameter for potentiation is
the area under the rectangular plasticity-inducing stimulus. To
study this, we performed a similar analysis, with the amplitude
of the plasticity-inducing stimulus and its area as independent
variables. For each choice of area and amplitude, the duration of
the episode is given by ton = area/amplitude (see Figure 5B).
The results are shown in Figure 5D. If there were a regime
in which the relevant parameter is the area of the pulse, then
the curve separating parameters of successful from unsuccessful
potentiation would be horizontal. However, we find a near-
horizontal curve only for τz = τw, limited to the high-
amplitude region. For τz > τw we find the existence of an
optimal value of the amplitude that yields potentiation with the
minimal area. If we increase the amplitude beyond this optimal
value, the necessary area under the stimulus curve I(t) starts to
increase again.

In order to understand this effect, we look again at the phase-
plane, in particular at the dependence of the separatrix on the
timescale separation. In the limit in which the amplitude goes to
infinity and the duration goes to 0 while the area of the whole
plasticity-inducing stimulus stays the same, the stimulus can be
described by a Dirac-δ function. In Figure 5D, we can see that,
if τz ≫ τw, the separatrix tends to an horizontal line for w ≫ 1.
Since a δ-pulse input is equivalent to an instantaneous horizontal
displacement of the momentary system state in the phase-plane,
a single δ-pulse cannot bring the system across the separatrix.
The δ-pulse stimulation is, of course, a mathematical abstraction.
In a real experimental protocol, such a stimulation can be
approximated by a short episode of very intense high frequency
stimulation. Due to the necessary finite duration of an episode,
the system response in the phase-plane will not be a perfectly
horizontal displacement. However, achieving potentiation with
short pulses can still be considered as difficult, because it would
require a disproportionately large stimulation amplitude.

Our findings highlight the fact that changing parameters, such
as the ratio of τw and τz , gives rise to different behaviors of the
model in response to changes in the stimulation protocols. We
may use this insight to design optimal experimental protocols for
single-episode plasticity induction. In particular, a model with
timescale separation would predict the existence of an optimal
stimulus intensity for which the total stimulus area necessary
for potentiation is minimized. We emphasize that any model
where consolidation works on a timescale that is slower than that
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FIGURE 5 | Potentiation during a single episode. Different curves correspond to different ratios of the time constant τz and τw in Equation (2). (A) Schematic

representation of single-episode stimulations, corresponding to different choices of ton. (B) Schematic representation of different single-episode stimulations with

constant area. The black line is proportional to 1/amplitude in order to stress that all pulses have the same area. (C) Separation curves between regions of successful

or unsuccessful potentiation as a function of amplitudes and duration ton of a the plasticity-inducing stimulus. The initial state is always the unpotentiated synapse

(w = z = −1). The shaded region of the parameter space is the one in which the synapse gets potentiated. (D) Same as (C) but as a function of amplitude and area of

the stimulus during the episode. The two insets show examples of trajectories (green lines) in the phase-plane for two different parameters choices. The solid green

lines represent the dynamical evolution of the system during the application of the external stimulus, while the dotted green line shows the relaxation of the system to a

stable fixed point after the stimulation. Red: w-nullcline; blue: z-nullcline; black: separatrix. The parameters that are not specified in the figure are: Cw = Cz = 1, I = 0.

of plasticity induction will exhibit timescale separation and be
therefore sensitive to details of the stimulation protocol.

3.3. Repeated Episodes
As a second case, we consider the potentiation of a synapse
induced by repetitions of several stimulation episodes. In an
experimental setting, this type of stimulation would correspond
to several episodes of high-frequency stimulations, characterized
by three parameters: the intensity of stimulation during each
episode (amplitude), the duration (ton) of each episode and the
inter-episode interval, toff (cf. Figures 6A,B). To keep the analysis
transparent we apply a number of repetitions large enough to
decide whether potentiation is successful or not given the three
parameters. Notice that if toff = 0 we are back to the DC
stimulation as defined in the previous section.

The curves in Figures 6C,D show the separation between
parameters that lead to successful potentiation (shaded) or not

(white) in the amplitude-toff space for fixed values of ton and for
different τz/τw ratios. In Figure 6C, we fix ton = τw. We observe
that, at least for low timescale ratios, it exists an amplitude
above which the synapse gets potentiated independently of toff,
which suggests that, for this intensity of the stimulation, the
potentiation happens during the first episode. The amplitude
necessary to obtain potentiation in one pulse, however, increases
rapidly with the τz/τw ratio (see section 3.2). On the other
hand, if the value of toff is small enough (i.e., for high repetition
frequency), potentiation can be achieved with smaller amplitudes
and the timescale ratio is less important (notice the superimposed
lines in the bottom left part of the plot). If we decrease the
pulse duration to ton = 0.01τw, we obtain qualitatively similar
separation curves, but potentiation now requires much larger
values for the amplitude of the plasticity-inducing stimulus
(see Figure 6B), than ton = τw (see Figure 6A). Importantly,
in the case of timescale separation (e.g., τz = 7τw) several

Frontiers in Computational Neuroscience | www.frontiersin.org 8 November 2019 | Volume 13 | Article 78

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Gastaldi et al. Optimal Stimulation for Synaptic Consolidation

FIGURE 6 | Potentiation with repeated episodes. (A) Schematic representation of stimulation protocols characterized by different toff, while ton = τw is fixed. (B)

Schematic representation of stimulation protocols with ton = 0.01τw. (C) Potentiation region for stimulation with long episodes for fixed ton = τw. The curves for

different ratios τz/τw (see color code) indicate the separation between the region that yields potentiation (shaded) and the region that does not (white) as a function of

intensity of stimulation in each episode (amplitude) and inter-episode interval (toff). (D) Potentiation regions for protocols with shorter episode ton = 0.01τw. The

potentiation region is shaded. The two insets show examples of trajectories (green lines) in the phase-plane for the same choice of stimulation parameters but different

timescale separation. The solid green lines represent the dynamical evolution of the system during the application of the external stimulus, while the dotted green line

shows the relaxation of the system to a stable fixed point after the end of the stimulation protocol. The parameters that are not specified otherwise are: Cw = Cz = 1,

I = 0.

repetitions are needed before the consolidation variable z has
sufficiently increased so that the synapse state crosses the
separatrix (Figure 6, insert).

In analogy to the analysis performed in section 3.2, we search
for an optimal stimulation protocol in the case of repeated
episodes. In order to allow a direct comparison between single
and repetitive episodes, we measured the total area under
the stimulation curve I(t) in the repetitive episode scenario,
limited to the minimal number of episodes sufficient to achieve
potentiation. In Figure 7A, we show the minimum stimulation
area (number of episodes times the area of each rectangular
plasticity inducing stimulus) required to achieve potentiation, as
a function of the amplitude and the frequency of the stimulus
for strong timescale separation (τz/τw = 7). We notice that the
minimum stimulation area (white star) corresponds to toff ∼

10 ton, i.e., the waiting time between episodes is ten times long
than each episode. In real experimental conditions, however, it
might be difficult to control the intensity of the stimulation.
For this reason, we consider a fixed intensity (e.g., amplitude
I = 10 in Figure 7A) and vary the inter-episode time toff.
We find that there exists an optimal stimulation frequency to

obtain potentiation with minimal total area (see Figure 7B).
These results highlight two main facts: (i) for many stimulation
intensities (only two are shown in the graph), one can find an
optimal repetition frequency, (ii) there is a broad region in the
parameter space (ton, amplitude, and area) where the number of
pulses needed to achieve consolidation is constant. Indeed, the
broad region around the minima in Figure 7B (fixed amplitude
and ton) where the area is approximately constant corresponds a
constant number of pulses (npulses = area/ton).

4. DISCUSSION

We introduced and analyzed a minimal mathematical model of
synaptic consolidation, that consists of two ODEs with linear
coupling terms and cubic non-linearity. Since it is a two-
dimensional model, the system can be studied using phase-plane
techniques. While our model can have up to four stable fixed
points, we focused on the case of two stable fixed points, to allow
the physical interpretation of the fixed points as an unpotentiated
or potentiated synapse. The weight variable w should be seen as
the bistable building block of complex synapses. While there is

Frontiers in Computational Neuroscience | www.frontiersin.org 9 November 2019 | Volume 13 | Article 78

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Gastaldi et al. Optimal Stimulation for Synaptic Consolidation

FIGURE 7 | Stimulation effort needed to achieve potentiation for τz/τw = 7 and ton = 0.01τw. (A) The potentiation domain (shaded region in Figure 6) is colored

proportionally to the stimulation area needed to achieve potentiation with a repetitive pulse stimulus. The minimum stimulation area is ≃ 8.34, it is indicated by the

white star and corresponds to the parameters values toff = 0.11τw, amplitude = 17.75 and 47 pulses. (B) Slices of the diagram in (A) for amplitude = 10 (dashed line)

and for amplitude = 20 (dash-dotted line) are plotted against toff. One can notice that for a fixed stimulation amplitude, there is an optimal repetition frequency

f = 1
ton+toff

that minimizes the stimulus area required to achieve potentiation. The parameters that are not specified otherwise are: Cw = Cz = 1, I = 0.

evidence that the potentiation of a single synapse is a all-or-none
process (Petersen et al., 1998; O’Connor et al., 2005; Bosch et al.,
2014), recent results challenge this view in favor of a modular
structure of the synapse (Lisman, 2017). Either way, it is possible
to identify a bistable basic element of the synapse.

We showed that our minimal model responds to stimulation
protocols in a non-trivial way: we quantified the total stimulation
strength by the stimulus area defined as duration times intensity,
where intensity is a combination of intra-episode frequency and
current amplitude of extra-cellular pulses. We found that the
minimal stimulus area necessary to induce potentiation depends
non-monotonically on the choice of stimulus parameters. In
particular, we found that, for both single-episode and multiple-
episode stimulation, it is possible to choose the stimulation
parameters (intensity, duration, and inter-episode frequency)
optimally, so as to minimize the stimulus area (Figures 5, 7
and Table 1). Figure 7 can be used to compare the minimum
stimulation area needed to achieve potentiation in a single
episode (corresponding to the choice toff = 0) to the
case of repetitive pulses (toff 6= 0). We conclude that, for
a fixed stimulation area, stimulation over several episodes
is advantageous to achieve potentiation, in agreement with
some widely used protocols (Larson and Munkácsy, 2015).
The effect is stronger if the consolidation variable z is slow
compared to the weight variable (τz ≫ τw). Note that in
experiments it is often impossible to have a fine control
on the stimulation amplitude: extra-cellular stimulation of
fibers must be strong enough to excite the post-synaptic
neuron, but there is no control of the post-synaptic firing
rate, which could undergo adaptation or exhibit other time-
dependent mechanisms. In summary, the existence of an optimal
stimulation frequency is the direct consequence of two very
fundamental synaptic properties: (i) the bistability of a synaptic
basic element, and (ii) the time scale separation between the
internal synaptic mechanisms.

TABLE 1 | Parameter values used in Figures 5–7 unless otherwise indicated in

figures captures.

Parameter Figure 2 Figure 4 Figure 5 Figure 6 Figure 7

Cw 1 1 1 1 1

Cz Variable Variable 1 1 1

w0 1 1 1 1 1

z0 1 1 1 1 1

τw 1 1 1 1 1

τz 1 Variable Variable Variable 7

dt 0.01 0.01 0.01 0.01 0.01

The minimum of the total stimulus area is particularly
pronounced in the regime of strong separation of timescale
(τz ≫ τw), which is the relevant regime in view of the
experimental consolidation literature which suggests multiple
consolidationmechanisms with a broad range of timescales (Bliss
and Collingridge, 1993; Reymann and Frey, 2007). Assuming that
the timescale τw is on the order of a few seconds, as suggested
by some plasticity induction experiments at the level of single
contact points (Petersen et al., 1998), we can interpret a short
stimulation episode of duration 0.01 · τw ∼ 20 ms as a burst
of few pulses at high frequency. For example, one particularly
interesting protocol is the theta burst stimulation, where each
burst consists of 4 pulses at 100 Hz corresponding to a burst of
30ms duration (Larson andMunkácsy, 2015). Assuming that this
stimulation does not correspond to an extremely small amplitude
value (a reasonable assumption since the experimentalists want
to induce LTP), our model predicts an optimal frequency (see
Figure 7) on the order of toff = 0.11τw ∼ 200 ms, which is
in rough agreement with the experimental protocols where theta
bursts are repeated every 200 ms (Larson and Munkácsy, 2015).
When comparing the optimal stimulation frequency obtained by
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our model to experimental data, we should keep in mind that in
experiments timing effect come from different sources. In Larson
and Munkácsy (2015), the key factor that determines the optimal
stimulation protocol is the feed-forward inhibition. Moreover, in
Sajikumar et al. (2005), Kumar and Mehta (2011), and Larson
and Munkácsy (2015) the position of the stimulation (apical vs.
basal) plays a fundamental role, together with priming of NMDA
channels. Finally, the fraction of NMDA vs. AMPA receptors is
another fundamental element. None of these factors is taken into
account in our simplified model.

We have described the simplified dynamics of a bistable basic
element of synaptic consolidation (which can be interpreted as
a single contact point or a synaptic sub-unit). However, in most
experiments, we can only observe the collective effect of many
such elements together (Malenka, 1991; Bliss and Collingridge,
1993). Such a collective effect can be interpreted as the average
number of potentiated contact points. For a detailed comparison
between our model and these experiments, it would be needed
to simulate the dynamics of the pre- and post-synaptic neuron
groups and of their contact points, in order to obtain an average
quantity that can be compared with the continuous change of
EPSP observed in experiments. Such approach has been taken
in Ziegler et al. (2015) and it requires several assumptions,
among others the specification of the dependence of the plasticity
induction current I on the pre- and post-synaptic activity,
the parameters of the two populations and possible recurrent
interactions (see also 3.1) (see Supplementary Material, for a
qualitative comparison). For these reasons, such a comparison
goes beyond the aim of this work. Moreover, since the model
describes a single synaptic contact, it cannot be applied to more
complex experiments that involve cross-tagging, where effects of
protein synthesis are shared between several synapses (Sajikumar
and Frey, 2004b). On the other hand, our results highlight
the fact that our model shares similar response properties with
the population-averaged quantities measured in experiments,
such as its sensitivity to the stimulation frequency and the
preference for multiple repetitions. Altogether, these findings
suggest that our model possesses the necessary dynamical
repertoire to reproduce some of the experimental results (such
as Malenka, 1991; Bliss and Collingridge, 1993).

Using our model we can only make some qualitative
predictions on experimentally measurable quantities. For
example, by comparing Figures 6C,D, we can see that the
optimal stimulation parameters change when varying the
episode duration ton. More precisely, our model predicts that
for shorter ton the optimal stimulus requires a large stimulus
intensity during each episode.

The proposed framework is related to a number of previous
modeling approaches to synaptic consolidation. In particular,
the memory formation in networks of excitatory and inhibitory
neurons in Zenke et al. (2015) is based on a synaptic plasticity
model with a linear weight variable and a slower consolidation
variable, corresponding to a choice of Kw = 0 in Equation
(2) of our model. If we exploit this relation between the two
models, the coupling term Cw should depend on the post-
synaptic activity. Such a time-dependent coupling coefficient
is similar to the gating variable in the write-protected model

(Ziegler et al., 2015). The write-protected model (Ziegler et al.,
2015) can be considered as a three-dimensional generalization of
our framework. In our model the weight variable w is directly
coupled to the consolidation variable z whereas in the write-
protected model w is coupled to an intermediate tag-related
variable which is then coupled to z.

The dynamical understanding of the interplay between
stimulation protocol and autonomous dynamics gained here
by studying the two-dimensional system can be also applied
to a three-(or higher-)dimensional generalization, under the
assumption that coupling exists only between pairs of variables
and that there is timescale separation. Using such a multi-
dimensional generalization, it would be possible to explain a
much larger set of experimental results. In addition, the model
presented in Ziegler et al. (2015) features coupling coefficients
that are dynamically adjusted as a function of the induction
protocol itself. A change of coupling Cmakes a model at the same
time more expressive and harder to analyze (cf. section 2.3).

The cascade model (Fusi et al., 2005) can be related to the
model in the present paper by introducing several slow variables
z1, . . . , zn with time constants τ1, . . . , τn. The coupling from k to
k+ 1 is analogous to the coupling of w to z in Equation (2). Even
though this extended model and the cascade model share the
concept of slower variables, there are some important differences
between the two. First, the cascade model (Fusi et al., 2005) is
intrinsically stochastic, i.e., the stochasticity due to spiking events
is combined with the stochasticity of plasticity itself. Second, the
transitions among states in the cascade model are instantaneous
(Fusi et al., 2005). In our framework instead, even though there
are discrete stable states, the transitions need some time to
happen and this is exactly why the frequency of a repetitive
stimulus matters in our model.

Similarly to the cascade model (Fusi et al., 2005), the
“communicating vessels” model (Benna and Fusi, 2016) relies on
multiple hidden variables. However, in contrast to the cascade
model (Fusi et al., 2005), the dynamics in the “communicating-
vessels” model are determined by continuous variables that obey
continuous-time differential equations (Benna and Fusi, 2016).
If we truncate the “communication-vessels” model to a single
hidden variable, the resulting dynamics fall into our framework,
with the simple choice Kw = Kz = 0. Extensions to multiple
hidden variables with progressively bigger timescales is possible
analogously to our discussion above. Indeed experimental results
show that the internal bio-chemical mechanisms of the synapse
are characterized by different timescales (Reymann and Frey,
2007; Bosch et al., 2014).

Similar to the cascade model, the “state based model”
proposed in Barrett et al. (2009), consist of synapses whose state
can shift from e-LTP to l-LTP according to some transition-
rates. The model captures two internal mechanisms (tagging and
anchor for AMPAR). The probability that a particular synapse is
in a specific state is a continuous quantity that depends on the
transition probabilities. The main similarity to our model is the
presence of a bistable basic synaptic element.

Finally the synaptic plasticity model proposed in Shouval et al.
(2002) proposes a non-linear dynamics for the synaptic weights,
similarly to our model. The main goal of Shouval et al. (2002) is
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to relate the amount of NMDAR with the Calcium level in the
synapse. However, their model is not bistable and no attempt is
made to capture the internal synaptic state.

To summarize, our model focuses on a single transition
using two variables. If these variables have different intrinsic
timescales, the temporal pattern of the stimulation protocol plays
a crucial role.We believe that these insights are applicable beyond
our two-variable model in situations where multiple variables
covering multiple timescales are pair-wise coupled to each other.
This includes well-known consolidation models such as the
cascade model (Fusi et al., 2005), the communicating vessels
model (Benna and Fusi, 2016), and the write-protected synapse
model (Ziegler et al., 2015).
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