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Glioblastoma, the most frequent primary malignant brain neoplasm, is genetically

diverse and classified into four transcriptomic subtypes, i. e., classical, mesenchymal,

proneural, and neural. Currently, detection of transcriptomic subtype is based on

ex vivo analysis of tissue that does not capture the spatial tumor heterogeneity. In

view of accumulative evidence of in vivo imaging signatures summarizing molecular

features of cancer, this study seeks robust non-invasive radiographic markers

of transcriptomic classification of glioblastoma, based solely on routine clinically-

acquired imaging sequences. A pre-operative retrospective cohort of 112 pathology-

proven de novo glioblastoma patients, having multi-parametric MRI (T1, T1-Gd,

T2, T2-FLAIR), collected from the Hospital of the University of Pennsylvania were

included. Following tumor segmentation into distinct radiographic sub-regions, diverse

imaging features were extracted and support vector machines were employed

to multivariately integrate these features and derive an imaging signature of

transcriptomic subtype. Extracted features included intensity distributions, volume,

morphology, statistics, tumors’ anatomical location, and texture descriptors for each

tumor sub-region. The derived signature was evaluated against the transcriptomic

subtype of surgically-resected tissue specimens, using a 5-fold cross-validation

method and a receiver-operating-characteristics analysis. The proposed model was

71% accurate in distinguishing among the four transcriptomic subtypes. The

accuracy (sensitivity/specificity) for distinguishing each subtype (classical, mesenchymal,

proneural, neural) from the rest was equal to 88.4% (71.4/92.3), 75.9% (83.9/72.8),

82.1% (73.1/84.9), and 75.9% (79.4/74.4), respectively. The findings were also replicated

in The Cancer Genomic Atlas glioblastoma dataset. The obtained imaging signature

for the classical subtype was dominated by associations with features related to edge
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sharpness, whereas for the mesenchymal subtype had more pronounced presence

of higher T2 and T2-FLAIR signal in edema, and higher volume of enhancing tumor

and edema. The proneural and neural subtypes were characterized by the lower

T1-Gd signal in enhancing tumor and higher T2-FLAIR signal in edema, respectively.

Our results indicate that quantitative multivariate analysis of features extracted from

clinically-acquired MRI may provide a radiographic biomarker of the transcriptomic profile

of glioblastoma. Importantly our findings can be influential in surgical decision-making,

treatment planning, and assessment of inoperable tumors.

Keywords: transcriptomic classification, glioblastoma, multivariate analysis, brain tumors classification,

biomarkers

INTRODUCTION

Glioblastoma is the most frequent primary malignant brain
tumor with grim prognosis, despite aggressive combination
of therapies (Stupp et al., 2017), and is characterized by
inter- and intra-patient heterogeneity at radiographic, histologic,
and molecular fronts, thereby providing opportunities for
sub-classification, prognostication, and adoption of targeted
therapeutic approaches (Aum et al., 2014; Lemée et al., 2015).

There is mounting evidence that different glioblastoma
patients show different levels of sensitivity to therapeutic
approaches depending on their distinct genetic characterization.
It has been suggested earlier that glioblastoma should not be

considered a single disease, but rather should be categorized

into four transcriptomic subtypes, i.e., classical, mesenchymal,

proneural, and neural (Verhaak et al., 2010). These subtypes
present very distinct molecular biomarkers such as collective

loss in chromosome 10 and amplification of chromosome 7
in classical subtype, largest occurrence of focal hemizygous
deletions of a region at 17q11.2, encompassing NF1 gene, in
mesenchymal subtype, aberrations in PDGFRA and mutations
in IDH1 in proneural subtype, and presence of GABRA1, SYT1,
NEFL, and SLC12A5 in neural subtype (Verhaak et al., 2010). In a
recent study by Park et al. it has been shown that subtype-specific
genetic aberrations have potential to serve as predictive markers
and therapeutic targets (Park et al., 2019).

The determination of themolecular profile of the tumors leads
to personalized diagnosis and treatment, as different treatment
options may be considered depending on the characteristics of
each subtype (Phillips et al., 2006; Verhaak et al., 2010; Bhat
et al., 2011). Up until now, the assessment of transcriptomic
subtypes was done via molecular profiling of surgical or biopsy
tissue. However, such assessment has inherent limitations of:
(i) tissue sampling error that sometimes leads to missing the
tumor mutation, and (ii) inability to acquire multiple specimens
over the course of the disease due to invasiveness of the
tissue collection procedure, thereby leading to the failure in
determining molecular subtype of the tumor over the course of
the treatment.

Analysis of multi-parametric magnetic resonance imaging
(mpMRI) data via advanced pattern analytics methods has
been progressively shown to provide rich classifications
of glioblastoma and its surrounding brain tissue, and has

helped identifying relationships between MRI biomarkers and
transcriptomic subtypes in gliomas (Gutman et al., 2013; Naeini
et al., 2013; Gevaert et al., 2014; Pisapia et al., 2015; Macyszyn
et al., 2016; Khened et al., 2019). For instance, the proneural
subtype has shown lower levels of contrast enhancement;
the mesenchymal subtype has presented lower levels of non-
enhanced tumors and intensity in peritumoral edema region
(Gutman et al., 2013); the classical subtype has associated
necrosis and sharped edges of the edema region (Gevaert et al.,
2014). A model to predict the mesenchymal subtype was also
proposed (Naeini et al., 2013).

However, this classification scheme has been difficult to
translate into clinical practice due to several complicating factors.
First, existing literature has found associations between imaging
features and individual subtypes (Naeini et al., 2013). Second,
most studies to date have used basic imaging sequences only
or have used very few hand-crafted imaging features, failing to
leverage the power of computationally extracting and selecting
imaging features (recently called radiomics), and analyzing
them through advanced pattern analysis methods to build a
more powerful predictive model (Gutman et al., 2013; Gevaert
et al., 2014; Macyszyn et al., 2016). As literature increasingly
acknowledges the tumor spatial and temporal heterogeneity,
there is a parallel focus on extracting extensive features of the
tumor and its surrounding peritumoral region toward providing
a better characterization of patients. Furthermore, analysis of
advancedmpMRI data can providemore details, whichmight not
be available in conventional imaging.

This study aims to determine the transcriptomic subtypes
of de novo glioblastoma patients by multivariately assessing
imaging features from routine clinically-acquired scans,
reflecting tumor biological properties such as angiogenesis,
proliferation, cellularity, and peritumoral infiltration. Identifying
these transcriptomic subtypes may allow enrollment of patients
into targeted clinical trials, longitudinal profiling of the tumor,
and assessment of treatment response.

MATERIALS AND METHODS

Study Setting and Data Source
This study evaluates a group of 112 primary glioblastoma
patients, diagnosed between 2006 and 2013 at the Hospital of the
University of Pennsylvania (HUP), having pre-operative mpMRI
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(T1, T2, T1-Gd, T2-FLAIR). A subset of these patients (n =

89) had additional diffusion tensor imaging (DTI) and dynamic
susceptibility contrast-enhanced (DSC) MRI imaging available.
The proposed classification models were developed on n =112
patients using conventional imaging only (T1, T2, T1-Gd, T2-
FLAIR), whereas the subset of the patients (n = 89) was used to
further analyze the imaging properties of different subtypes. The
overall analysis was carried out on HUP dataset, and the findings
were then replicated independently in The Cancer Genomic
Atlas glioblastoma (TCGA-GBM) dataset (Clark et al., 2013;
Scarpace et al., 2013) (n = 60), part of the International Brain
Tumor Segmentation (BraTS) challenge dataset (Menze et al.,
2015; Bakas et al., 2018), having the same set of pre-operative
mpMRI. Expert manual segmentations for this dataset were
downloaded from The Cancer Imaging Archive (TCIA) website
(Bakas et al., 2017a,b). The study population was uniformly
distributed and did not have any statistically significant difference
based on clinical and demographical factors. All experiments
were approved by the Institutional Review Board (IRB) of
the University of Pennsylvania (approval no: 706564) and
written informed consent was obtained from all patients. All
experiments were carried out in accordance with the guidelines
and regulations of the approved IRB.

Transcriptomic Subtyping
After pathologic confirmation of glioblastoma diagnosis, all
tumors underwent subtyping into one of the four transcriptomic
subtypes (classical = 21, mesenchymal = 31, proneural = 26,
neural = 34). For this subtyping, we used an isoform-level
assay classifier initially constructed using exon array data from
glioblastoma samples in TCIA (Verhaak et al., 2010). It was then
translated into a clinically applicable platform, where expression
of desired transcripts was measured using reverse transcriptase–
quantitative polymerase chain reaction (RT-qPCR) (Pal et al.,
2014). RNA was isolated from the tissue samples using Tri
Reagent (Sigma). A high-capacity complementary DNA reverse
transcriptase kit (Applied Biosystems) was used to reverse-
transcribe the RNA, and qPCR was then performed to designate
the subtype. The assay was based on the expression of 121
transcripts with four housekeeping genes as controls.

Pre-processing Applied on the Dataset
All MRI of each patient were pre-processed using a series
of image processing steps, including: (i) smoothing (i.e.,
reducing high frequency noise variations while preserving
underlying anatomical structures) using Smallest Univalue
Segment Assimilating Nucleus (SUSAN) denoising (Smith et al.,
1997); (ii) correction for magnetic field inhomogeneity using
N3 bias correction (Tustison et al., 2010); (iii) co-registration
of all MRIs of each patient at 12-degrees of freedom for
examining anatomically aligned signals at the voxel level using
affine registration through the Linear Image Registration Tool
(Jenkinson and Smith, 2001); (iv) skull stripping using the Brain
Extraction Tool (Smith, 2002); and (v) matching of intensity
profiles (histogram matching) of all MRIs of all patients to the
corresponding MRIs of a reference patient.

Following the pre-processing, all tumors were segmented
in distinct radiographic sub-regions of peritumoral edema
region (ED), enhancing tumor (ET), and non-enhancing tumor
(NET) (Figure 1) using a computational algorithm [namely
GLISTRboost (Gooya et al., 2011; Bakas et al., 2016)]. The
segmentations were assessed by two expert readers (H.A.,
G.S.) and revised before image analysis, when necessary. The
segmentations were transformed into a standard atlas space
to produce a standardized statistical distribution atlas for
quantifying the tumor spatial location.

Radiophenotypic Tumor Characterization
The radiophenotypic characteristics of each tumor were
quantified using a comprehensive and diverse set of imaging
features, extracted from all tumor sub-regions (i.e., ED, ET, NET)
and all MRI sequences using the Cancer Imaging Phenomics
Toolkit (CaPTk) (Davatzikos et al., 2018). The feature set
extracted to build the predictive model for this study comprised
of (i) volumetric measurements, (ii) morphology parameters,
(iii) location information, and (iv) statistical moments of the
intensity distributions. The volumetric, location, and intensity
statistics were calculated in 3D. The volumetric measurements
include volume and surface area measurements of ED, NET,
ET, tumor core (TC), which is the union of NET and ET, and
whole tumor (WT), which is the combination of TC with
ED. In addition, ratios of the volumes of the various tumor
sub-regions and their union over the brain volume, were
also calculated.

To capture the spatial distribution of each tumor, eight
spatial distribution atlases were constructed as introduced in
Akbari et al. (2018), two for each molecular subtype, i.e., P(+)

and P(−) for proneural and non-proneural tumors, respectively.
These distribution atlases were generated by superimposing the
TC (ET+NET) segmentation labels of all patients according
to their transcriptomic subtype status, i.e., superimposing
the TC labels of proneural and non-proneural tumors. The
similarity of the distribution pattern of an unseen tumor is
then calculated by considering the intersection area between
the tumor and the spatial map (Figure S1). Maximum and
average frequency for each spatial distribution atlas in the
intersected area are estimated, and four discrete relative values
(L1, L2, L3, and L4) are used to evaluate any new unseen
patient, for each subtype, thereby leading to a total of 16
location features.

L1 = mean
[

P+
]

−mean[ P−],

L2 = max
[

P+
]

−max
[

P−
]

,

L3 =
mean

[

P+
]

mean
[

P−
] ,

L4 =
max

[

P+
]

max
[

P−
]

Moreover, the distance of various tumor sub-regions, e.g.,
ED, TC, from the ventricles, and the proportions of TC in
each lobe of the brain have also been utilized as additional
location features. The proportion of TC in various brain regions,
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FIGURE 1 | Image post-processing workflow. I. Preoperative imaging sequences (examples: T1-Gd, T2-FLAIR, T1, T2). II. Preprocessing. III. Segmentation of various

subregions of tumor such as peritumoral edema region (ED), non-enhancing tumor core (NET), and enhancing tumor (ET). IV. Extraction of radiomic features in the

segmented regions (ED, ET, NET) using all the imaging sequences. V. Multivariate machine learning model of support vector machines with 5-fold cross validation and

sequential feature selection.

including temporal, frontal, parietal, occipital, basal ganglia,
cc fornix, insula, cerebellum, and brain stem, was calculated
by mapping each image to an atlas template via a deformable
registration method (Gooya et al., 2011) that not only accounts
for mass effect but also takes care of inter-individual anatomical
variations (Kwon et al., 2014).

Furthermore, we used first-order statistical moments of
intensity distributions to quantify the phenotypic characteristics
of each tumor sub-region, along with second-order statistics that
describe textural properties in tumor sub-regions. A gray-level
co-occurrence matrix was calculated by considering the voxels
within a radius of 1 and in the 13 main directions, and texture
features of contrast, correlation, energy, and homogeneity were
extracted. The intensity profiles of various sub-regions of tumor
were also quantified using histograms. These histograms are
reflective of the changes caused by the tumor both at functional
and anatomical levels, which in turn change the corresponding
imaging signals, and have shown strong association with various
outcome of interest (Macyszyn et al., 2016; Rathore et al., 2018).
Here, each intensity distribution is divided in to 5 bins and
percentage of voxels in each bin are calculated.

Morphology parameters, comprising area, perimeter, extent,
solidity, and length of major- and minor-axis, were extracted
from one 2D slice per tumor. In order to pick the 2D slice for
extraction of morphological features, we traversed the image in
the axial direction and found the slice that had largest area of
tumor core.

Feature Selection and Predictive Model
Development
Support Vector Machines (SVM) (Chang and Lin, 2011),
that has been extensively used in the past in medical image
classification/segmentation (Lao et al., 2008; Haller et al., 2013),
was used for predictive modeling in this study. We dealt
the problem of classification as 4 one-vs. -rest classification

problems. We trained a separate SVM to discriminate between
one transriptomic subtype and the rest of the subtypes, such as
classical vs. others, mesenchymal vs. others, neural vs. others, and
proneural vs. others. To confirm the robustness of the method
and to ensure that estimates of accuracy would be likely to
generalize to new patients, we evaluated all classifiers through
5-fold cross-validation. In each iteration of the cross-validation,
feature selection and classifier’s parameters optimization was
performed on the training folds and the resulting classification
model, developed solely on the training folds, was applied on
new/unseen test fold. Sequential forward feature selection was
employed at each iteration until convergence, i.e., there was no
improvement over a specific threshold. The final classification
performance was obtained by combining the predictions of
individual classifiers. For each classifier, the particular subtype
was considered positive class and the rest of the subtypes were
considered negative class. The distance of the sample from the
hyperplane was noted for each classifier and highest distance was
chosen as the final label of the sample. For example, if proneural,
neural, mesenchymal, and classical have 0.45, 3.54, −2.43, and
5.32, then the classical label was assigned to the sample.

The classification performance of the proposed models was
evaluated in terms of accuracy, balanced accuracy, sensitivity,
and specificity. Sensitivity and specificity refer to the percentage
of correctly classified samples of positive and negative classes,
respectively. Balanced accuracy is the average of the proportion
corrects of each class individually, whereas accuracy is the total
proportion corrects of the population.

Statistical Analysis
The statistical analysis was performed with R (version 3.3.2,
http://www.R-project.org), SPSS (version 25.0.0.0, IBM), and
MatLab (version R2014b, Mathworks). For evaluation of
statistically significant imaging features associated with each
subtype, we used Kruskal-Wallis test (Chan et al., 1997).
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TABLE 1 | Performance of the proposed transcriptomic subtype prediction model

in terms of various performance measures.

Classification

performance

Imaging subtypes (n)

Proneural

(n = 26)

Neural

(n = 34)

Mesenchymal

(n = 31)

Classical

(n = 21)

Overall

(n = 112)

Accuracy 82.14 75.89 75.89 88.39 71.00

Balanced

accuracy

78.98 76.89 78.36 81.87 79.01

Sensitivity 73.08 79.41 83.87 71.43 77.68

Specificity 84.88 74.36 72.84 92.31 79.75

AUC 0.82 0.78 0.81 0.84 ---

First four rows show the result for binary classification wherein each subtype is classified

against the rest of subtypes. The last row shows the final 4-way classification accuracy

obtained by combining the predictions of individual classifiers.

RESULTS

Performance of the Transcriptomic
Subtype Prediction Model
The cross-validated accuracy and balanced accuracy [BA] of the
obtained classifiers for classical, mesenchymal, proneural, and
neural subtypes was 88.4% [BA: 81.9%], 75.9% [BA: 78.4%],
82.1% [BA: 78.9%], and 75.9% [BA: 76.9%], respectively. The
overall 4-way classification among the four transcriptomic
subtypes was 71% under 5-fold cross-validation experiment.
Performance of the proposed prediction model is given in
Table 1 where the first four columns show the result for binary
classification, wherein each transcriptomic subtype is classified
against the rest of the subtypes, and the last column shows the
final 4-way classification accuracy obtained by combining the
predictions of individual classifiers.

Receiver-operating-characteristic (ROC) analysis on the given
dataset yielded an area-under the-curve (AUC) of 0.82, 0.78,
0.81, and 0.84, for proneural, neural, mesenchymal, and classical
subtypes, respectively (Figure 2).

Important Phenotypic Characteristics of
Different Transcriptomic Subtypes
Along with evaluating the predictive performance of the model,
we assessed individual features with the most predictive value.
Our results have shown that specific subtypes have quite distinct
quantitative imaging features, which can be utilized (Table 2,
Figure 3). The main characteristics of the obtained imaging
signature show that the mesenchymal subtype (in comparison
with other subtypes) have lower T2 and T2-FLAIR signal in
peritumoral edematous/invaded region, ET of lower eccentricity,
NET of higher eccentricity, and higher volumes of ET, ED and
WT. The proneural subtype, compared with the other subtypes,
included signals of lower and uniform T1-Gd in ET. The neural
subtype showed signals of higher T2-FLAIR in ED and lower
eccentricity of NET, and the classical subtype showed smaller
surface area of ED and WT.

FIGURE 2 | ROC curves of the predicted transriptomic subtypes are

compared with chance (the diagonal line). ROC curves correctly classify

proneural, neural, mesenchymal, and classical subtypes with 82.1%

(sensitivity: 73.1, specificity = 84.9), 75.9% (sensitivity: 79.4, specificity =

74.4), 75.9% (sensitivity: 83.9, specificity = 72.8), and 88.4% (sensitivity: 71.4,

specificity = 92.3) classification success rate, respectively.

TABLE 2 | Important imaging characteristics that distinguish each subtype from

the rest of the subtypes.

Imaging subtypes (n)

Proneural

(n = 26)

Neural

(n = 34)

Mesenchymal

(n = 31)

Classical

(n = 21)

Lower Signal

in ET (T1-Gd)

Higher signal in ED

(T2-FLAIR)

Lower signal in ED (T2-FLAIR) Surface area

(ED, WT)

Higher

uniformity in

ET (T1-Gd)

Lower eccentricity

(NET)

Lower signal in ED (T2)

Lower eccentricity (ET)

Higher eccentricity (NET)

Bigger volume (ED, ET, WT)

Replication of the Proposed Model in TCIA
Dataset
The predictive performance of the proposed model was also
evaluated in an independent replication dataset of pre-operative
glioblastoma patients, downloaded from TCIA (Bakas et al.,
2017a), by applying the model trained on the discovery (i.e.,
HUP) dataset. The information about the molecular subtypes
of TCIA patients was acquired from existing studies (Verhaak
et al., 2010; Park et al., 2019). The four models, pertaining to
four different molecular subtypes, trained on HUP dataset were
applied to the patients in the replication (i.e., TCIA) cohort.
The final molecular status of each patient in the replication
dataset was obtained by combining the predictions of individual
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FIGURE 3 | Representative images of different subtypes.

classifiers, as done in the discovery dataset, leading to 69%
classification success rate compared to 25% chance in 4-way
classification accuracy.

DISCUSSION

We identified an in vivo radiographic signature of transcriptomic
subtypes in glioblastoma by using quantitative multivariate
analysis of mpMRI in a non-invasive manner, and further
attempted to provide patho-physiological associations of the
most distinctive imaging features. An important existing study
has demonstrated the potential that deep learning techniques
can be used for identifying associations between brain imaging
phenotypes and genomic characteristics (Khened et al., 2019).
The hereby proposed method is different from existing literature
(Macyszyn et al., 2016; Khened et al., 2019) on the breadth
of extracted mpMRI-based features, leading to an extensive
radiographic signature. The proposed signature sheds light
into the anatomical and pathological characteristics of the
tumor, via macroscopic imaging features summarizing tumor
characteristics related to water concentration, blood-brain
barrier breakage, cell density, uniformity/heterogeneity, and
geometric variations. We have achieved these findings utilizing
routine mpMRI scans acquired under current clinical practice
for glioblastoma, without the need to utilize any molecular
imaging methods. We evaluated our model via a cross-validation
mechanism in the HUP dataset, and also performed a multi-
institutional validation to demonstrate generalizability. Potential
applications of this signature include facilitating the assessment
of transcriptomic status for patients with inadequate tissue. In
a recent study by Park et al., it has been shown that subtype-
specific genetic aberrations have potential to serve as predictive
markers and therapeutic targets (Park et al., 2019). Therefore, in
case of subtype-targeted clinical trials, it becomes very important
to distinguish one particular subtype from the rest. The automatic
distinction of these subtypes leads to personalized diagnosis and
treatment, as different options may be considered depending on
the histologic characteristics of different subtypes.

Biological Explanation of Quantitative
Features of Different Subtypes
Toward gaining an understanding about the biological
developments that induce different mutation status, we

analyzed in isolation each individual feature that we used to
develop our classification models. The analysis revealed that
each subtype had an accompanying distinct and comprehensive
set of radiographically relatable features (Table 2). The main
findings from comparing the features of different transcriptomic
subtypes, in ET, NET, and ED, are as follows:

1. Regions of lower and uniform T1-Gd signal in proneural
subtype, suggestive of less blood–brain barrier compromise;

2. Areas of lower water content in mesenchymal subtype,
reflected by T2-FLAIR and T2-weighted imaging, consistent
with the characteristics of dense tissue;

3. Larger surface area of ED and WT in mesenchymal subtype,
which points toward deep infiltration and migratory nature of
the tumor;

4. Smaller surface area of ED and WT in classical subtype,
supporting a radiographic phenotype of compact and less
migratory nature of the tumor;

5. Major to minor axes ratios, associated with NET in
neural subtype and ET/NET in mesenchymal subtype, were
different from other subtypes (Table 2). The major axis was
characterized by the longest possible 2D distance in a region;
minor axis is vertical to the major axis. This eccentricity
measure is suggestive of regular/spherical NET in neural
subtype and irregular NET in mesenchymal subtype.

6. Regions of relatively lower contrast of T1 imaging sequence in
ET in neural subtype, suggestive of more uniform T1 signal
(Table 2).

It is important to note that despite several discriminative
features, neither of these features is sufficient enough
to predict transcriptomic subtype on each patient basis.
However, synergistic integration of these features via
appropriate machine learning yielded reasonable sensitivity
and specificity in predicting subtype on an individual patient
basis, thereby underscoring the potential of multivariate
analysis methods.

Discriminative Power of Advanced MRI
(DTI and DSC-MRI) Modalities
Advanced MRI sequences were evaluated to probe their
discriminative power, compared to that of structural
(conventional) imaging, i.e., T1, T2, T2-Flair, and T1-Gd.
It is worth mentioning that these imaging sequences were not
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FIGURE 4 | Intensity histograms display the diffusion and perfusion measures of different transcriptomic subtypes as measured by the DTI and DSC-MRI signals. (A)

PH intensity in NET; (B) PH intensity in ET; (C) PSR intensity in ET; (D) ADC intensity in ET; (E) ADC intensity in NET; (F) ADC intensity in ED; (G) T2-Flair intensity in ET;

(H) T2-Flair intensity in NET; (I) T1 intensity in NET; (J) T2 intensity in NET. The measures displayed in the first two rows are for analysis only; these measures have not

been used for building the model.

utilized to develop the classification models, rather only to
analyze the diffusion and perfusion characteristics of a subset of
these patients. These additional sequences comprised derivatives
of DTI [i.e., fractional anisotropy (FA), apparent diffusion
coefficient (ADC), radial diffusivity (RAD), axial diffusivity
(AX)], as well as DSC-MRI derivatives, i.e., percentage signal
recovery (PSR), peak height (PH), and relative cerebral blood
volume (rCBV).

Imaging derivatives of DTI are reflective of the water diffusion
process, which is partially affected by the architecture and density
of tumor cells (Lu et al., 2003), in brain. The classical subtype
has larger regions of lower ADC determined by the histograms
(Figure 4) in NET (p = 2.27 × 10−08) and ET (p = 1.97 ×

10−07) of the tumor, suggestive of less watery, and denser tumors.
Imaging derivatives of DSC-MRI enumerate microvasculature
and hemodynamics characteristics of the tumor (Wintermark
et al., 2005; Tykocinski et al., 2012). When volume of brain
tumors exceeds a certain critical limit, the consequential ischemia
activates the discharge of angiogenic factors, which in turn
endorses vascular proliferation and eventually leads to the
formation of leaky and torturous tumor vessels (Lev and
Hochberg, 1998; McDonald and Choyke, 2003; Bullitt et al.,
2005; Hicklin et al., 2005; Essock-Burns et al., 2011; Thompson
et al., 2011; Swami, 2013; Jensen et al., 2014). These imaging
derivatives also steered toward some key findings. The classical
subtype showed imaging features in agreement with highly
vascular tumor, as shown by the PH in ET (p = 1.54 ×

10−15) and NET (p = 4.00 × 10−06), revealing increased and
compromised micro-vascularity compared to other subtypes.

On the other hand, the proneural subtype had increased
PSR in ET, indicative of lower micro-vascularity compared to
other subtype.

Clinical Relevance and Impact
The assessment of transcriptomic subtype of glioblastoma via
analysis of tissue specimen can be limited due to sampling
error, and reluctance for longitudinal assessment of the status
due to invasive nature of surgery. Our proposed imaging
signature has potential to address both these limitations, since
mpMRI facilitates assessment and monitoring of the tumor in
its entirety in a repeatable manner. Further, the non-invasive
imaging signature captures the heterogeneity of the whole tumor
extent, instead of the analysis of one tissue specimen, therefore
provides a global perspective of the transcriptomic status of a
tumor. Our imaging signature is derivative of mpMRI that is
routinely acquired for glioblastoma patients, therefore, is ready
for immediate translation to the clinic. While the current method
focuses on non-invasive assessment of transcriptomic subtype
status, the same approach could also be used for molecular
assessment in general. Further, the proposed non-invasive
imaging signature can be applied to recurrent glioblastoma,
with the goal of determining transcriptomic subtype status
before, during, and after the treatment. This would help in
non-invasive monitoring of dynamic changes in transcriptomic
subtypes as response to targeted therapeutic approaches
and consequently would in turn allow for tailoring the
adopted therapies.
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CONCLUSION

We can quantify important imaging characteristics within
various sub-regions of the tumor and detect its transcriptomic
subtype only by examining mpMRI data using advanced
analytical methods and without the need of advanced genetic
testing. The present study extracts an extensive set of quantitative
imaging phenomic features from structural MRI sequences, and
employs these variables via machine learning techniques to non-
invasively distinguish transcriptomic glioblastoma subtypes. This
molecular classification, due to its distinct phenotypic pattern
derived from routine MRI, renders our imaging signature of
increased likelihood for effective and immediate translation into
clinical practice. The use of cross-validation within HUP dataset
and the replication of our findings on TCIA dataset provide
confidence in the generalizability of these subtypes and the
proposed method on other datasets.
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