
fncom-13-00082 December 7, 2019 Time: 11:9 # 1

METHODS
published: 10 December 2019

doi: 10.3389/fncom.2019.00082

Edited by:
Daya Shankar Gupta,

Camden County College,
United States

Reviewed by:
Michael Denker,

Julich Research Centre, Germany
Thomas Kreuz,

Italian National Research Council
(CNR), Italy

*Correspondence:
Sung-Phil Kim

spkim@unist.ac.kr

Received: 15 May 2019
Accepted: 25 November 2019
Published: 10 December 2019

Citation:
Sihn D and Kim S-P (2019) A

Spike Train Distance Robust to Firing
Rate Changes Based on the Earth

Mover’s Distance.
Front. Comput. Neurosci. 13:82.
doi: 10.3389/fncom.2019.00082

A Spike Train Distance Robust to
Firing Rate Changes Based on the
Earth Mover’s Distance
Duho Sihn and Sung-Phil Kim*

Department of Human Factors Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea

Neural spike train analysis methods are mainly used for understanding the temporal
aspects of neural information processing. One approach is to measure the dissimilarity
between the spike trains of a pair of neurons, often referred to as the spike train
distance. The spike train distance has been often used to classify neuronal units with
similar temporal patterns. Several methods to compute spike train distance have been
developed so far. Intuitively, a desirable distance should be the shortest length between
two objects. The Earth Mover’s Distance (EMD) can compute spike train distance
by measuring the shortest length between two spike trains via shifting a fraction of
spikes from one spike train to another. The EMD could accurately measure spike timing
differences, temporal similarity, and spikes time synchrony. It is also robust to firing
rate changes. Victor and Purpura (1996) distance measures the minimum cost between
two spike trains. Although it also measures the shortest path between spike trains,
its output can vary with the time-scale parameter. In contrast, the EMD measures
distance in a unique way by calculating the genuine shortest length between spike trains.
The EMD also outperforms other existing spike train distance methods in measuring
various aspects of the temporal characteristics of spike trains and in robustness to
firing rate changes. The EMD can effectively measure the shortest length between spike
trains without being considerably affected by the overall firing rate difference between
them. Hence, it is suitable for pure temporal coding exclusively, which is a predominant
premise underlying the present study.
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INTRODUCTION

A spike train is the sequence of neuronal firing timings, where a spike refers to the firing of
an action potential. The temporal pattern of a spike train encodes information in various ways.
Besides firing rates, the temporal pattern of spike timings also carries important information about
brain functions. For instance, it has been shown that temporal patterns encode the information
of auditory (Machens et al., 2001; Narayan et al., 2006; Wang et al., 2007; Fukushima et al., 2015;
Krause et al., 2017), gustatory (Di Lorenzo and Victor, 2003), motor (Vargas-Irwin et al., 2015),
olfactory (MacLeod et al., 1998), somatosensory (Harvey et al., 2013), vestibular (Jamali et al., 2016),
and visual (Mechler et al., 1998; Victor and Purpura, 1998; Reich et al., 2001; Carrillo-Reid et al.,
2015) systems, as well as behavioral adaptation (Logiaco et al., 2015) and sleep (Tabuchi et al., 2018).
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One of the many approaches for studying a temporal firing
pattern is to measure the dissimilarity between a pair of spike
trains, which is often represented by the spike train distance.
The measurement of spike train distances can be designed to
represent rate coding, temporal coding, or both. Several methods
to measure a spike train distance have been proposed. Victor
and Purpura introduced a cost-based distance that assigns a cost
to shifting, adding, or deleting a spike (Victor and Purpura,
1996). In this method, the spike train distance is defined as the
minimum of all possible sums of costs. The Victor and Purpura
distance depends on a time-scale parameter where the smaller
value of the time-scale parameter emphasizes temporal coding
while the larger value does rate coding. van Rossum (2001)
also developed a spike train distance that measures a difference
between spike trains convolved with exponential functions. Most
spike train distances are rate-sensitive, reflecting an overall rate
difference between spike trains to a certain extent even with an
extreme time-scale parameter (Satuvuori and Kreuz, 2018). Here,
the overall rate denotes the total number of spikes in a spike
train divided by the time length of the train. If one aims to
measure a distance between a pair of spike trains independent
of the overall rate difference, which we call as purely timing-
sensitive, the distance should reflect only a difference of spike
timing distributions, no matter how different the overall firing
rate is between trains.

A purely timing-sensitive spike train distance is important to
neuroscience studies on temporal coding, which assumes that
neurons code information in spike timing patterns (Tabuchi et al.,
2018). If a spike train distance is rate-sensitive, it would be
difficult to clarify whether a given result from a neural spike train
analysis is based only on the temporal information. It has been
suggested that precise spike timing plays a crucial role in neural
information processing (Butts et al., 2007; Gollisch and Meister,
2008; Johansson and Flanagan, 2009).

Kreuz et al. (2007) developed the rate-sensitive ISI-distance,
a spike train distance based on a ratio between the inter-spike
intervals of two spike trains. This was followed by the SPIKE-
distance, a complementary distance which is still sensitive to rates
but with a heightened sensitivity to spike timing (Kreuz et al.,
2013). Finally, by removing rate dependence from the SPIKE-
distance, Satuvuori et al. (2017) proposed the RI-SPIKE-distance
as a distance purely sensitive to timing. The spike train distances
developed so far have been used in a number of studies for the
analysis of neural firing patterns (MacLeod et al., 1998; Mechler
et al., 1998; Victor and Purpura, 1998; Machens et al., 2001; Reich
et al., 2001; Di Lorenzo and Victor, 2003; Narayan et al., 2006;
Wang et al., 2007; Harvey et al., 2013; Fukushima et al., 2015;
Logiaco et al., 2015; Vargas-Irwin et al., 2015; Jamali et al., 2016;
Krause et al., 2017).

Nevertheless, in an intuitive manner, one of the desirable
properties of distance would be a capability to measure the
shortest length between two objects. In this sense, the previous
methods to measure spike train distance have not clearly
represented the shortest length because they do not minimize
the distance value explicitly, except for the Victor and Purpura
distance, which explicitly measures the shortest length (Victor
and Purpura, 1996). Yet, although this distance represents the

minimum cost related to the shortest length, it suffers from the
fact that distance output is not unique because this approach
employs a parameter (i.e., q in their model) assigned to the
cost for spike time shift. Thus, distance output depends on how
q is determined. This property can be advantageous for some
spike train analyses, but not in other cases that need a unique
value (Chicharro et al., 2011). In the present study, therefore, we
adopt the Earth Mover’s Distance (EMD) to measure spike train
distance with a unique shortest length.

The EMD is also called the Wasserstein metric, which defines
the distance between a pair of probability distributions. Here, a
metric refers to a distance satisfying non-negativity, symmetry
and the triangle inequality. It measures the minimal cost based
on an underlying distance taken to transfer from a probability
distribution to another. It initially dealt with transportation
problems (Kantorovich, 1940) and later modified toward today’s
form (Vaserstein, 1969). The EMD also has been implemented as
an algorithm in the field of computer science for the comparison
between two images (Rubner et al., 2000). The main idea
underlying the EMD is that the shortest distance between two
objects is equal to the length of the shortest delivery path from
one object to the other. For neural spike data, delivery in a spike
train operates by moving a part of the spike train from one
location to another, with a goal to match one spike train with the
other. A delivery path length is then calculated by summing the
delivery distance between two locations multiplied by the amount
of a delivered part. If we deal with a spike train as a distribution
with a sum of 1, then the EMD measures a unique shortest
distance between a pair of spike trains in a non-parametric way.
A notable difference of the EMD from that of Victor and Purpura
(1996) is that delivery in the method of Victor and Purpura moves
an entire spike at once while delivery in the EMD can move a
part of a spike.

Spike train distance can be used for both rate coding and
temporal coding (Satuvuori and Kreuz, 2018). Rate coding
accounts for the firing rate profile of neuronal spike trains while
temporal coding relates to temporal patterns. In our development
of spike train distance, we focus on a particular aspect of the
firing rate profile, an overall firing rate difference between spike
trains, whereas we refer a temporal pattern of spike train to
the distribution of spike timings in time within a spike train.
Specifically, the temporal pattern focuses on the pattern of a
spike timing distribution as a function of time, not on how many
spikes occur in any particular time window. For example, a spike
train with spike timings at (0, 1, 10) has a similar temporal
pattern to another spike train (0, 0.1, 0.9, 1, 10, 10.1) while their
overall firing rates are different. In the case of temporal coding,
spike train distance is often used to measure the dissimilarity of
temporal patterns of neuronal spike trains, which may not be
explained by rate coding alone. For such a case, measurements of
spike train distance need to be independent of firing rate changes.
On the other hand, if a spike train distance is sensitive to firing
rate changes, it may be ambiguous whether the analysis results
reflect changes of mere temporal patterns or a mixed effect of
firing rates. Hence, robustness against firing rate changes should
be a desired property of spike train distances in pure temporal
coding studies. Previous methods for spike train distance have
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not focused much on this robustness except the one by RI-
SPIKE-distance (Satuvuori et al., 2017). As such, the EMD is
chosen here to ensure robustness to firing rate changes. The
EMD can measure spike distance robust to the overall firing rate
difference between spike trains because the EMD normalizes the
total amount of spikes in a spike train to 1, making the overall
firing rate of each spike train equal.

In this study, we employ the EMD as a spike train
distance for pure temporal coding research. Then, we compare
the EMD with several other spike train distances using
neural spike data generated from a set of simulations. The
simulations are designed to evaluate the performance of the
spike train distances with respect to essential aspects of
temporal patterns, including spike timing differences, temporal
similarity, and spike time synchrony, as well as the robustness
against firing rate changes in spike trains to deal with pure
temporal coding. In this study, we refer temporal coding to
a scheme to represent a spiking probability as a function
of time. It is different from a time-varying firing rate as
it does not reflect actual firing rates over time. In several
simulation tests, we evaluate how various spike train distance
methods, including the proposed one, represent pure temporal
coding using a spike generation probabilistic model, in which
a spiking probability varies with time independent of the
number of spikes. This includes the test of the robustness
of each method against firing rate changes by alternating the
total number of spikes while maintaining temporal coding
unchanged. The advantages of the EMD in pure temporal
coding research are demonstrated by the simulation results.
However, it should be noted that these advantages are not directly
transferable to rate coding.

MATERIALS AND METHODS

The Earth Mover’s Distance as a Spike
Train Distance
Two different spike trains may contain a different number of
spikes. However, the total number of spikes of each spike train
should be equalized to measure the distance between them based
only on shifting spikes in time. Victor and Purpura (1996) solved
this problem by assigning a cost to adding/deleting a spike and to
shifting a spike in time. However, this solution cannot produce a
unique distance because it varies with the ratio of two different
costs. To address this shortcoming, in the proposed method, we
first define a spike train in which each spike is assigned a fixed
quantity of 1. Then, we normalized individual spikes by the total
number of spikes, N, so that each spike’s quantity becomes 1/N
after normalization. For the normalization, we consider a spike
train as a function f of time t such that

f (x) =
{1
N , if a spike occurs at time t
0, otherwise

(1)

Where N is the number of spikes in the spike train. The overall
summation of f must be one except the case of N = 0. Hereafter,
a spike train will be expressed as functions f or g.

In our method, the EMD between f and g proposed
in Rubner et al. was adjusted for one-dimensional data
(i.e., a spike train) with a constraint that the sum of f
or g should be equal to 1 (Rubner et al., 2000). The
EMD is described as follows. We first rewrite the spike
trains, f = {(x1, 1/N) , (x2, 1/N) , . . . , (xN, 1/N)} and g ={(
y1, 1/M

)
,
(
y2, 1/M

)
, . . . ,

(
yM, 1/M

)}
from Eq. 1 where

xi and yj are a sequence of spike timings. Let d
(
xi, yj

)
be an

absolute difference between two spike timings xi and yj. Let ξij
be a flow (amount of delivery) from xi to yj and let4 =

[
ξij
]

be a
matrix of these flows (amount of deliveries) such that it transports
f to g satisfying the following conditions: (1) ξij is non-negative;

(2)
N∑

i=1
ξij ≤ 1/M,

M∑
j=1
ξij ≤ 1/N; and (3)

N∑
i=1

M∑
j=1
ξij = 1. Condition

1 fixes the direction of the delivery from i to j. Condition 2
indicates an effective delivery in the sense that it does not take
back what has been delivered. Condition 3 indicates that it
delivers the entire spike train. The transportation here means that
it makes f equal to g by moving parts of f. Then, the EMD between
f and g is given by

EMD
(
f , g

)
= min

{ N∑
i=1

M∑
j=1

d
(
xi, yj

)
ξij : 4

=
[
ξij
]

satisfies conditions above
}

(2)

This concept of spike train distance is illustrated in Figure 1.
When N = 0 (i.e., no spike in the train), the proposed method

cannot calculate the distance directly. However, it can deal with
such a case indirectly if we consider a spike train with no spike
similar to a spike train with spikes everywhere so that the distance
of it to any other trains becomes irrelevant to a certain spike
timing pattern. Let f0 be a spike train with no spike and let g
be another spike train to be compared. To calculate d

(
f0, g

)
,

let fn be a spike train with n spikes generated from a uniform
probability distribution defined on a certain bounded analysis
domain. The bounded analysis domain prevents the distance
from increasing to infinity, although the distance measurement
depends on how the analysis domain is determined. Then,
the EMD calculates d

(
f0, g

)
= lim

n→∞
E
(
d
(
fn, g

))
where E (·)

indicates an expected value. To deal with an empty spike
train in the EMD, we attended to an idea that there was also
no information about spike timing if spikes are everywhere,
uniformly distributed. It means that a spike train with one spike
at a specific location holds more information about spike timing
than a spike train with uniformly distributed spikes. In this
regard, an empty spike train would be more similar to a spike
train with uniformly distributed spikes at every location than a
spike train with one spike.

The EMD is a mathematical metric, that is, it satisfies the
three conditions: non-negativity, symmetry and the triangle
inequality (Rubner et al., 2000). This property shows that the
EMD conforms to our intuition about distance. Moreover, from
the fact that the EMD is calculated solely based on spike timing
data, it can be seen that the EMD is the shortest length based on
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FIGURE 1 | Illustration of the basic concept of the Earth Mover’s Distance
(EMD) to measure a distance between spike trains. The objective is to take
the smallest value among all possible delivery (flow, terminology in EMD) path
lengths between two objects (red and green). In this illustrative example, the
red object (e.g., spikes) is delivered to the green object in three possible
paths. Assuming the size of the red object is 1, the path length is calculated
by delivery distance (in time) multiplied by the amount of delivery (i.e., size of
the object). It is also possible to deliver only a fraction of the object, as shown
in the third case. If there are multiple deliveries toward the target object, the
final delivery path length is the sum of individual delivery path lengths.

spike timing between two spike trains. The EMD is calculated in
a non-parametric way so that it produces a unique value. Due to
its non-parametric approach, the EMD can avoid the dependency
of distance outcomes on parameters.

Moreover, there is an efficient way to calculate the restricted
version of the EMD as follows (Cohen, 1999). Let F and G be the
cumulative functions of f and g, respectively. Then, the EMD is
given by

EMD
(
f , g

)
=
∞

∫
−∞

|F (t)− G(t)| dt (3)

An example of the calculation procedure above is illustrated in
Figure 2.

Relationship With Other Measures
The Kullback–Leibler divergence is a distance between two
probability distribution functions. Therefore, the Kullback–
Leibler divergence computes the difference between two
functions at every point on the domain of a random variable,

FIGURE 2 | Illustration of the calculation procedure of the EMD described in
Cohen (1999). The distance between two spike trains, A and B, is calculated.
Initially, the non-negative values are assigned to every spike such that the sum
of the values in each train is equal to 1 (e.g., 1/2 for each spike in A or 1/3 for
each in B). The next step is to produce the cumulative functions (CF) for each
spike train (red bold line indicates the CF of spike train A and green dotted line
indicates the CF of spike train B). The next step is to integrate the absolute
difference between the two CFs (gray shading area). The final result of the
calculation procedure is 7/3.

similar to the EMD computation as shown in Eq. 3. However, a
difference between the Kullback–Leibler divergence and the EMD
is that the EMD depends not only on the difference between the
functional values but also on the distance between the points
on the domain while the Kullback–Leibler divergence does not.
In Eq. 3, the EMD is calculated by (the difference between
functions) × (the length to which the difference is maintained),
so that the EMD is based on spike timing difference unlike the
Kullback–Leibler divergence.

In the Victor-Purpura distance, spikes are shifted if the
distance between spikes is small or added/deleted if the distance
is large, depending on the time-scale parameter q. On the other
hand, in the EMD, no matter how large the distance is, the spikes
are always shifted. This indicates that the EMD can be viewed
as similar to the Victor-Purpura distance with an extremely
high cost of adding/deleting spikes. But, since the parameter
q of the Victor-Purpura distance controls the time shift cost
only, not adding/deleting explicitly, imposing a high cost on
adding/deleting spikes can be implemented by selecting a very
small value for q. Consequently, the Victor-Purpura distance with
a small time-scale parameter (q) becomes similar to the EMD,
with an emphasis on temporal coding.

If two spike trains have the same number of spikes, N, and
the Victor-Purpura distance does not take the option of the cost
for adding/deleting spikes, the Victor-Purpura distance and the
EMD are exactly the same with the time-scale parameter q = 1/N.
Hence under those conditions, the EMD can be considered as the
average displacement of the spikes.
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When two spike trains have different numbers of spikes, the
EMD still calculates the average displacement of the spikes to
some extent: the displacement of the part of a spike instead of
an entire spike. The displacement of the part of a spike only
reflects the temporal difference between spike trains. In contrast,
the Victor-Purpura distance works in a different way due to the
option of the cost for adding/deleting spikes. Since the cost for
adding/deleting spikes directly correlates with a difference in the
number of spikes between trains, the Victor-Purpura distance can
reflect the rate difference. Hence, it has been pointed out that the
Victor-Purpura distance is suitable for rate coding but not for
temporal coding if the number of spikes is quite different between
spike trains (Satuvuori and Kreuz, 2018).

When two spike trains, f and g, have the same number of
spikes, we can describe the Victor-Purpura distance without
the option of adding/deleting spikes with respect to the EMD
as follows: dEMD

(
f , g

)
= lim

q→0

(
1/q

)
dVP[q]

(
f , g

)
, where dEMD

indicates the EMD between f and g and dVP[q] indicates the
Victor-Purpura distance with the time-scale parameterq. Even if
f and g have a different number of spikes, the description above
holds if the Victor-Purpura distance is applied to the normalized
spike train as in the EMD.

Evaluation
Our new spike train distance was compared to four existing
spike train distances: (1) the Victor-Purpura distance (Victor
and Purpura, 1996) with parameter values, q = 0.1, 0.2, . . .,
12.8 s−1; (2) the van Rossum distance (van Rossum, 2001) with
parameter values, τ = 1, 2, . . ., 16 s. Note that an alternative
calculation method (Houghton and Kreuz, 2012) was used here
instead of the original one (van Rossum, 2001); (3) the SPIKE-
distance (Kreuz et al., 2013); and 4) the RI-SPIKE-distance
(Satuvuori et al., 2017).

The tested time-scale parameters of the Victor-Purpura
distance and the van Rossum distance were determined as
follows. For the Victor-Purpura distance parameter q, the time
range of a spike train in which we performed the analysis was
set to 0 - 10 s. Then we opted for values of q varying between
two opposite cases: q = 0.1 s−1 and q = 12.8 s−1. The smallest
q = 0.1 s−1 in the Victor-Purpura distance made the metric focus
on a “spike timing shift” by assigning a cost of 1 to add/delete
each spike, whereas it costed at most

(
q = 0.1 s−1)

× (10 s) = 1
for time-shifting a spike. Then, the value of q was increased by
a factor of two up to the largest q = 12.8 s−1, which turned the
algorithm to focus on “spike adding/deleting” by increasing the
cost for time-shifting such as

(
q = 12.8 s−1)

× (1 s) = 12.8 even
for shifting a spike by 1 s.

Similarly, for the van Rossum distance, the smallest value of τ

= 1 s makes the convolved range narrow by setting the width of
the exponential function to 1 s. Then, the value of τ was increased
by a factor of two up to the largest value of τ = 16 s, which makes
the convolved range cover the overall spike train by setting the
width of the exponential function to 16 s.

Taking spike counts into dissimilarity is a key difference
between the EMD and the Victor-Purpura distance or the van
Rossum distance. In fact, while the EMD is focused on temporal

coding, both the Victor-Purpura distance and the van Rossum
distance cover from a mixture of temporal coding and rate
coding to pure rate coding by varying the time scale parameter
q or τ, as they are so designed originally. We demonstrated
such differences between the EMD and the Victor-Purpura
distance or the van Rossum distance in the simulations (see
section “Results”).

A comparison of the five spike train distances was conducted
to assess how well each distance represented three aspects
of similarity between spike trains: spike timing difference,
temporal similarity, and spike time synchrony. Furthermore,
each distance’s robustness to changes in firing rates was examined
for temporal similarity and spike time synchrony.

To avoid potential errors while replicating the existing
distance calculation procedures, we directly utilized the
available source code for each distance. The code to
calculate the Victor-Purpura distance was obtained from
http://www-users.med.cornell.edu/~jdvicto/spkdm.html.
The code for the van Rossum distance was from http:
//wwwold.fi.isc.cnr.it/users/thomas.kreuz/images/vanRossum.m.
The codes for both the SPIKE-distance and the RI-SPIKE-
distance were from http://wwwold.fi.isc.cnr.it/users/thomas.
kreuz/Source-Code/cSPIKE.html.

For the calculation of the SPIKE-distance and the RI-
SPIKE-distance, we always set the time range of the
underlying dissimilarity profiles exactly equal to the spike
generation interval.

Spike Timing Difference
A pair of spike trains with three spikes each was synthesized to
test spike timing difference. The locations of the first and third
spikes were fixed and matched between the trains. The second
spike of the first train was fixed close to the first spike. Then,
the location of the second spike of the second train was moved
toward the third spike. This test paradigm was performed in
the previous study by Kreuz et al. (2011) to compare several
distances. We adopted it here with the inclusion of the van
Rossum distance, the RI-SPIKE-distance, and the EMD. In the
test, we located the first spike at 0 s and the third at 10 s in the
two trains. The second spike of the first train was fixed at 1 s.
Then, the second spike of the second train was moved from 1 s to
9 s in steps of 1 s (see Figure 3A). We measured the distance for
each shift of the second spike of the second train.

Temporal Similarity and Robustness to Firing Rate
Change
A simulation experiment was performed to test the robustness
of each distance against firing rate changes when measuring
temporal similarity between spike trains. Spike trains were
generated according to a simple probabilistic model. The
probabilistic model was built following a certain firing rate
profile. Temporal similarity would increase if a pair of spike
trains were generated from a probabilistic model sharing a similar
profile and decrease if the profiles become more dissimilar.
Note that temporal similarity describe here depends only upon
firing rate profiles, not firing rates themselves. The probabilistic
model used here consisted of two intervals where each interval
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FIGURE 3 | Spike train distance results for the measurement of spike timing differences. (A) Spike train A is fixed whereas spike train B is changed as the location of
a middle spike is shifted from left to right so that the spike timing difference between A and B increases linearly. (B) The spike train distance results of each of the five
distances: the Victor-Purpura distance, the van Rossum distance, the SPIKE-distance, the RI-SPIKE-distance, and the EMD. The horizontal axis represents the
amount of the shift of the middle spike in train B. The Victor-Purpura distance showed a linear increase in distance only for a certain parameter (e.g., q = 0.1 s). The
van Rossum distance showed an increase in distance non-linearly but monotonically. The SPIKE-distance and the RI-SPIKE-distance did not show monotone
increases. The EMD showed a linear increase as the spike timing difference increased. VP, Victor-Purpura distance; vR, van Rossum distance.

FIGURE 4 | Spike train distance results for the measurement of temporal similarity. (A) The probabilistic models of spike generation for spike trains A, B1, and B2 are
described. In the simulation, spike trains A and B1 share the same probabilistic model whereas spike trains A and B2 have different probabilistic models.
Accordingly, the temporal similarity is high between A and B1, but low between A and B2. (B) The spike train distance results of each of the five distances as the
ratio of firing rates between the spike trains varies from 2–2 to 22. The red lines represent distances between the spike trains A and B1 and green lines represent
those between A and B2. It is clearly shown that the variability of distances by changes in the ratio is larger than that by changes in the temporal similarity for the four
distances, including the Victor-Purpura, the van Rossum, the SPIKE- and the RI-SPIKE- distances. In contrast, the distances calculated by the EMD remain almost
unchanged as the ratio changes, being robust to the firing rate change. (C) Results of spike train distance for measuring temporal similarity. DL is a distance with a
low temporal similarity, and DH is a distance with a high temporal similarity. (D) Quantification of robustness as the firing rate changes. DL(i) is the distance with a low
temporal similarity when the firing rate ratio is i, and DH(i) is the distance with a high temporal similarity when the firing rate ratio is i. The results of the
RI-SPIKE-distance partly disappear because of negative values. VP, Victor-Purpura distance; vR, van Rossum distance.

had a non-zero probability of containing a spike. Spikes in the
intervals were randomly generated from a uniform distribution
centered at 0 s and 10 s with a halfwidth of 1 s. Then, we
built three spike trains denoted as spike trains A, B1, and B2.
In the probabilistic model of spike train A, the probability
of generating a spike in the first interval was twice as high

as that in the second interval. Spike train B1 had the same
probabilistic model as spike train A. On the other hand, it
was reversed in spike train B2 such that the probability of
generating a spike in the second interval was twice that in the
first interval (see Figure 4A). Hence, the distance between A
and B1 should be smaller than that between A and B2, because
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temporal patterns would be more similar between A and B1 than
between A and B2.

To test the robustness of the distances against firing rate
changes, we varied the number of spikes in the trains. We first
set the number of spikes in A to 23

× 3, where 23 spikes were
generated three times (twice in the first interval and once in the
second interval). Then, five levels of the number of spikes were
used to vary the firing rates in B1 or B2. The number of spikes
in B1 or B2 was varied as 21

× 3, 22
× 3, 23

× 3, 24
× 3, and

25
× 3, making the spike count ratios of A to B1 or B2 2−2,

2−1, 20, 21, and 22. If a spike train distance is robust to firing
rate changes, distance variability over all the ratios should be
negligible compared to the difference in distance between A to B1
and between A and B2. We calculated the difference in distances
between these two pairs (A and B1, A and B2) using each of the
five distances by varying the firing rates in B1 or B2.

Spike Time Synchrony and Robustness to Firing Rate
Change
Another simulation experiment was performed to test the
robustness of each distance against firing rate changes when
measuring spike time synchrony between spike trains. To this
end, a pair of spike trains, denoted as A and B were synthesized.
Spike train A was generated to contain eleven equally spaced
spikes discharged at 0 s, 1 s, . . ., 10 s. Spike train B was generated
according to a probabilistic model, consisting of eleven uniform
distributions centered at 0 s, 1 s, . . ., 10 s. Then, we varied
the halfwidth of these uniform distributions across ten levels to
manipulate the degrees of spike timing jitter; the halfwidth was
set as 0.05 s, 0.1 s, . . ., or 0.5 s (see Figure 5A). As the halfwidth
was increased, spike timing jitter increased, which was likely to
desynchronize spike timing more between A and B. It would then
result in an increase in the distance between A and B.

Similar to section “Temporal Similarity and Robustness to
Firing Rate Change,” we varied the number of spikes in B to
test the robustness of the distance to firing rate change. The
number of spikes in B varied across nine levels to reflect firing
rate changes. It varied as 1× 11, 2× 11, . . ., and 9× 11 (the first
number in the product indicates the number of spikes randomly
generated in each interval of B) so that the ratios of A to B
became 1, 2, . . ., and 9, respectively. We expected that if the
spike train distance was robust to firing rate changes, variability
in the distance across the ratios should be negligible compared
to variability in distance according to different degrees of spike
timing jitter. We calculated the distances between A and B for
each degree of spike timing jitter for each firing rate level in B.

Comparison With Victor and Purpura’s Distance
The spike train distance in the present study is closely related
to the Victor-Purpura distance. It is important to compare the
properties between the Victor-Purpura distance and the EMD.
Satuvuori and Kreuz (2018) already discussed the suitability of
the Victor-Purpura distance to rate and temporal coding. They
suggested that the Victor-Purpura distance is suitable to rate
coding in general, but suitable to temporal coding only for similar
firing rates, even with a wide range of time-scale parameter q.
To verify whether the EMD suffered from a similar issue to the

Victor-Purpura distance, we applied the analysis of Satuvuori and
Kreuz (2018) to the EMD. Three spike trains were generated in
the analysis. Spike train A was generated to contain one spike
discharged at 5 s. Spike train B was generated according to a
probabilistic model of a uniform distribution centered at 5 s with
the halfwidth of 1 s. Spike train C was also generated according
to a probabilistic model of a uniform distribution centered at
5 s with the halfwidth of 5 s. Spike train B had five levels of the
number of spikes; 20, 21, 22, 23, and 24. By comparison, spike train
C had only one spike as in spike train A (see Figure 6A). From the
point of view of temporal coding, it was expected that the distance
between A and B was smaller than the distance between A and C
and the distance between B and C, because spike trains A and
B had more similar temporal information compared to C. The
Victor-Purpura distance was examined for time-scale parameters
in the range from 0.01 to 1000.

RESULTS

Spike Timing Difference
The spike train distance measurements exhibited differences
among the five spike train distances tested in this study. The
Victor-Purpura distance linearly increased as the spike timing
difference increased with one parameter value (q = 0.1 s), but
was saturated with the other parameter values (q = 0.8, 12.8 s).
Similarly, the van Rossum distance monotonically increased as
the spike timing difference increased with one parameter (τ
= 16 s), but was saturated with another parameter (τ = 1, 4 s).
Both the SPIKE-distance and the RI-SPIKE-distance increased
first but later decreased as the spike timing difference increased.
The EMD linearly increased as the spike timing difference
increased (Figure 3B).

Also, we observed that the SPIKE-distance and the RI-SPIKE-
distance consider the spike trains to be more similar if a middle
spike is close to the edge spikes than if the middle spike is located
at an equal distance from both edge spikes. The reason is that
these methods focus on the local dissimilarity between spike
trains. Two spike trains are locally similar when the middle spike
is close to the edge spikes since then it becomes easier to see it
as part of a doublet that together is quite synchronous with the
single spike in the other spike train. In contrast, if the middle
spike is located at an equal distance from both edge spikes, then
the distance to the nearest spike in the other train is maximized,
increasing local dissimilarity. The van Rossum distance seems to
evaluate a similarity of two spike trains based on synchronization
of spike timings within a certain temporal range, where the
temporal range was determined by the time-scale parameter τ.
Then, if two spikes from each spike train occurred within the
temporal range, these spikes were deemed to be synchronized.
The Victor-Purpura distance with the parameter q = 0.1 s (i.e.,
emphasizing temporal differences) and the EMD linearly increase
as the difference of middle spikes is linearly increased, because
these methods focus on equalizing two spike trains. Hence, for
instance, if a difference in the latency of neural responses between
spike trains is of interest, the Victor-Purpura distance with a small
q and the EMD can provide an appropriate measure.
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FIGURE 5 | Spike train distance results for the measurement of spike time synchrony. (A) Spike train A is fixed to have equally spaced eleven spikes. Spike train B is
generated by a probabilistic model of spike generation with various spike timing jitter. The spike timing jitter is manipulated by increasing the halfwidth of eleven
uniform distributions each centered at the spike timing of train A. Spike time synchrony between A and B decreases as spike timing jitter increases. (B) The spike
train distance results of the five distances as the ratio of firing rates of B over A are equal to 1. All the distances exhibit approximately linear increases with increases
in spike timing jitter. (C) The spike train distance results of each of the five distances as ratios of firing rates of B over A increase from 1 to 9. The index of the vertical
axis corresponds to the index of the spike trains in panel (A), where increasing index number indicates increasing spike timing jitter. Distances proposed by
Victor-Purpura and van Rossum are significantly affected by the variation in the firing rate ratio, whereas those proposed by the SPIKE-distance, the
RI-SPIKE-distance and the EMD are not. (D) Results of spike train distance for measuring spike time synchrony. Dk(n) is the distance when the firing rate ratio of one
spike train to another was n, and k denotes the halfwidth of the uniform distribution in the spike train. VP, Victor-Purpura distance; vR, van Rossum distance.

The characteristics of distances for small spike timing
differences (for example, the middle spike is shifted by 0, 1, or 2
in Figure 3B) can provide information about temporal precision
of the spike timing. The Victor-Purpura distance (q = 0.1 s)
and the EMD are linearly decreasing when the spike timing
difference converges to zero. This linear property allows them
to have the information about temporal precision, but with no
conclusive answer to whether a timing difference between spike
trains is precise or not. On the other hand, the van Rossum
distance, the SPIKE-distance and the RI-SPIKE-distance are
rapidly decreasing when the spike timing difference is nearing

zero so that they can provide precise information whether timing
difference falls within some range or not.

Temporal Similarity and Robustness to
Firing Rate Change
We evaluated distance measurements between a pair of spike
trains with a high or low temporal similarity when the ratio of the
firing rates between the trains varied. Let DL be a distance with
a low temporal similarity (i.e., between A and B2) and DH be a
distance with a high temporal similarity (i.e., between A and B1)
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FIGURE 6 | Comparison with the Victor-Purpura distance in terms of suitability for temporal coding with different firing rates. (A) Spike train A has only one spike with
fixed timing. Spike train B has five levels of spikes with narrow range spike timing jitters. Spike train C has only on spike with a broad range spike timing jitter. The
desirable expected results are that the distance between spike trains A and B is smaller than the distance between A and C and the distance between B and C.
(B) The Victor-Purpura distance with various values of the time-scale parameter q. The Victor-Purpura distance did not show the desirable result with increases in
firing rate ratio. (C) The EMD showed desirable results overall with increases in firing rate ratio, having a nearly constant scale. (D) The EMD between a uniform spike
trains with different firing rate ratios. It shows that the EMD is not completely insensitive to firing rate differences.

(see section “Temporal Similarity and Robustness to Firing Rate
Change”). First, we calculated the ratios of DL to DH from each
distance for the case when the firing rates of two spike trains were
equal, and the result is summarized in Figure 4C. The Victor-
Purpura distance (q = 0.1, 0.8 s), the van Rossum distance (τ = 4,
16 s), and the EMD clearly resulted in a smaller distance with
a high temporal similarity than with a low temporal similarity
(Figure 4B). These low and high temporal similarities reflect

the global difference between two spike trains in Figure 4A, not
the local difference. The spike trains B1 and B2 in Figure 4A
are globally different, but locally similar (near 0 s and 10 s).
Since both the SPIKE-distance and the RI-SPIKE-distance focus
on the local difference, these distances show less sensitivities for
the discrimination between low and high temporal similarity in
a global sense. In contrast, the EMD is a global measurement,
showing an ability to discriminate global temporal similarity.
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Although the RI-SPIKE-distance is robust to firing rate changes
just as the EMD is, this point indicates a key difference between
the RI-SPIKE-distance and the EMD (see section “Discussion”).

Next, to assess the robustness to firing rate changes when
unequal firing rates exist between the spike trains, we calculated
the ratio [DL(i) − DH(i)]/| DH(1) − DH(i)|, where i denotes the
firing rate ratio of spike train B1 (or B2) to that of spike train A
for i = 1/4, 1/2, 2, 4 [e.g., DH(1/2) refers to distance measurements
when the firing rate ratio is 1/2]. The distance results for each
value of i are given in Figure 4D. As for the robustness to firing
rate changes, the Victor-Purpura distance and the van Rossum
distance increased as the ratio of the firing rates deviated from 1,
which indicates that variability in the distance across the firing
rate ratios was larger than the difference in distances between
high and low temporal similarities, revealing that the distances
were not robust to firing rate changes. This was not the case
for the SPIKE-distance and the RI-SPIKE-distance, where the
distances remained at similar levels across the ratios of firing
rates although variability in the distance across the ratios was
larger than the difference in distances between high and low
temporal similarities, showing that they were also not robust to
firing rate changes. On the other hand, the EMD showed that
variability in the distance across the ratios was much smaller
than the difference in distances between high and low temporal
similarities, demonstrating its robustness to firing rate changes
(Figure 4B). The SPIKE-distance, the RI-SPIKE-distance, and the
EMD showed the robustness to firing rate changes relative to the
Victor-Purpura distance and the van Rossum distance. It implies
that those three distances are more suitable for temporal coding.

Spike Time Synchrony and Robustness
to Firing Rate Change
Spike train distances with various synchrony levels were
measured using each of the five distances and their robustness
to firing rate changes was tested. Every distance clearly showed
a similar pattern when the ratio of firing rates was 1 such
that the spike train distance increased as the degree of spike
timing jitter increased (Figure 5B). To assess the robustness to
firing rate changes, we quantified the effect of the firing rate
ratio on the spike train. Here, let Dk(n) be the distance when
the firing rate ratio of spike train B to spike train A was n,
where k denotes the halfwidth of the uniform distribution in B
(see section “Spike Time Synchrony and Robustness to Firing
Rate Change”). We first calculated the ratio D0.05(9)/D0.05(1)
using each distance and obtained the results as summarized
in the left figure of Figure 5D. Next, we calculated the ratio
[D0.5(9)−D0.05(9)]/[D0.5(1) – D0.05(1)] using each distance and
obtained results, which are listed in the right figure of Figure 5D.
A comparison of these two ratios showed that when the firing rate
ratio increased, the Victor-Purpura distance and the van Rossum
distance increased rapidly, whereas other distances were almost
unchanged. In other words, by using the Victor-Purpura distance
and the van Rossum distance, variability in distance across the
firing rate ratios was larger than variability in distance due to
different degrees of spike timing jitter, showing that the distances
were not robust to firing rate changes. The SPIKE-distance, the

RI-SPIKE-distance, and the EMD revealed that variability in
distance across the ratios was smaller than that among different
levels of synchrony, demonstrating that they were robust to
firing rate changes. Moreover, the RI-SPIKE-distance and the
EMD appeared to be most robust (Figure 5C). These results
indicate that the Victor-Purpura distance and the van Rossum
distance are suitable to measure the dissimilarity due to both
rate difference and temporal synchrony. The SPIKE-distance is
also suitable to measure the dissimilarity in both rate difference
and temporal synchrony although it seems to be less sensitive
to rate difference than the Victor-Purpura distance and the van
Rossum distance. On the other hand, the RI-SPIKE-distance and
the EMD are suitable to measure temporal synchrony, insensitive
to rate differences.

Comparison With Victor and Purpura’s
Distance
The simulation result for the Victor-Purpura distance in the
present study was similar to that in the study by Satuvuori and
Kreuz (2018). The expected result was that the distance between
the spike trains A and B was smaller than those between A and
C and between B and C, because the temporal coding between A
and B is more similar than that between other pairs (Figure 6A).
When the firing rate ratio of B to A or C was 20 (i.e., the same
firing rates), the Victor-Purpura distance showed the expected
result for a wide range of time-scale parameters q (Figure 6B,
top). It indicates that the Victor-Purpura distance is suitable for
temporal coding if the firing rate ratio is 1. However, as the firing
rate ratio of B to A or C increased, the Victor-Purpura distance
started to show unexpected results. The distances between A and
B and between B and C were increasing for every time-scale
parameter q, reflecting the increased rate difference (Figure 6B).
It indicates that the Victor-Purpura distance is not suitable for
temporal coding if the firing rate ratio deviates from 1. The
smaller value of the time-scale parameter q emphasizes the
temporal coding. However, the result showed that the Victor-
Purpura distance is still rate-sensitive even for a very small value
of q. Therefore, the value of q apparently changes sensitivity from
pure rate coding to combined rate and temporal coding, not to
pure temporal coding (Satuvuori and Kreuz, 2018).

On the other hand, the EMD showed the expected results for
all tested firing rate ratios. Furthermore, the distances between
every pair of spike train remained nearly constant even as the
firing rate ratio changed (Figure 6C). It indicates that the EMD is
suitable for temporal coding even though the firing rates differ
between the spike trains, showing that it does not reflect rate
coding. That is, the EMD is sensitive to pure temporal coding in
contrast to the Victor-Purpura distance.

Although the EMD is relatively insensitive to firing rate
difference than the Victor-Purpura distance, it is uncertain
whether the EMD is completely insensitive. In order to test the
effect of different rate ratios on the EMD, we calculated the EMD
between two Poisson spike trains that were generated uniformly
over [0, 1] s with different rates. The spike trains were generated
with firing rates of 1, 2, 4, 8, and 16 Hz. Then, the spike trains with
4 Hz were compared to those with other firing rates (including
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the identical 4 Hz) so that the firing rate ratios varied over 2−2,
2−1, 20, 21, and 22. The resulting EMD values are provided in
Figure 6D. The EMD between trains with the same temporal
pattern varied across different firing rate ratios although the EMD
variation was much smaller than the firing rate ratios variation.

Application to Neural Data
We demonstrated the measurement of a temporal similarity
between real neuronal spike trains using the EMD. The
neural data is publicly available from Flint et al. (2012), and
can be downloaded from https://crcns.org/data-sets/movements/
dream. The example of neural spike trains was obtained from the
primary motor cortex of a behaving non-human primate (Flint
et al., 2012). An example of various levels of temporal similarity
measured by the EMD is shown in Figure 7, in which the
spike trains observed under the different experimental conditions
(i.e., different movement directions of the subject’s arm) showed
mutually different temporal similarity with the base condition at
the arm movement direction of 45◦ (at which the example neuron
fired the most).

A neuron in the primary motor cortex (M1) modulates
its firing rates with arm movement directions (Georgopoulos
et al., 1982). Arm movements induce a certain temporal
pattern such that a spike train of a M1 neuron contains more
spikes around movement onset and less spikes before and
after movement offset. Also, the firing rate of the neuron is
maximal at the preferred direction (PD) of arm movement
and decreases gradually when the movement direction deviates
farther from the PD (Georgopoulos et al., 1982; Schwartz
et al., 1988; Kalaska et al., 1989; Caminiti et al., 1990). Hence,
the temporal patterns of spike trains between the PD and
other directions are expected to be more dissimilar when the
movement direction becomes more different from the PD. We
found that the EMD could describe various levels of temporal
similarity to the base condition for various directions and
specifically showed that distance increased as the angle became
orthogonal to the PD. In addition, the EMD on the true
data (red lines in the inlet graph of Figure 7A) revealed a
clearer difference between the PD and orthogonal angles than
that on the surrogate data with randomized spike timings
(gray lines of the inlet graph of Figure 7A). Specifically,
corresponding to each true spike train, we generated a random
spike train by generating spike timings from the uniform
distribution while maintaining the number of spikes unchanged.
So, if the difference between directions is mainly represented
in the number of spikes, the difference between directions
should also be maintained in the surrogate data. However, the
result demonstrated that the EMD difference between spike
trains of different directions was not merely due to the firing
rate difference.

A spike train distance shall yield small values between
spike trains obtained under similar experimental conditions
and large values between spike trains obtained under different
conditions. We demonstrated that the EMD satisfied such
a criterion using the real neuronal spike data of a non-
human primate in Figure 7. In Figure 7, the EMD showed

FIGURE 7 | Application of the spike train distance to real neuronal data in the
primary motor cortex in a non-human primate (Flint et al., 2012). During the
data recordings, the subject moved its arm from the central position toward
one of the eight target positions and repeated this movement multiple times
for each direction. Multiple spike trains of a single neuron for each of the eight
target positions are described at each peripheral location, indicated by a
directional angle as 0◦, 45◦, . . ., and 315◦. Each spike train is obtained for 1 s
after the onset of a movement cue. The spike trains exhibit different temporal
patterns for different directions. (A) The direction at 45◦ is set as the seed
direction, where the firing rate is maximum. Then, the spike train distance is
calculated between the seed direction and each of other seven directions. The
mean spike train distance between each pair is described using red circles in
the center. The spike train distance within the seed direction is also calculated
for comparison (no calculation between the same spike trains). The EMD from
actual data (red line of the inner graph) has a clearer difference between the
base and orthogonal angles than the EMD from data of randomly shifted spike
timing (gray line of the inner graph), which does not exhibit a temporal pattern,
showing the EMD difference is not merely due to the firing rate differences.
(B) Comparison between the EMD and other spike train distances for the data
in panel (A). Each spike distance was normalized such that D_new = (D −
D_min)/(D_max − D_min) so that the distance values are filled between 0 and
1, because each spike distance has different magnitude scale. Throughout
our spike distance analyses, we have set up a time-scale of spike trains for
the Victor-Purpura distance and the van Rossum distance as [0, 10] s, which
makes these distances applicable to both rate coding and temporal coding.
To be consistent with such parameter settings of all the analyses done in
the study, we also maintained the same time-scale range for the analysis of real

(Continued)
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FIGURE 7 | Continued
neuronal spike data in panel (A). Since the spike trains of the real neurons we
analyzed lasted for 1 s after a task onset, we extended spike trains by
multiplying 10 to spike timings, changing the spike train range from [0, 1] s to
[0, 10] s and used the same parameter settings as other simulation-based
analyses for the Victor-Purpura and the van Rossum distances. This extension
of the spike train range does not alter the SPIKE-distance, RI-SPIKE-distance
and the EMD because they produce time-scale independent distance
outcomes. VP, Victor-Purpura distance; vR, van Rossum distance.

small values when the subject moved the arm in a direction
similar to the preferred direction (i.e., similar experimental
condition) and large values when the subject moved the
arm in a direction dissimilar to the preferred direction (i.e.,
dissimilar experimental condition) (see red lines in the inlet
graph of Figure 7A). In particular, the EMD calculated this
result based on the temporal pattern rather than on the firing
rate difference.

We compared EMD and other spike train distances in
terms of an ability to distinguish primary motor cortical spike
trains with spiking timing information according to the arm
movement directions of a non-human primate. There were
eight equally divided arm movement directions in this 2D
center-out arm reaching task. As each spike train distance
covered a different magnitude scale, each spike train distance
was normalized by D_new = (D − D_min)/(D_max −
D_min) so that the distance values ranged between 0 and
1. We selected one of the eight directions as an anchor
(e.g., 45◦) and measured average pairwise distance using
each spike distance measure between a set of spike trains
corresponding to the anchor direction and each set of spike
trains corresponding to other directions. We found that the EMD
well represented differences between spike trains according to
movement directions such that the distance is 0 at the PD, 1
at the opposite of the PD, and the intermediate values at other
directions (Figure 7B).

We evaluated how the EMD could be used to discriminate
the neural spiking patterns of different upper limb movement
directions represented in the primary motor cortex (M1) of
a non-human primate (Flint et al., 2012). The non-human
primate moved the upper limb in eight different directions
while spiking timings of the population of M1 neurons
were recorded. There were multiple trials of this task in
each direction. As the duration of movements varied across
trials, we selected a 1-s epoch after the onset of a go cue.
Before spike train distance computation using various methods
including the EMD, we normalized the overall spike count
of every spike train in order to assess each method’s ability
to extract movement-related information only from spiking
timing patterns. This normalization was performed based on
resampling – i.e., randomly selecting a certain number of
spikes from the original spike train. In this manner, every
resampled spike train could have the same number of spikes
for every direction while retaining the temporal pattern of the
original spike trains.

For resampling, we first selected 113 out of 196 M1 neurons,
which fired spikes enough to produce spike trains suitable for

our distance analysis (a neuron was selected if it fired ≥50
spikes within the 1-s epoch on average for each direction). For
each selected neuron, we randomly chose R spikes from the
original spike train, repeating this resampling for every spike
train of every direction for that neuron. The number of spikes
in a resampled spike train, R, was stochastically determined by
generating a random number from the Poisson distribution with
the mean rate of 10. The mean rate of 10 was chosen such that
the largest number generated from the Poisson distribution with
this mean rate was unlikely to exceed the half of 50 (i.e., 25),
in order to make resampled spike trains vary over trials. This
ensured that the expected number of spikes in every resampled
train in every direction was identical, while allowing trial-to-trial
variability. Once the resampled spike train was generated, we
multiplied 10 to its spike timings to change the spike train range
from [0, 1] s to [0, 10] s, in order to adjust the range adequate for
pre-defined time-scale parameters of the Victor-Purpura distance
and the van Rossum distance. Also, as the SPIKE-distance and
the RI-SPIKE-distance calculate the distance in a range from the
first spike to the last spike, we added two auxiliary spikes at 0 and
10 s (Figure 8A).

For the assessment of each spike train distance method, we
randomly selected a single resampled spike train in the k-th
direction and calculated distance between it and every other
resampled spike trains using a given spike train distance. Those
calculated distances were averaged for each direction, yielding
the average distances di (i = 1,. . .,8) for each of the eight
directions. The averaged distances were then normalized over
direction such that di =

(
di − dmin

)
/(dmax − dmin) as above.

The shorter normalized distance toward the correct direction,
dk, represented better discrimination of the spiking patterns
for the correct direction from other directions. The EMD,
as well as the Victor-Purpura distance and the van Rossum
distance with specific parameter settings, resulted in shorter
distances than others (Figure 8B). Therefore, it demonstrated
that the EMD could decode the directional information of
upper limb movements in M1 neurons based on spiking
timing patterns.

We applied a clustering analysis [Houghton and Victor (2010)
and Victor and Purpura (1996)] to the data shown in Figure 8A
in order to compare the effect of each distance metrics on
decoding the information of movement directions from spike
trains. For decoding such directional information based on the
shortest distance to the training samples of spike trains, we
used the k-nearest neighbor algorithm (Fix and Hodges, 1951).
The decoding performance were measured by the normalized
transmitted information proposed in the study by Houghton and
Victor (2010), which ranges from 0 to 1 where a higher value
indicates more accurate decoding. The result demonstrated that
the EMD produced the best decoding output (with the number of
neighbors, k = 3) (Figure 8C).

We also applied the same clustering analysis to the data
shown in Figure 7A without removing firing rate differences,
in order to examine the effect of directionally tuned firing
rates on the spike train distances. We observed that the Victor-
Purpura distance and the van Rossum distance produced larger
normalized transmitted information than the SPIKE-distance,

Frontiers in Computational Neuroscience | www.frontiersin.org 12 December 2019 | Volume 13 | Article 82

https://www.frontiersin.org/journals/computational-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-13-00082 December 7, 2019 Time: 11:9 # 13

Sihn and Kim Earth Mover’s Spike Train Distance

FIGURE 8 | (A) Resampled spike trains of the neuron in Figure 7. The spikes
in the resampled spike train are randomly chosen from the pool of spike
timings in each direction. The spiking patterns in the original spike train is
preserved while the number of spikes is controlled. The range of spike trains
extended from [0, 1] s to [0, 10] s. (B) The directional decoding results using
spiking patterns in resampled spike trains. The distance indicates the average
distance for each direction. The distance for the direction is normalized by
other directions. The small value of the normalized distance toward the correct
direction indicates a high magnitude of discrimination of the spiking patterns
for the direction from the other directions. (C) Decoding directional information
from the spike trains in panel (A) is performed using the k-nearest neighbor
algorithm (k = 3 in our analysis) and evaluated by the normalized transmitted
information (see the text). Higher normalized transmitted information indicates
better decoding performance. VP, Victor-Purpura distance; vR, van Rossum
distance.

the RI-SPIKE-distance, and the EMD regardless of the setting of
time-scale parameters. It demonstrates that the first two distances
are more suitable for rate coding than last three distances, as
also shown in sections “Temporal Similarity and Robustness to
Firing Rate Change” and “Spike Time Synchrony and Robustness
to Firing Rate Change.”

DISCUSSION

In the present study, we applied the EMD to neuroscience as
a spike train distance to measure the shortest delivery path
length between spike trains. In this distance, a spike train
was considered as a function that assigned a non-negative
value at spiking time such that the sum of all non-negative
values was equal to one. For any two functions in this metric
space, one function could be transformed into another function
through the iteration of delivering a quantity at a point in the
domain of a function to another point. Each delivery created
a path whose length could be quantified by the product of
the amount of the moving quantity (i.e., a fraction of a spike)
and the delivery time. The sum of all delivery paths was
then defined as the delivery path length. Among all possible
delivery paths, the shortest path was sought, and its length
was used as the spike train distance. We demonstrated that
our distance sufficiently expressed temporal similarity based
on the temporal profile of spiking probabilities and spiking
time synchrony between a pair of spike trains, and that
it was more robust to differences in absolute firing rates
with a common temporal profile of spike probabilities than
previous distances.

The metric EMD is induced by the metric based on the
temporal events. It means that a distance between two spike
trains is entirely measured from distances between spikes
within those spike trains. Owing to this property, the EMD
can vary linearly in response to linear changes in spike
timing (Figure 3). This linear property may strengthen the
reliability of the EMD for capturing spike timing differences
between spike trains and allow one to easily determine
how the distance would vary with spike timing variation.
On the other hand, the EMD can provide information
about temporal precision, but not conclusive information
whether spike timing difference is in some range or not, due
to this linearity.

The EMD measures a difference between two normalized
spike trains, in contrast to other distances that use spike trains
per se without normalization. This normalization allows the EMD
to compare the actual temporal patterns of a pair of spike trains
with negligible influences from firing rates. This property makes
the EMD more robust to firing rate changes than other distances
(Figures 4, 5). It is expected that temporal coding research may
take advantage of this property.

Of course, not every spike train distance should be robust
against firing rate change. If a distance between spike trains
with similar firing rates is smaller than between spike trains
with different firing rates, it is suitable for representing rate
coding. Yet, if certain cases require information merely from
temporal coding, the robustness against firing rate change would
be necessary for distance measures. Since the EMD does not
reflect rate coding as discussed above, the spike counts would be
supplementary to the EMD.

The EMD as a spike train distance is based only on spike
timing differences, which allows the EMD to be adequate for
temporal coding. The EMD measures the minimum length
of spike timing shifts to make two spike trains identical.
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To calculate the length, the amount of spikes in two
spike trains should be the same and the normalization step
making the amount of spikes in each train equal to one
is necessary. The normalization step plays a crucial role in
the robustness to firing rate changes. Thus, existing methods
other than the EMD can be applied to normalized spike
trains, which would preserve the robustness to firing rate
changes. However, other methods may not be as adequate
as the EMD for temporal coding. For example, the Jensen–
Shannon divergence, which measures dissimilarity between two
probability distributions, can be applied to the normalized spike
trains because the normalized spike trains can be considered
as a probability distribution. But, since it is not concerned
with spike timing differences, it may not provide measurements
useful for temporal coding. Also, the Victor-Purpura distance
can be applied to the normalized spike trains. However, since
the Victor-Purpura distance has the adding/deleting spikes
option, it cannot guarantee that the dissimilarity is calculated
based only on spike timing differences. Hence, we suggest
that the EMD can be advantageous over other methods to
provide spike train distance based solely on timing differences
between a given pair of spikes and therefore useful for
temporal coding schemes.

Precise spike timing is a key element in temporal coding
(Butts et al., 2007; Gollisch and Meister, 2008; Johansson and
Flanagan, 2009). There are largely two different approaches to
measure how much the spike timings of a pair of spike trains
match with each other. One way is to measure a global difference
between the trains of spike timings, and the other way is to
measure local matches between the trains of spike timings. For
example, in the global measurement, a spike train (2,3,4,5) can
be matched with a spike train (1,2,3,4) by shifting all spike
timings by +1, and a spike train (1,2,3,5) can be matched
with the spike train (1,2,3,4) by shifting its last spike timing
by −1. Therefore, the distance between (1,2,3,4) and (2,3,4,5)
is larger than the distance between (1,2,3,4) and (1,2,3,5). The
Victor-Purpura distance with a short time-scale parameter and
the EMD measure spike distances in this way: 0.4 vs. 0.1 in
the Victor-Purpura distance with q = 0.1, and 1 vs. 1/4 in the
EMD. In the local measurement, the spike train (1,2,3,4) and
the spike train (2,3,4,5) are locally matched at three different
timings ({2, 3, 4}), and the spike train (1,2,3,4) and the spike
train (1,2,3,5) are also locally matched at three different timings
({1, 2, 3}). As such, the distance between (1,2,3,4) and (2,3,4,5)
is the same as the distance between (1,2,3,4) and (1,2,3,5). The
van Rossum distance, the SPIKE-distance, and the RI-SPIKE-
distance measure spike distances in this way. Hence, we can
select the global spike train distance measurement if we intend
to measure how similar the distributions of spike timings in two
spike trains are, or the local spike train distance measurement
if we intend to focus on local spike timing matching. In this
study, we propose a new method for the global spike train
distance measurement.

Although the EMD is less affected by firing rate changes
compared to other distances, it is not completely invariant to
firing rate changes. For instance, in our simulations, when two
spike trains were generated from uniform distributions in an

interval from 0 to 1 s with a firing rate of 1 Hz, the EMD between
two spike trains was 0.33 ± 0.24 s. However, when two spike
trains were generated in the same interval with a firing rate
of 10 Hz, the distance decreased to 0.14 ± 0.06 s. Therefore,
there was a tendency for the EMD to decrease as the firing rate
increased. Also, these results were confirmed with Poisson spike
trains in Figure 6D. The results showed that the EMD values
varied with different firing rate ratios although the variation
was very smaller than firing rate ratios. Therefore, meticulous
care is required when using the EMD for temporal coding
research without considering rate coding completely. However,
in cases where two spike trains exhibit certain temporal patterns
and those two temporal patterns are different, the EMD would
quantify dissimilarity well between two temporal patterns even if
they have fairly different firing rates.

The present study mainly addressed the sensitivities of spike
train distances to rate and temporal coding. However, in addition
to sensitivities, each distance offers a unique feature. The SPIKE-
distance and the RI-SPIKE-distance have fine time resolutions
and thus can measure differences in local spike patterns.

The EMD also has a definite advantage such that it can
be extended to stochastic spike trains as follows. Many noise
sources perturb the generation of spikes, inducing a variability
of spiking events (Faisal et al., 2008). Due to this variability, we
can consider a spike train as a stochastic process. For examples,
the peristimulus time histogram based on the average of trials
or the probabilistic reconstruction of a spike train (Kass and
Ventura, 2001) takes stochastic spike trains into account. In this
sense, a spike train distance that can deal with continuous data is
needed to compare two stochastic spike trains. Moreover, such a
spike train distance should be based on distance metrics defined
with deterministic spike trains, as a stochastic spike train can
be viewed as a natural variant of a deterministic spike train
(Haslinger et al., 2009). The proposed distance, EMD, bases itself
in a metric space for deterministic spike trains and can also
be applied to stochastic spike trains in the form of normalized
continuous data.
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