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Behavioral studies have shown spatial working memory impairment with aging in several

animal species, including humans. Persistent activity of layer 3 pyramidal dorsolateral

prefrontal cortex (dlPFC) neurons during delay periods of working memory tasks is

important for encoding memory of the stimulus. In vitro studies have shown that these

neurons undergo significant age-related structural and functional changes, but the extent

to which these changes affect neural mechanisms underlying spatial working memory

is not understood fully. Here, we confirm previous studies showing impairment on the

Delayed Recognition Span Task in the spatial condition (DRSTsp), and increased in vitro

action potential firing rates (hyperexcitability), across the adult life span of the rhesus

monkey. We use a bump attractor model to predict how empirically observed changes in

the aging dlPFC affect performance on the Delayed Response Task (DRT), and introduce

a model of memory retention in the DRSTsp. Persistent activity—and, in turn, cognitive

performance—in both models was affected much more by hyperexcitability of pyramidal

neurons than by a loss of synapses. Our DRT simulations predict that additional changes

to the network, such as increased firing of inhibitory interneurons, are needed to account

for lower firing rates during the DRT with aging reported in vivo. Synaptic facilitation

was an essential feature of the DRSTsp model, but it did not compensate fully for the

effects of the other age-related changes on DRT performance. Modeling pyramidal

neuron hyperexcitability and synapse loss simultaneously led to a partial recovery of

function in both tasks, with the simulated level of DRSTsp impairment similar to that

observed in aging monkeys. This modeling work integrates empirical data across multiple

scales, from synapse counts to cognitive testing, to further our understanding of aging

in non-human primates.

Keywords: bump attractor, patch clamp, persistent activity, prefrontal cortex, synaptic plasticity

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2019.00089
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2019.00089&domain=pdf&date_stamp=2020-01-17
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:christina.weaver@fandm.edu
https://doi.org/10.3389/fncom.2019.00089
https://www.frontiersin.org/articles/10.3389/fncom.2019.00089/full
http://loop.frontiersin.org/people/838507/overview
http://loop.frontiersin.org/people/111724/overview
http://loop.frontiersin.org/people/861398/overview
http://loop.frontiersin.org/people/32057/overview


Ibañez et al. Aging in Working Memory Models

INTRODUCTION

Spatial working memory in rhesus monkeys, as in humans, is
mediated by the action potential firing activity of neurons in
the dorsolateral prefrontal cortex (dlPFC) (reviews: Funahashi,
2017; Constantinidis and Qi, 2018; Miller et al., 2018). And,
as in humans (Albert, 1993; Salthouse et al., 2003; Fisk and
Sharp, 2004; Rhodes, 2004; Sorel and Pennequin, 2008), the
effects of aging on working memory is heterogeneous—while a
significant proportion of rhesus monkeys become increasingly
impaired on tasks of spatial working memory during normal
aging (“unsuccessful agers”), a significant number of “successful
agers” show no signs of impairment (Lacreuse et al., 2005;
Moore et al., 2006, 2017). Furthermore, for impaired subjects,
impairment typically begins fairly early in the aging process,
during early middle age (Moore et al., 2005, 2006, 2017). This
distribution of impaired and spared monkeys across the lifespan
enables assessment of brain changes associated not simply with
aging, but with cognitive performance per se in this model of
normal human aging. This approach has been taken in studies
of normal aging by our group and others (reviews: Peters,
2007; Luebke et al., 2010, 2015; Wang et al., 2011; Peters and
Kemper, 2012), in which monkeys were assessed on working
memory tasks such as the Delayed Response Task (DRT) and
the Delayed Recognition Span Task in the spatial condition
(DRSTsp), and their brains subsequently examined for a wide
variety of parameters. Thus, declines in spatial working memory
have been associated with many sub-lethal changes to the
structure and function of neurons, glial cells, and white matter
pathways in the dlPFC of the rhesus monkey (Peters, 2007, 2009;
Peters et al., 2008; Bowley et al., 2010; Luebke et al., 2010; Shobin
et al., 2017). Reductions in synapses and increased dystrophy of
white matter pathways begin in early middle age; for example,
Peters et al. (2008) showed a continuous decrease in the number
of excitatory and inhibitory synapses, detectable even in middle
age in the monkey dlPFC.

In addition to well-documented structural changes, functional
alterations to the electrophysiological properties of supragranular
neurons in the agingmonkey dlPFC have been reported in several
studies (Chang et al., 2005; Wang et al., 2011; Coskren et al.,
2015). Layer 3 dlPFC pyramidal neurons exhibit significantly
increased evoked action potential (AP) firing rates in vitro for
aged compared to young monkeys (Chang et al., 2005; Coskren
et al., 2015). In contrast, another study (Wang et al., 2011)
reported that in vivo firing rates of dlPFC DELAY neurons
decreased with aging during the DRT, for monkeys performing
the task well. Since persistent firing patterns of dlPFC pyramidal

neurons encode precisely tuned spatial and temporal information
during a working memory task, exploring how these findings

might complement each other may reveal new predictions about
spatial working memory decline.

While the growing body of literature over the past 20 years

has documented numerous changes to neurons, glial cells and
white matter pathways in the aging brain that are associated with
cognitive changes, which changes are the key determinants of
age-related cognitive declines has not yet been firmly established
(Hof and Morrison, 2004; Luebke et al., 2010; Morrison and

Baxter, 2012; Peters and Kemper, 2012; Konar et al., 2016; Motley
et al., 2018; Cleeland et al., 2019). This lack of insight is partially
due to the difficulty in first, selectively targeting individual
variables (such as firing rate or synapse number) in humans or
experimental subjects without, second, also altering upstream or
downstream effectors. A powerful way to gain insight into which
age-related changes are most consequential for dlPFC network
behavior during normal aging is through computational models
that are constrained by empirical data. This is the approach we
use here through a systematic study of the “bump attractor”
neural network model, and its extension to memory retention in
a new task similar to the DRSTsp.

The bump attractor network has been used to model spatial
working memory in the DRT (Compte et al., 2000; Wang et al.,
2011, 2013; Wimmer et al., 2014; Wu et al., 2016 for review). The
bump attractor exhibits persistent firing activity after an initial
stimulus disappears, encoding amemory of the stimulus location.
The bump attractor was used to show that an age-related loss
of synaptic strength could account for reduced firing rates of
dlPFC DELAY neurons (Wang et al., 2011), but the effects of
increased excitability of pyramidal neurons seen in vitro on the
function of bump attractor models has not been examined. We
have previously used computational modeling to predict which
intrinsic electrophysiological and morphological properties of
individual pyramidal neurons contribute to the action potential
firing rate increases seen in aging (Coskren et al., 2015; Rumbell
et al., 2016). Here, we extend these previous single neuron studies
using network-level modeling to predict the effect of empirically
observed physiological and structural changes in the aging rhesus
dlPFC on cognitive behavior. We obtained whole-cell patch
clamp recordings of dlPFC pyramidal neurons from behaviorally
characterizedmonkeys across the adult lifespan. Empirical results
indicated that previously reported physiological changes seen
in aging are already present in middle age, and are correlated
with cognitive impairment. This modeling work aims to connect
age-related changes in non-human primates across multiple
empirical scales, from synapse counts and physiology of single
neurons up to network output and cognitive performance. We
predict that the increased firing rates and reduced synapse density
observed with aging may partially compensate one another, but
still are sufficient to induce substantial cognitive deficits in the
DRT and DRSTsp.

MATERIALS AND METHODS

Experimental Subjects
The rhesus monkeys (Macaca mulatta) studied here were a part
of a larger study of normal aging of the brain. Data were obtained
from a total of 9 young (8.9± 0.5 years old), 18middle-aged (18.2
± 0.5 years old), and 12 aged (24.7 ± 0.7 years old) monkeys
(Table 1). Prior to the electrophysiological experiments, all but
3 young monkeys completed cognitive testing of the DRSTsp
(Moore et al., 2017). Monkeys were obtained from the Yerkes
National Primate Research Center at Emory University (Atlanta,
GA, USA), and housed in the Laboratory Animal Science Center
(LASC) at the Boston University School of Medicine (BUSM)
under strict accordance with the guidelines established by the
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TABLE 1 | Experimental subjects.

Monkey Age (years) Sex DRST Spatial Span

Young: PIL 6.8 M –

PIE 6.9 M –

PIK 8.2 M –

AM299 8.6 F 2.50

AM296 8.8 M 2.22

AM289 9 M 3.05

AM255 9.5 F 3.42

AM295 10.9 M 2.27

AM254 11.4 F 2.40

Middle aged: AM321c 13.4 M 3.61

AM278 15.3 F 2.31

AM288 16 M 2.22

AM351c 16.4 F 1.94

AM285 17 F 2.14

AM350c 17.3 F 2.92

AM340 17.6 F 2.12

AM297 18.1 M 2.26

AM265L 18.2 F 1.84

AM272L 18.2 F 2.32

AM274 19 M 2.31

AM342c 19.2 F 2.94

AM279 19.5 M 2.43

AM271L 20 F 1.95

AM263L 20.3 F 2.02

AM311c 20.3 M 3.19

AM314x 20.8 M 2.71

AM264L 20.9 F 2.07

Aged: AM270L 21 F 2.06

AM266L 21.1 F 2.06

AM286 22.4 F 2.1

AM282 23.1 M 2.20

AM281 23.2 M 2.23

AM276 24.4 M 2.12

AM356 24.8 M 1.99

AM284 25.5 M 2.28

AM283 26.4 M 2.04

AM 298 26.8 M 2.38

AM355 28.4 M 2.08

AM034L 29.5 M 2.18

NIH Guide for the Care and Use of Laboratory Animals and
the US Public Health Service Policy on Humane Car and Use
of Laboratory Animals. Both Yerkes National Primate Research
Center and BUSM LASC are fully accredited by the Association
for Assessment and Accreditation of Laboratory Animal Care.

Behavioral Assessment
A total of 36 subjects were tested on the DRSTsp, 6 young,
18 middle-aged, and 12 aged monkeys. The DRSTsp is a
short-term memory task in which the subject distinguishes a
novel cue (spatial location) from an increasing set of recently

presented, familiar cues (spatial locations) (Moore et al., 2017
and Figure 1A). All stimuli were identical brown disks, each
covering one of 18 small wells arranged on a testing board in a
3 × 6 matrix. On the first trial one of the wells was baited with
a reward then covered with a disk. Once a screen was raised, the
monkey moved the disk to receive the reward. The screen was
lowered before the second trial, when that same well (with no
reward) was covered with a disk and a second well was baited
with a reward and covered with an identical disk (10 s delay).
Subsequent trials include the previous cue plus one new cue, until
the monkey is unable to identify novel cues (spatial locations).
Monkeys were tested for 10 consecutive days. The cognitive score
recorded is the recognition span: the mean number of unique
cues the monkey identified correctly before making a mistake.
Some of the subjects were assessed on the DRSTsp more than
once over a period of several years as part of a longitudinal
study of aging. The DRSTsp score used in the present study for
longitudinally assessed subjects was the one most proximal to the
date the subject was sacrificed.

Preparation of Cortical Slices and
Whole-Cell Patch Clamp Experiments
Monkeys were sacrificed as described in our previous
publications (Amatrudo et al., 2012; Medalla and Luebke,
2015; Medalla et al., 2017). Briefly, following perfusion with
Krebs-Henseleit solution, a block of tissue (∼1 cm3) was
removed from the left lateral prefrontal cortex, and sectioned in
ice-cold oxygenated Ringer’s solution (concentrations, in mM:
26 NaHCO3, 124 NaCl, 2 KCl, 3 KH2PO4, 10 glucose, 1.3 MgCl2,
pH 7.4; Sigma-Aldrich) into 300 µm-thick coronal slices with a
vibrating microtome. Slices were immediately transferred into
room temperature, oxygenated Ringer’s solution, for a minimum
of 1 h equilibration prior to recordings.

Individual slices were placed into submersion-type recording
chambers (Warner Instruments) positioned on Nikon E600
infrared-differential interference contrast (IR-DIC) microscopes.
During recordings, slices were continuously superfused with
oxygenated, room-temperature Ringer’s solution at a flow rate of
2–2.5 ml/min.

Standard tight-seal, whole-cell patch clamp recordings
were performed on layer 3 pyramidal neurons as described
previously (Amatrudo et al., 2012; Luebke et al., 2015; Medalla
and Luebke, 2015; Medalla et al., 2017). Electrodes were
fabricated using a Flaming/Brown micropipette puller (MODEL
P87, Sutter Instruments), and filled with potassium methane
sulfonate (KMS)-based internal solution (concentration, mM:
122 KCH3SO3, 2 MgCl2, 5 EGTA, 10 NaHEPES, 1% biocytin,
pH 7.4; Sigma-Aldrich). Experiments were performed using
EPC-9 or EPC-10 amplifiers (HEKA Elektronik) controlled with
PatchMaster acquisition software (HEKA Elektronik). Signals
were low pass-filtered at 10 kHz, and access resistance was
monitored andmaintained throughout each experiment. Current
clamp protocols were implemented as previously described
(Amatrudo et al., 2012; Luebke et al., 2015; Medalla and Luebke,
2015; Medalla et al., 2017), to assess the input resistance (in M�)
and repetitive firing rate (FR, measured in Hz) of the neurons.
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Whole-cell patch clamp recordings from 324
layer 3 dlPFC pyramidal neurons from 38 subjects
were used in this study. In total, 40 neurons for
the young, 188 for the middle-aged and 96 for the
aged subjects.

The Bump Attractor Network Model
The “bump attractor” network model was originally designed
to simulate a spatial working memory task for awake behaving
monkeys known as the DRT or the Oculomotor Delay
Task (Figure 2A, Goldman-Rakic, 1995; Compte et al., 2000;
Wang et al., 2011; Wimmer et al., 2014). After the monkey
fixates on the center of a computer screen (for 1 s in our
simulations), a light appears during the cue period in one of
eight directions around a circle (occurring at 0◦ and lasting
0.5 s in our simulations). After the cue period the light turns
off, and the monkey fixates on the center of the screen
during a delay period (2 s in our simulations). During the
response period (0.7 s in our simulations), the monkey shifts
its gaze (makes a saccade) to indicate its memory of the
location of the stimulus. The selective firing of pyramidal
neurons in the dlPFC to different spatial locations (their
preferred directions) is thought to be the mechanism by which
stimulus location is encoded. Thus, monkeys performing this
task successfully have neurons that exhibit persistent neural
activity during the delay period tuned to the stimulus location
(Goldman-Rakic, 1995; Compte et al., 2000; Wimmer et al.,
2014). This is achieved in the bump attractor model with
excitatory neurons tuned to each spatial location (so that
we can label each neuron by that location—its “preferred
direction”), with the synaptic strength between pairs of excitatory
neurons determined by the difference between the neurons’
preferred directions.

The bump attractor network used here assumed a firing-
rate model for individual neuronal dynamics, modified from
Wimmer et al. (2014). The code was written in Matlab
and is available on ModelDB (McDougal et al., 2017) at
Accession #256610. The local cortical network was composed
of NE = 640 excitatory (pyramidal) neurons (80%) and NI

= 160 inhibitory neurons (interneurons, 20%) (Abeles, 1991;
Braitenberg and Schütz, 1991) (Figure 2B). Each excitatory
and inhibitory neuron received three general types of synaptic
inputs: from excitatory and inhibitory connections with other
neurons in the same network, and excitatory connections from
other unspecified areas external to the network. The modeled
excitatory neurons also received an external input current
representative of the “cue.” The synaptic excitation of each
neuron was modeled with two distinct equations, separately
representing synaptic inputs mediated by AMPA and NMDA
receptors. The voltage dependence of the NMDA currents was
omitted from the present study, since Compte et al. (2000)
showed that the slow kinetics of NMDA-mediated synaptic
transmission was the most important feature for generating
stable persistent activity.

The equations for FR of each excitatory and inhibitory neuron
(rE and rI) were given by

τE
dr

j
E

dt
= −r

j
E + fE

(

I
j
E

)

+ σEξ
j
E(t)

τI
drkI
dt

= −rkI + fI

(

IkI

)

+ σIξ
k
I (t), (1)

for j = 1, . . . , NE and k = 1, . . . , NI. The parameters τE
and τI represented the membrane time constants for excitatory
and inhibitory neurons, respectively, (in ms), with f (I) the FR
activation function (or f-I curve, in Hz), total synaptic input
currents IE and II (in pA), and Gaussian white noise inputs

σEξ
j
E(t) and σIξ

k
I (t) (in Hz), where σE and σI were the standard

deviations. In this study, τE = 20ms, τI = 10ms, σE = 1,
and σI = 3. The activation function for the firing rate of each
neuron took the piecewise form (Brunel, 2003; Wimmer et al.,
2014; Roxin and Compte, 2016):

f (I) =















0 I ≤ 0

νc

(

I
Ic

)2
0 < I < Ic

2νc

√

I
Ic
−

3
4 Ic ≤ I

(2)

The parameter Ic represented a current near rheobase (measured
in pA), with corresponding firing rate νc (in Hz) (see Figure 2C).
Thus, the parameter pairs {νce, Ice} and {νci, Ici} uniquely
defined the f-I curves for excitatory and inhibitory neurons.
Here, Ici = 20 pA and νci = 50Hz, values approximately in the
regime for Chandelier cells in the monkey PFC (Zaitsev et al.,
2009; Povysheva et al., 2013). The parameters νce and Ice were
chosen to fit our empirical data as described below. See also the
Supplementary Information for a general, less excitable form of
both f -I curves.

The total synaptic input currents (in pA) for each neuron were

I
j
E (t) = I

j
Ea (t) + I

j
En (t) + I

j
Eg (t) + I0E + I

j
stim

IkI (t) = IkIa (t) + IkIn (t) + IkIg (t) + I0I ,

with time-dependent synaptic currents given by

τa
dI

j
Ea

dt
= −I

j
Ea +

NE
∑

i=1

GEEaMjir
i
E

τn
dI

j
En

dt
= −I

j
En +

NE
∑

i=1

GEEnMjir
i
E

τg
dI

j
Eg

dt
= −I

j
Eg − GIErI

τa
dIkIa
dt

= −IkIa + GEIarE

τn
dIkIn
dt

= −IkIn + GEInrE

τ g
dIkIg

dt
= −IkIg − GIIrI . (3)

The subindices a and n represented the AMPA and NMDA
synaptic receptors for the glutamatergic synapses, and g the
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GABAA receptor. Parameters τa, τn, and τg were the synaptic
decay time constants for AMPA, NMDA, and GABAA (Hestrin
et al., 1990; Spruston et al., 1995; Salin and Prince, 1996; Xiang
et al., 1998). We set τa = 2ms, τn = 100ms, τg = 10ms.
The quantity r represented the mean FR value of each neuron
type, and the Gpq parameters with {p, q} = {E, I} were the
constant synaptic weights. The connectivity matrix M was a
circular Gaussian function describing the translation-invariant
connections among the excitatory neurons. Labeling each neuron
by its preferred direction, the matrix elementMji for two neurons
j and i depended on the difference between their preferred
directions. That is,Mji ∝

∣

∣θj − θi
∣

∣, with

θj =

(

2j

NE
− 1

)

π

being the preferred stimulus direction of the excitatory neuron
j, where a complete circumference was divided into NE angles
(see Figure 2D). The quantities I0E and I0I represented constant
excitatory input currents from other brain areas to excitatory and

inhibitory neurons, respectively, and I
j
stim the input current to

each excitatory neuron due to stimuli during cue periods of the
tasks described below. Here, I0E = 80 pA and I0I = 15 pA. The
parameters Gpq were varied using the Latin Hypercube Sampling
design, as described below.

The input stimulus currents for each excitatory neuron
representing a stimulus at 0◦ was modeled as in Wimmer et al.
(2014) as

I
j
stim =

Iste
c · cos θj

∑NE
j=1 e

c · cos θj
,

which provided the bump-shaped input current to all excitatory
neurons (Figure 2D). Parameter Ist defined the strength of
the stimulus and c the concentration of excitatory neuron
to excitatory neuron connectivity. In our simulations, Ist =

40,000 pA, and c = 1.5 for the DRT model and c = 20 for the
DRSTsp model. A typical simulation of the DRT is shown in
Figure 2E.

Modeling Effects of Aging on Individual
Neurons
Increased AP Firing Rate (Hyperexcitability) of

Pyramidal Neurons With Aging
Wefit parameters νce and Ice of the excitatory neurons f-I curve to
in vitro FR data from the subjects described above. We computed
the mean FR vs. different input currents of all neurons from each
monkey, then computed a grand mean of FR vs. input current for
monkeys in each age group (Figure 3B). Fits of the parameters νce
and Ice to these data were estimated manually using the FindFit
function from Mathematica (Wolfram Research, Champaign,
IL). The value Ice = 98 pA fit all three age groups well, and
also agreed with rheobase values for regular spiking pyramidal
neurons with low input resistance (Zaitsev et al., 2012). We
used νce = 5, 7, and 9Hz to fit the f-I curve to data from the
young, middle-aged, and aged groups, respectively (Figure 3B).

Thus, to fit in vitro FR data it was sufficient to increase the
single parameter νce. Assuming the magnitude of changes to f-
I curves with aging would be similar at physiological vs. room
temperature, we used these parameter values directly in our
“young,” “middle-aged,” and “aged” network models. We also
repeated some DRT simulations after fitting a generalized, less
excitable firing rate activation function to the young, middle-
aged, and aged monkey data (Supplementary Information and
Supplementary Figure 1a).

Loss of Excitatory and Inhibitory Synapses With

Aging
Peters et al. (2008) reported a loss of the number of asymmetric
and symmetric synapses (excitatory and inhibitory, respectively)
in Layers 2/3 of area 46 of rhesus monkey as adult monkeys
age: 10% in middle-aged monkeys, and 30% in aged. For
the “young monkey model cohort” DRT studies below we
represented these respective losses as a 10% decrease in the
synaptic weights GEEa, GEEn, and GIE in middle-aged models,
and 30% decrease in these parameters in aged models. For the
“young monkey model cohort” DRSTsp studies, we decreased
these parameters in a semi-continuous way for the simulated
“aged” networks.

Exploring the DRT Model Parameter Space
We conducted two general types of parameter exploration studies
for the simulated DRT. The first were sweeps across parameter
space using a space-filling Latin Hypercube Sampling (LHS)
design, as in (Johnson et al., 1990; Rumbell et al., 2016). The LHS
design identified 4,200 points (networks) across the parameter
space of synaptic weights (GEEa, GEEn, GIE, GEIa, GEIn, and
GII), representing semi-random combinations of the synaptic
weights homogeneously distributed across the 6-dimensional
space (Rumbell et al., 2016) (see Table 2). Bounds of the
parameter space were chosen so that the mean firing rate of
excitatory neurons in all “young”model networks performing the
DRT successfully hadmean firing rates of excitatory neurons near
35Hz, a realistic value for the PFC (see Figure 5, black curves).
We examined the results of network simulations throughout the
LHS as the excitatory firing rate parameter νce varied from 2
to 10Hz (Figure 3). All other parameters remained fixed for
all simulations. For each of the 4,200 parameter combinations
in the LHS, the DRT was simulated 7 times to account for
variations due to noise in the firing rate equations (Equation 1),

TABLE 2 | Parameter ranges for each synaptic weight (in pA·s) used to generate

the Latin Hypercube Sample in the DRT model.

Synaptic weight Minimum Maximum

GEEa 10 80

GEEn 30 120

GIE 15 60

GEIa 100 240

GEIn 100 240

GII 100 240
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and results were averaged across all repetitions. We identified
five main categories of network behavior: maintaining tuned
persistent activity (TPA) to any angle orientation until the end of
the delay period; maintaining TPA tuned to the original stimulus
location at 0◦ (TPA-S) until the end of the delay period; under-
excited networks (either unable to maintain TPA until the end
of the delay, or unable to generate a bump of activity at all);
over-excited networks (all neurons firing at a similar rate by
the beginning of the cue period and for the remainder of the
task); and partially over-excited networks (initially maintaining
TPA, but becoming over-excited sometime during or after
the cue period).

For the second type of parameter exploration, we first defined
a young model cohort as points in the LHS associated with νce =

5Hz which maintained TPA-S until the end of the delay period
in at least one of the 7 simulation repetitions (shown as the νce

= 5Hz bar in Figure 3D). We then perturbed parameters of
the young model cohort to simulate the effects of morphological
and physiological changes that have been observed with aging,
or that we propose as novel possibilities (Figure 4). Eight kinds
of perturbations were made to the young model cohort: (1) The
increased excitability condition: increasing νce from 5Hz to 7 and
9Hz, keeping all else constant, to simulate the effect of increasing
excitability of individual neurons as monkeys age beyond young
adult. (2) The synapse loss condition: reducing the values of
GEEa, GEEn, and GIE by either 10 or 30%, simulating the effect of
fewer excitatory and inhibitory synapses onto pyramidal neurons
for middle-aged and aged monkeys, respectively. (3) Combined
increased excitability and synapse loss condition: simultaneously
perturbing the excitability and synapse parameters from (1)
and (2). Below this perturbation is also called the “observed
data conditions.” (4) The observed data conditions (combined
increased excitability and synapse loss conditions) as in (3),
plus increasing the excitability of the inhibitory neurons in
the same proportion as in the excitatory neurons: increasing
νci from 50Hz to 70 and 90Hz for middle-aged and aged
simulations, respectively. Each of these four perturbations was
then repeated after adding short-term synaptic facilitation (as
described below) to the networks of the young model cohort.
As with the LHS, each young cohort network simulation was
repeated 7 times with different randomized seeds and results
were averaged.

During in vivo recordings, Wang et al. (2011) found a similar
reduction of the firing activity of the DELAY neurons during
the cue and delay periods of a DRT with aging, in monkeys
performing the task well, and they used computational modeling
of the DRT to show that an age-related loss of synaptic strength
could account for that reduction. Here we studied if this was still
true when the excitability of the excitatory neurons increased at
the same time (Figure 5A). To do this, we examined the mean
firing rate of excitatory neurons for the networks in the LHS
maintaining TPA-S as νce increased from young to aged models
(for νce = 5, 7, and 9Hz). In these simulations we reduced the
stimulus scaling factor, Ist, by 10 and 30% for middle aged and
aged networks, respectively. This made firing rates during the
cue period more consistent with data from Wang et al. (2011),
without significantly affecting firing rates during the delay period
(driven primarily by GEEa and GEEn).

Simulating Memory Retention in a
DRSTsp—Like Task
Most of the computational models developed to understand the
neural mechanisms underlying working memory are based on
delayedmemory tasks with just one stimulus to remember during
the delay period. A small but growing number of computational
studies simulate behavioral tasks that involve the maintenance of
several stimuli in memory. Developing models able to maintain
thememory of multiple stimuli is challenging, due to interference
produced by the simultaneous activation of the many neurons
encoding the different stimuli. One way to avoid this problem
is to have each stimulus encoded by sparse bumps of activity
that does not overlap with firing activity encoding other stimuli
(Amit et al., 2003). The levels of inhibition (Edin et al., 2009) and
excitation (Wei et al., 2012) in the network are two factors that
control the working memory capacity for maintaining multiple
stimuli. The balance between them influences the number of
stimuli that can be remembered and how bumps fail (fading out
vs. merging). Continuous attractor models require fine-tuning of
the parameters to control the balance of excitation and inhibition.
Such fine tuning can be relaxed by introducing short-term
synaptic plasticity. Mongillo et al. (2008) proposed that calcium-
mediated synaptic facilitation could be the neural mechanism
underlying working memory. Rolls et al. (2013) showed that
synaptic facilitation can make the system more robust to model
parameters. Both found that synaptic facilitation increases the
multi-item working memory capacity in a discrete attractor
network. Mi et al. (2017) also found that working memory
capacity increased with the time constant of synaptic depression.
Some bump attractor models of the DRT have included synaptic
facilitation (Itskov et al., 2011; Hansel andMato, 2013), but in the
past it has often been omitted.

We extended the simulation setup of the DRT to create
a model of memory retention in a simplified task that is
similar to the DRSTsp. Our original bump attractor model
had great difficulty maintaining the memory of multiple
stimuli simultaneously, due to interference between the stimulus
responses (Amit et al., 2003; Barak and Tsodyks, 2014) and
because during the first cue and delay periods, all neurons not
involved in the bump activity were highly inhibited. Thus, when
introducing subsequent stimuli, the stimulus input current (equal
for all stimuli) was insufficient to induce subsequent bumps of
firing activity. This difficulty was addressed by adding short-
term synaptic facilitation in the excitatory-to-excitatory synaptic
connections. As in Itskov et al. (2011), we assumed that the
overall behavior of the synapses was facilitating, andmodified the
first two equations in Equation (3) as

τa
dI

j
Ea

dt
= −I

j
Ea +

NE
∑

i=1

GEEaMjiu
iriE

τn
dI

j
En

dt
= −I

j
En +

NE
∑

i=1

GEEnMjiu
iriE,

with the facilitation variable u given by

τ f
du

dt
= − (u− U) + τf U rE (1− u).
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Here u is a utilization variable defining the fraction of total
neuronal resources that each spike is able to access, representing
increased calcium levels at presynaptic terminals (Mongillo et al.,
2008). Without firing, u decays to its baseline value U with time
constant τf . In all our simulationsU = 0.001 and τf = 1, 500 ms.

Behavioral data showed a maximum DRSTsp score of 3.61 for
one of the middle-aged subjects (Figure 1B). The cognitive score
recorded is the recognition span: the mean number of stimuli
the monkey identified correctly before making a mistake. Thus,
we designed our computational task so that perfect performance
gave a simulated DRSTsp score (hereafter called DRSTsim) of
four, corresponding to successful encoding of four stimuli equally
spaced around the ring from the DRT (Figure 6A). Our DRSTsp
model simulated a “pre-cue” period of 1 s, followed by alternating
cue and delay periods (lasting 0.5 and 2 s, respectively). The pre-
cue and delay periods represented times in the real DRSTsp when
the screen was down while appropriate wells were baited. In
each subsequent cue period, a new stimulus was presented in
addition to any stimuli that were presented before. In the first
cue period a stimulus was presented at 0◦; in the second, stimuli
were presented at 0◦ and 90◦. In the third cue period stimuli were
presented at 0◦, 90◦, and −90◦, and in the fourth stimuli were
presented at 0◦, 90◦, −90◦, and 180◦. Stimuli were identical each
time at each presentation, with Ist = 40,000 pA and c = 20. After
the first cue period, if a network simulation encoded all stimuli
during cue period n and maintained all n− 1 stimuli throughout
the previous delay period (by maintaining a bump for each
stimulus with maximum FR of at least 5Hz), we assumed that
the novel stimulus was identified correctly. In this way, our task
models the ability of our network to retain the presented stimuli,
but does not model the process of choosing which stimulus
among all presented is the novel one. Our task also assumes that
each trial period lasts the same amount of time, whereas monkeys
performing the DRSTsp terminate each successful trial bymoving
the disk corresponding to their choice before the maximum trial
time expires. Sample networks withDRSTsim = 4, 3, 2, and 1 are
shown in Figure 6B.

With this new DRSTsim established, we again used LHS to
explore how task performance varied across the parameter space
of the six synaptic weights (GEEa, GEEn, GIE, GEIa, GEIn, and
GII; see Table 3) and for νce = 5, 7, and 9Hz. As for the
DRT, each LHS had 4,200 points (Figure 6C); we chose the
bounds of the parameter space so that all 4,200 networks encoded
at least the first stimulus for all three νce values. Simulations
were performed only once, since synaptic facilitation made the
network performancemuch less sensitive to random fluctuations.

We also defined a young monkey model cohort for the
DRSTsp model to be a group of 40 randomly chosen points in
the LHS with νce = 5Hz (Figure 6D, young case: black bars), half
with DRSTsim = 4 and the other half with DRSTsim = 3. We
then “aged” the networks in this cohort by applying increased
excitability and synaptic loss conditions, and increasing the
excitability of the inhibitory neurons, as follows. We set bounds
for νce just beyond our young and aged values (4.5 and 9.5Hz)
and generated 40 randomly distributed values between them. We
then defined two piecewise linear functions that interpolated the
synapse loss conditions from the DRT (0, 10, and 30% loss when

TABLE 3 | Parameter ranges for each synaptic weight (in pA·s) used to generate

the Latin Hypercube Sample in the DRSTsp model.

Synaptic weight Minimum Maximum

GEEa 10 40

GEEn 30 60

GIE 15 30

GEIa 100 160

GEIn 100 160

GII 180 240

νce = 5, 7, 9Hz, respectively, slope 5% loss/Hz when νce < 7Hz
and 10% loss/Hz when νce ≥ 7), and computed a corresponding
level of synapse loss for each of the 40 νce values. We computed
corresponding values for νci by multiplying each νce value by 10,
consistent with the relationship between these two parameters
elsewhere in our study. We computed an associated age for each
νce value similarly, interpolating the mean age for the three
empirical groups (8.9, 18.2, and 24.7 years for young, middle
aged, and aged groups) when νce = 5, 7, 9Hz, respectively. We
induced the increased excitability and synapse loss conditions of
these 40 values separately and together, plus increased excitability
of inhibitory neurons, and then computed the corresponding
DRSTsim for each transformed member of the young cohort
(6,400 simulations in all: 160 for each point in the cohort). We
then calculated the mean DRSTsim for each simulated age group
(young group, 7.5 < years < 13; middle-aged group, 13 ≤ years
< 21; and aged group, 21 < years < 26). To summarize the
change in performance across the simulated age span (Figure 7),
we calculated the relative change in the mean DRSTsim from the
mean ages of the young simulations to the aged simulations (9.9
and 24.2 years, respectively) under each perturbation condition.

Statistics
All analyses were performed in RStudio 1.1.463 (RStudio Team,
2015; Mangiafico, 2016). We treated age as a continuous variable
in most analyses, using standard linear regression as well as
generalized linear mixed-effects models (GLMMs) to explore
relationships between output variables vs. dependent variables.
Because electrophysiological data were collected from several
neurons per subject, the subject was treated as a random
effect blocking factor in relevant analyses (Grafen and Hails,
2002; Darian-Smith et al., 2013). For the GLMMs, marginal R2

captured the variance explained by fixed factors; conditional R2

captured the variance explained by the whole model including
the random effects (Nakagawa and Schielzeth, 2013). In analyses
with DRSTsp score (one data value per subject) vs. physiological
variables, physiological variables were first averaged within
each subject.

Age was treated as a categorical variable (young, middle-
aged, and aged) when analyzing relationships firing rate vs. age
(Figure 1E). Specifically, we used two-way repeated measures
ANOVA (including subject as a random effect) to determine
whether there were differences in FR vs. age group, with injected
current as the repeated measure. Before performing the ANOVA,
quantile-quantile plots were used to identify extreme outliers
from normality for each age group and level of injected current,
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and then Shapiro-Wilk’s test of normality was applied. Post-hoc
analyses were conducted using Tukey-adjusted comparison of
estimated marginal means. For all analyses, the significance level
was α = 0.05.

RESULTS

Rhesus Monkeys Show DRSTsp
Impairment and Increased AP Firing Rates
of dlPFC Pyramidal Neurons With Aging
We examined relationships between performance on the
DRSTsp, age of the monkeys, and physiological variables assessed
(Figure 1). Among the 39 subjects analyzed for this study, 36
of them completed behavioral testing on the DRSTsp (6 young,
18 middle-aged, and 12 aged). There was a significant decrease
in performance on the DRSTsp with age [linear regression,
DRST = −0.032∗Age + 2.97, R2 = 0.18, F(1, 34) = 7.43,

p = 0.0101; Figure 1B] replicating past findings on impaired
working memory with age in monkeys (Herndon et al., 1997;
Moore et al., 2006, 2017; Wang et al., 2011). In vitro slices were
prepared from the dlPFC of the same monkeys that were tested
behaviorally for whole cell patch clamp recordings. Data from
324 neurons met our criteria for inclusion. Our statistical analysis
used random effects modeling to control for the variation of
physiological variables within monkeys (Materials andMethods).
Input resistance (Rn) increased with aging (Rn = 4.02∗Age+ 89.1
M�, marginal R2 = 0.08, conditional R2 = 0.20, p < 0.0001;
Figure 1C), while resting membrane potential did not (p =

0.11). There was a significant positive relationship between input
resistance and AP firing rate at all levels of current injection (p <

0.00016 and conditional R2 ≥ 0.21 for each level, Figure 1D).
Next, we compared depolarizing current step-evoked AP

firing rate in neurons from young, middle-aged, and aged
subjects (Figure 1E). Before using the two-way repeated
measures ANOVA, outliers from normality were removed for AP

Delayed Recognition Span Task in the spatial condition (DRSTsp)
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FIGURE 1 | Cognitive performance and physiological variables vary with aging. (A) DRSTsp setup. Brown circles represent disks covering the wells arranged on a

board in a 3 × 6 matrix. (B) DRSTsp performance vs. age. (C) Input resistance vs. age; regression includes subject as random effect. Data shown as mean ± SEM for

each subject. (D) FR vs. input resistance for + 130pA current step; these variables were highly correlated at all levels of current injection (not shown). (E) Left: Trains

of APs evoked by 2-s depolarizing current steps for representative young, middle-aged, and aged neurons. Scale bar: 50mV and 500ms. Current steps were applied

from resting membrane potentials, shown as arrows. Right: FR vs. injected current. (F) DRSTsp performance vs. AP firing rate in response to a +130pA current

injection. In all graphs, young, middle-aged, and aged subjects are shown in black, blue, and red, respectively. Data were obtained from a total of 9 young, 18

middle-aged, and 12 aged monkeys (Table 1). All but 3 young monkeys completed cognitive testing of the Delayed Recognition Span Task in the spatial condition.

Whole-cell patch clamp recordings from 324 pyramidal neurons from 38 subjects were used.
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firing rate vs. current injection level for each age group. There
was a significant effect of age group on firing rate [F(2, 22) = 8.63,
p = 0.0017] but no significant interaction between age group
and injected current [F(2, 799) = 2.76, p = 0.064]. Firing rates
were significantly higher for the aged vs. young monkeys [Tukey-
adjusted comparison of estimated marginal means, t(22) = 4.14,
p = 0.0012]; firing rates for middle-aged monkeys did not differ
from the other two groups [young vs. middle-aged, t(22) = 2.23, p
= 0.072; middle-aged vs. aged, t(22) = 1.99, p= 0.139; Figure 1E].
Hereafter, we refer to this increased firing rate of current step-
evoked APs as hyperexcitability of pyramidal neurons.

Given significant relationships between aging and both
DRSTsp performance and the physiological variables, we next
examined whether both aging and physiological variables might
together affect DRSTsp performance. Since Rn and firing rate
were significantly related at each injection level, we only included
a single physiological variable in the analysis: firing rate in
response to the 130 pA current injection. There was a significant
negative linear relationship between DRSTsp span and firing
rate [DRSTsp = −0.055∗FR + 2.95Hz, R2 = 0.19, F(1, 33)
= 7.71, p = 0.0090, Figure 1F]. To examine the effect of age
and firing rate on DRSTsp span, we fitted a regression model
that included age, firing rate, and their interaction (R2 =

0.26, F(3, 31) = 3.68, p = 0.0225). The negative effect of
the firing rate on DRSTsp was significant (p = 0.0441) and it
did not depend on the age of the animal (age by firing rate
interaction effect p = 0.1340). The effect of age alone was not
significant either (p = 0.0904). These analyses lend support to
the hypothesis that firing rate affects DRSTsp performance more
than age does, though this support is somewhat tenuous for the
following reasons. First, the delay between DRSTsp assessment
and physiological recording of neurons from these valuable
subjects can last several months to a year or more, and may
mask a relationship between these variables. Second, some of
these subjects were employed in longitudinal studies for other
projects and tested on the DRSTsp a few times; we cannot rule
out a practice effect in these subjects. Thus, we turned next
to computational modeling to create a controlled environment
for exploring how changes in AP firing rates (independent of
a subject’s age) might affect performance on spatial working
memory tasks.

Model 1: The Delayed Response Task (DRT)
An Optimal Level of Pyramidal Neuronal Excitability

Maximized Successful Performance in the DRT

Model
Here, we used computational modeling to explore how these
empirical results of physiological changes and a past study
on reduced synapse counts with aging might together impact
cognitive function in middle-aged and aged monkeys. We chose
a continuous bump attractor networkmodel which has been used
by several previous research groups (Compte et al., 2000; Wang
et al., 2011, 2013; Wimmer et al., 2014). The network model
simulates an empirically measured behavior (the oculomotor
DRT administered to macaque monkeys) through a simple but
elegant model network that can be manipulated in specific
ways (Figure 2; Materials and Methods). During the cue period

of the DRT simulations, all excitatory neurons received an
external input current, tuned to 0◦ direction, proportional to
their orientation preference (Figure 2D). In the subsequent
delay period, the main input to model neurons came through
recurrent activity within the network. If persistent neural activity
is maintained at the end of the delay period—in the form of a
bump-shaped FR profile for a subset of the excitatory neurons—
then the orientation angle corresponding to the center of the
bump of activity at the end of the delay is assumed to represent
the stimulus location encoded by the network (Figure 2E).

Varying model parameters created a distinct network
configuration, and each simulation represented a model DRT
trial. Successful DRT trials maintained TPA (and in particular
TPA-S) until the end of the delay period (Figures 2E, 3A2). Failed
DRT trials can occur in several ways, including under-excitation,
a loss of TPA during the cue or delay periods (Figure 3A1);
generating TPA early in the cue or delay periods but ending with
full network over-excitation (Figure 3A3); and an over-excited
network throughout the simulation (Figure 3A4).

An important feature of the bump attractor model we chose
to use (Wimmer et al., 2014) is the ability to control the
f-I curve of individual neurons by two simple parameters.
Adjusting the parameter νce was sufficient to fit the f -I curves
of excitatory model neurons to the mean in vitro AP firing
rates of pyramidal neurons reported above (Figure 3B and
Equation 2). Young, middle aged, and aged f -I curves used νce

values of 5, 7, and 9Hz respectively. These fits were accurate
for low input current, but became more excitable than the
empirical f-I curves for high inputs. However, our results did
not depend on the specific shape of the f-I curves: similar results
were found when using less excitable analogs of the firing rate
function (Supplementary Figure 1). Synaptic weight parameters
represented the number of excitatory and inhibitory synapses
onto excitatory (GEEa, GEEn, and GIE) and inhibitory (GEIa, GEIn,
and GII) neurons. Varying these synaptic weights allowed us to
model published data showing an age-related reduction in the
excitatory and inhibitory synapses with aging in the neuropil
of layer 2/3 of rhesus monkey dlPFC (Peters et al., 2008). In a
series of simulations, we kept νce fixed at distinct values and then
used the Latin Hypercube Sampling (Materials and Methods) to
choose points throughout the parameter space generated by the
six synaptic weights. Each point was simulated seven times, as if
administering multiple DRT trials to each virtual monkey. We
examined whether points across the parameter space maintained
TPA throughout the delay period, or had a different outcome
(Figure 3C).

Increasing the excitability of model excitatory neurons
strongly affected the ability of the DRT model networks to
maintain TPA. The 3D plots in Figure 3C summarize DRT
model results for 4,200 points across the parameter space of
synaptic weights as νce increased. Blue circles represent “under-
excited” networks, where no TPA was detected at the end
of the delay period (e.g., Figure 3A1). Green circles represent
networks that maintained TPA for the entire delay period (e.g.,
Figure 3A2)—corresponding to “virtual monkeys” that encoded
some stimulus location. Remaining circles represent partially
over-excited networks (yellow; e.g., Figure 3A3), which started

Frontiers in Computational Neuroscience | www.frontiersin.org 9 January 2020 | Volume 13 | Article 89

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Ibañez et al. Aging in Working Memory Models

FIGURE 2 | The bump attractor model of the DRT. (A) The DRT includes fixation, cue, delay, and response periods of 1, 0.5, 2, and 0.7 s, respectively. The ×, black

dots, and green dot, respectively, represent the fixation point, the 8 possible stimulus locations, and actual stimulus location (0◦) in the simulations. Arrow indicates the

saccade direction during the response period. (B) The recurrent excitatory-inhibitory network. (C) The f-I curve for young model excitatory neurons. (D) Ring

connectivity among excitatory neurons. Mji is the connectivity matrix element between excitatory neurons j and i, depending on the difference between their preferred

directions (θj and θi , respectively). Each neuron is strongly connected to its nearest neighbors (red line), with the connection strength decaying with distance (yellow

and green lines). The neuron with preferred direction 0◦ receives the strongest stimulus current, which follows a Gaussian distribution centered at 0◦, generating a

bump of activity during the delay period (persistent activity tuned to the stimulus location) when excitation and inhibition in the network are well-balanced. (E) Sample

DRT model output (side and top views) when the 0◦ stimulus location is encoded correctly: excitatory neuron FR vs. simulation time with neurons labeled by their

preferred direction.

out with TPA that led to firing in all neurons, or were already
over-excited networks during the fixation period before the
cue ever appeared (red; e.g., Figure 3A4). Below we focus
on the green points, which maintained TPA throughout the
delay period.

The greatest likelihood of maintaining TPA, and in particular
TPA-S, across the synaptic weight parameter space occurred
for intermediate values of νce–neither too low nor too high
(Figure 3D). The optimal value among those we tested was
νce = 5Hz. Values of νce below this optimum led to many
networks across parameter space that were under-excited; above
the optimum many networks were over-excited (Figure 3C).
In either case, the networks were much less likely to encode
the stimulus successfully until the end of the delay period,
and this reduced likelihood was visible even in our “middle-
aged” networks (νce = 7Hz). Thus, if the excitability of
single pyramidal neurons increased above the optimal value
without complementary changes in other parameters, the
network’s ability to maintain TPA, in particular to the stimulus

location—and successful working memory performance—was
impaired. These findings also held with the less excitable form
of the f -I curves fit to the data (Supplementary Figures 1b,d).

Synaptic Changes Partially Compensated for

Increased Pyramidal Neuron Excitability in

Successful DRT Model Networks
Points across parameter space that did maintain TPA-S as νce

increased had lower values of the excitatory synapse weights
for excitatory neurons (GEEa and GEEn) and higher values
of the inhibitory synapse weights (GIE) for these neurons
(see Figure 3F; standard error bars lie beneath the symbols).
Figure 3E shows the mean values of each synaptic weight for
all sampled points maintaining TPA-S as νce increased. There
was no clear relationship between νce and the synaptic weight
parameters onto interneurons (GEIa, GEIn, and GII). However,
excitatory parameters GEEa and GEEn decreased noticeably as νce

increased before leveling off after themiddle-aged νce value, while
GIE increased in a nearly linear fashion. To maintain TPA in the
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FIGURE 3 | DRT model output varied across the parameter space. (A) From left to right: Example model output showing (1) under-excitation; (2) TPA-S; (3) partial

over-excitation; and (4) over-excitation. (B) The model f-I curve fit (solid lines) to empirical AP firing rates of pyramidal neurons of young, middle-aged, and aged

subjects, averaged for each age group (black, blue, and red, respectively, shown as mean ± SEM at each injection level). (C) DRT model output for 4,200 points of

the parameter space LHS, shown in 3D projections across the subspace of the excitatory (GEEa and GEEn) and the inhibitory (GIE) synaptic weights of pyramidal

neurons as their excitability increased (νce = 3, 5, 7, and 9Hz). The numbers in the 3D projection for νce = 5Hz indicate each type of network performance shown in

(A), represented as blue, green, yellow, and red dots, respectively, in each graph. (D) Number of points in each LHS maintaining TPA-S as νce increased. Dark gray

bar indicates the young model cohort. (E) Projections across the (GEEa, GEEn) subspace showed that points maintaining TPA-S shifted to lower (GEEa, GEEn) values as

νce increased. (F) Mean synaptic weights (GEEa, GEEn, GIE, GEIa, GEIn, and GII) for all points maintaining TPA-S as νce increased. GEEa, GEEn, and GIE values shown as

purple, pink, and red open circles, respectively; GEIa, GEIn, and GII values shown as dark green, light green, and open blue triangles, respectively. S.E.M. bars lie

beneath the symbols.

DRT model (particularly when tuned to the stimulus location),
the increased excitability of excitatory neurons was compensated
by altering synaptic weights onto those same neurons: with less
synaptic excitation and more synaptic inhibition. Yet despite
the compensatory synaptic weight changes, fewer networks were
able to maintain TPA-S as νce increased (Figure 3D). See also
Supplementary Figure 1c for the generalized f -I curve.

These LHS simulations revealed that network function can be
maintained somewhat as parameters vary freely to compensate
pyramidal neuron hyperexcitability with aging, but the predicted
compensation is not consistent with the empirically observed
loss of both excitatory and inhibitory synapses on pyramidal

neurons with aging. To explore how concomitant changes to
firing rates and synapses might affect network function, we first
considered all networks maintaining TPA-S when νce = 5Hz
as corresponding to a simulated cohort of cognitively healthy
young monkeys (the 679 model networks with νce = 5Hz in
Figure 3D, called the “young model cohort”). We then examined
the performance of the model networks in this cohort on the
DRT after perturbing parameters in proportions that matched
empirically observed changes with aging (Figure 4). First is the
hyperexcitability for pyramidal neurons in vitro described above
and in our past work (Chang et al., 2005; Coskren et al., 2015).
Second, Peters et al. (2008) reported a ∼10% loss of excitatory
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FIGURE 4 | Perturbing the DRT young model cohort. Young cohort defined as

networks from the LHS maintaining TPA-S when νce = 5Hz (679 networks,

dark gray bar in Figure 3D, and bar for young simulations in all panels in this

figure). For middle-aged and aged simulations: (A) Applied the synapse

condition to young cohort, holding the excitability parameters constant. (B)

Applied the excitability condition, holding synapse parameters constant. (C)

Applied both observed data conditions simultaneously (excitability and

synapse conditions). (D–F) Analogous perturbations as in (A–C), after adding

synaptic facilitation to each network.

and inhibitory synapses in the rhesus dlPFC neuropil by middle-
age, and a∼30% loss of both synapse types in aged subjects. This
finding is consistent with other studies of synapse and spine loss
with aging in the rhesus dlPFC (Hof et al., 2002; Duan et al., 2003;
Young et al., 2014).

Accordingly, we induced “middle-aged” and “aged”
conditions for pyramidal neuron excitability in the young
cohort by increasing νce to 7 and 9Hz, respectively. To model
synapse loss, we reduced GEEa, GEEn, and GIE in the youngmodel
cohort by 10 and 30%, respectively to create either a middle-
aged or aged synapse condition. We then induced the two
conditions separately and together (forming the “observed data
conditions”), and determined whether each transformed model
still maintained TPA-S during DRT simulations (Figures 4A–C).
A similar synapse loss condition for excitatory synapses was

modeled by Wang et al. (2011) to explain an age-related decrease
in firing rates during in vivo recordings of the DELAY neurons
for monkeys successfully performing the DRT. Our study builds
on Wang et al. (2011) by adding inhibitory synapse loss and f -I
curve changes with aging, and examining how these alterations
affect task performance for a range of parameter values.

DRT performance of the young model cohort was much more
sensitive to the excitability aging condition than to the synapse
condition (Figures 4A,B). Even under the strongest (aged)
synapse condition, over half the networks still maintained TPA-S
(Figure 4A). In contrast, under the excitability condition most of
the networks had already lost their capacity for TPA-S by middle
age (Figure 4B). In the parameter space exploration above,
pyramidal neuron hyperexcitability was partially compensated by
decreasing excitatory synapse weights and increasing inhibitory
ones. Thus, while Peters et al. (2008) found that inhibitory
synapse counts actually decrease with aging, we might still expect
a partial recovery of function when the young cohort underwent
the excitability and synapse aging conditions simultaneously
(“observed data conditions,” Figure 4C). However, this was not
the case, as almost none of the middle aged and aged models
maintained TPA-S after these perturbations. This does not seem
to match reality, since Wang et al. (2011) noted no difficulty
in identifying middle-aged and aged monkeys who perform the
DRT successfully, and impairment on the more difficult DRSTsp
is noticeable but not severe by middle age (Figure 1B).

Since external inputs in vivo are mediated by synapses whose
numbers likely also decrease with aging as in Peters et al.
(2008), we tested whether reducing the input stimulus current
affected the results for the conditions applied in Figures 4A,C

(Supplementary Figures 2a,b). We reduced the stimulus scaling
factor, Ist, by 10 and 30% for middle aged and aged networks,
respectively, in addition to applying the synapse condition
(Supplementary Figure 2a) and both observed data conditions
(Supplementary Figure 2b). The stimulus reduction did cause
a few more of the young cohort models to fail in the middle
age and aged conditions, but the overall trend of the results
and the number of impaired networks was similar. In particular,
DRT performance of the young model cohort was still much
more sensitive to the excitability aging condition than to the
synapse condition with stimulus reduction (compare Figure 4B
and Supplementary Figure 2a).

Recent studies have shown that including short-term
synaptic facilitation in discrete and continuous attractor models
can reduce the fine-tuning needed to maintain performance
(Mongillo et al., 2008; Itskov et al., 2011; Rolls et al., 2013).
We added short-term synaptic facilitation to our middle-aged
and aged DRT model networks (same parameter values in
both groups), as a baseline exploration of how this mechanism
might affect DRT performance with aging. The results were
qualitatively similar to those without facilitation, except
the model cohort networks were affected less by the aging
perturbations (Figures 4D–F and Supplementary Figures 2c,d

including stimulus reduction). Under the synapse condition,
almost all networks maintained TPA-S both for middle-aged and
aged simulations, with even a slight increase from middle-aged
to aged when the input stimulus was constant. Networks were
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FIGURE 5 | Firing rates and total synaptic current of excitatory neurons in DRT model networks maintaining TPA-S. (A) Left, mean FR of excitatory neurons vs.

simulated time for all sampled networks maintaining TPA-S when νce = 5, 7, and 9Hz (networks shown in Figure 3E). Shown are neurons with preferred directions

matching the 0◦ stimulus; gray curve shows the mean FR for neurons with a 180◦ preferred direction, which fired in none of these networks. Right, mean total synaptic

input current to excitatory neurons with the 0◦ preferred direction vs. simulation time for the same networks. (B) Mean FR of excitatory neurons for all networks

maintaining TPA-S for the model cohort perturbations when the observed data conditions were applied (Figures 4C,F). Left: without facilitation. Right: with facilitation.

(C) Top row: DRT model cohort with applied both observed data conditions and increased excitability of inhibitory neurons. Bottom row: Mean FR of excitatory

neurons for all networks maintaining TPA-S. Left: without facilitation. Right: with facilitation. In all panels, young, middle-aged, and aged groups are shown in black,

blue, and red, respectively; shaded regions indicate 95% confidence intervals about each mean.

still more sensitive to the excitability aging condition than to the
synapse condition (Figure 4D and Supplementary Figure 2c

vs. Figure 4E), but under the excitability condition nearly all
the middle-aged and about half the aged networks maintained
TPA-S. Applying both observed aging conditions together
with facilitation led to more networks maintaining TPA-S
(Figure 4F and Supplementary Figure 2d), suggesting that
synaptic facilitation can boost DRT performance.

Examining Firing Rates During the Simulated DRT
Wang et al. (2011) examined in vivo firing rates of area
46 (dlPFC) pyramidal neurons in rhesus monkeys across the
adult age span while they performed the DRT. For monkeys
performing the task well, they found the firing rate of DELAY
neurons during the cue and delay periods decreased with aging,
both for neurons whose preferred and anti-preferred directions
matched the cue presented. In our sampling of parameter space
(Figure 3) we found that DRTmodel networksmaintaining TPA-
S—representing monkeys that perform the DRT successfully—
had lower firing rates during both the cue and delay periods
as νce increased (Figure 5A, left). This was particularly true
for neurons whose preferred direction matched the stimulus,
with a substantial decrease from young and middle-aged to
aged model networks. This seemed counterintuitive at first,

since increasing νce makes individual excitatory neurons more
excitable in response to a given input current (Figure 3B).
Indeed, hyperexcitability of individual neurons often did lead to
over-excitation throughout the network (yellow and red points
in Figure 3C). However, the networks that maintained TPA-
S as νce increased compensated for the increased excitability
with a reduction in GEEa and GEEn and increase in GIE

(Figure 3F), leading to lower firing rates. Cue period FR in our
model was driven much more by the stimulus current than
by synaptic weights, and decreased less across the age groups
than the delay period FR did. As such, reducing the stimulus
current in the sampled middle aged and aged networks as in
Supplementary Figure 2 was necessary to match the Wang et al.
(2011) cue period results (Materials and Methods). As a whole,
these parameter space explorations show a way to unify our
in vitro data and in vivo experiments, provided that the total
input current to pyramidal neurons during the DRT, IE, is
lower in middle-aged and aged monkeys than in young monkeys
(Figure 5A, right).

We also examined firing rates in the model cohort simulations
perturbed by the observed data conditions with and without
facilitation (Figures 4C,F). The main distinction between
the parameter space sampling simulations and the cohort
simulations was how synaptic inhibition onto the excitatory
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neurons, GIE, varied as the excitability parameter (νce) increased:
GIE increased in the parameter space explorations but decreased
in the cohort simulations due to observed inhibitory synapse
loss with aging. Indeed, the weakened inhibitory connections in
the middle-aged and aged cohorts led to a FR increase during
the cue and delay periods of those networks compared to the
young cohort (Figure 5B, left), opposing the Wang et al. (2011)
results. The increase was even greater when synaptic facilitation
was included (Figure 5B, right).

Our young cohort simulations did not match data from the
in vitro physiology, synapse counts, and in vivo physiology
findings simultaneously, suggesting that one or more age-related
changes to the system may be missing from our current model.
We simulate one such possibility here, to demonstrate how the
current model can help us test hypotheses and incorporate new
data as they become available. Specifically, our parameter space
explorations showed that an overall increase in inhibition onto
the excitatory neurons can compensate for increased firing rates
of excitatory neurons. Thus, we examined how network function
would change if the observed data conditions were accompanied
by a comparable age-related increase of inhibitory neuron firing
rates—an empirical question whose answer is not yet known.
In models without synaptic facilitation, more middle-aged and
aged networks maintained TPA-S when inhibitory neuron firing
rates increased with aging (Figure 4C vs. Figure 5C, top left).
Firing rates of excitatory neurons in those simulations also
decreased with aging as observed in vivo, consistent with the
Wang et al. data (Wang et al., 2011; Figure 5C, bottom left).
However, results differed for models that included synaptic
facilitation: fewer middle-aged and aged networks maintained
TPA-S when inhibitory neuron firing increased (Figure 4F vs.
Figure 5C, top right), while (as before) firing rates of excitatory
neurons during the DRT increased with aging (Figure 5C,
bottom right). These results suggest that our DRT model might
need further refinement to reflect reality better—for example,
by also incorporating synaptic depression (Mi et al., 2017) or
changes in synaptic plasticity with aging. Regardless, our model
allows us to quantify how much the known age-related changes
at the single cell level affect cognitive performance, and to predict
the extent to which other relevant processes might contribute to
working memory impairment with aging.

Model 2: Working Memory Retention in a
DRSTsp-Like Task
Pyramidal Neuron Hyperexcitability Led to Reduced

Memory Capacity in Simulated DRSTsp Networks
These DRT modeling results add to the wide range of literature
using the bump attractor model to study spatial working
memory, but the DRT was not administered to the monkeys
from this study. Spatial working memory capacity in these
monkeys was assessed with the more complex DRSTsp. To
see what predictions our model might have for these data,
we extended our DRT model to simulate memory retention
in a task with three important similarities to the DRSTsp:
(1) the network encoded several stimuli simultaneously, with
stimuli that are (2) spatially distinct; and (3) presented to the

network successively over time. The changes made to extend the
DRT model simulations to a task like the DRSTsp are shown
in Figure 6A, and a simulated cognitive score (DRSTsim) was
assigned to the outcome of each simulation. Examples of model
networks with a DRSTsim of 4 (perfect performance) down to
1 are shown in Figure 6B. The second network achieved a
DRSTsim of 3 because it encoded stimuli 1, 2, and 3 correctly
but lost persistent activity corresponding to stimulus 3 in the
subsequent delay period (red arrowhead). Likewise, the third
network (DRSTsim = 2) lost persistent activity corresponding
to stimulus 2 before stimulus 3 was applied; the final network
(DRSTsim = 1) encoded stimulus 1 properly but not stimulus 2.

We examined howDRSTsim varied across the parameter space
of synaptic weights for the young, middle-aged and aged network
models (νce = 5, 7, and 9Hz; Figure 6C). Networks achieving a
DRSTsim of 1 (worst), 2, 3, and 4 (best) are shown, respectively,
as blue, yellow, red, and green. As in the DRT, the value of νce

strongly affected the ability of the DRSTsp model networks to
maintain persistent activity tuned to the location of the different
stimuli as the number of delay periods and unique stimuli
increased. There were many fewer green points in the parameter
regime explored, and more blue points, as νce increased (As
νce increased, networks with the best DRSTsim performance had
lower values of GEEa, GEEn, and GIE than those shown here.).
Figure 6D summarizes these counts within our regime, showing
a clear leftward shift in the distribution of DRSTsim across the
parameter space (poorer performance) as νce increased.

Figure 6E shows how the model networks of Figure 6B were
affected by increasing νce from 5 (in Figure 6B) to 7 and 9Hz.
In general, as νce increased, the initial 0

◦ stimulus was encoded
by a stronger bump (higher firing rate) for the entire DRSTsp
simulation, and subsequent stimuli encoded by comparatively
weaker bumps. This led to an under-excitation of the network
during the second and third delay periods, losing the ability to
maintain later stimuli. An example can be seen in the second
column of Figures 6B,E. For the young monkey case (Figure 6B,
νce = 5Hz), the maximum firing rate of the first bump was
around 75Hz; this and the width of the first bump decreased
slightly as the simulation continued. Also, as noted above,
persistent activity for stimulus 3 was lost during the third delay
period. For the middle-aged case (Figure 6E top row, νce =

7Hz), the maximum firing rate of the first bump maintained a
maximum firing rate near 150Hz and a similar width throughout
the simulation, but the second bump was lost early in the
subsequent delay period. This trend was even stronger for the
aged case (Figure 6E bottom row, νce = 9Hz), where the first
bump remained wide with a maximum firing rate of 250Hz
throughout the simulation but none of the subsequent stimuli
were encoded.

To see how synaptic parameters compensated to maintain
DRSTsp performance as νce increased, we looked at the mean
values of the synaptic weights for all networks with perfect task
performance (DRSTsim = 4). Values of both the excitatory
and inhibitory synaptic weights for excitatory neurons were
lower as νce increased (Figure 6F top; standard error bars lie
beneath the symbols). Excitatory synaptic weights for inhibitory
neurons decreased and inhibitory synaptic weights increased as
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FIGURE 6 | Memory retention model of the DRSTsp shows impairment under neuronal hyperexcitability. The ability to maintain the memory of a successively

increasing number of stimuli strongly depended on the excitability of individual pyramidal neurons, but changes in the synaptic weighs partially compensated for the

increased neuronal excitability. (A) Simulated task included a pre-cue period, with four cue periods separated by three delay periods. Green circles indicate the stimuli

presented in each cue period. (B) Examples of DRSTsp model output, with FR shown in color (log scale) for neurons labeled by their preferred direction vs. simulated

time. From left to right: DRSTsim = 4, optimal performance, all four stimuli were encoded correctly and recalled; DRSTsim = 3, where the first three stimuli were

encoded correctly, but persistent activity representing the third was lost during the subsequent delay period; and DRSTsim = 2 and DRSTsim = 1 where only the first

two or one stimuli were encoded correctly and recalled. Cue periods shown between white lines; arrowheads indicate when persistent activity was lost. (C) DRSTsp

model output for 4,200 points of the parameter space LHS, shown in 3D projections across the (GEEa, GEEn, GIE) subspace as νce increased. Points with DRSTsim =

4, 3, 2, and 1 are shown as green, red, yellow, and blue dots, respectively. (D) Histogram of DRSTsim values in the LHS as νce increased (νce = 5, 7, and 9Hz shown

as black, blue, and red bars, respectively). (E) The first three simulations from (B), repeated for νce = 7 (top row) and 9Hz (bottom row). (F) Mean synaptic weights for

all LHS points with DRSTsim = 4 for νce = 5, 7, and 9Hz. Top: GEEa, GEEn, and GIE shown as purple, pink, and red open circles. Bottom: GEIa, GEIn, and GII shown as

dark green, light green, and open blue triangles. S.E.M. bars lie beneath the symbols.
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νce increased (Figure 6F bottom; standard error bars lie beneath
the symbols). Overall, for the DRSTspmodel, both panels showed
that synaptic excitation as well as inhibition to excitatory neurons
decreased to partially compensate for the increased excitability of
individual excitatory neurons.

“Aging” the DRSTsp Model Networks Led to Working

Memory Impairment as Observed Empirically
As with the DRT model, we defined a simulated “young monkey
cohort” for the DRSTsp model and “aged” the model networks
in this cohort by applying increased excitability and synaptic
loss conditions (Figure 7), choosing 40 levels of parameter
perturbations throughout the simulated age span. We induced

FIGURE 7 | Perturbing the DRSTsp young model cohort. Each dot indicates

the mean DRSTsim of the 40 young cohort points. (A) Synapse condition only;

slight improvement (+4%) from the young to the aged simulations. (B)

Excitability condition only; strong impairment (−45%) from young to aged. (C)

Applied both observed conditions simultaneously, resulting in just a −14%

impairment. (D) Applied both observed data conditions and increased

excitability of inhibitory neurons; −17% impairment.

the two observed data conditions separately and together—and
to match Figure 5C top right, also increased the excitability
of inhibitory neurons (Since reducing the stimulus current
had a minimal effect on performance during the synapse
condition perturbations of the DRT, we kept the stimulus
current constant across all DRSTsp simulations.). We then
computed the corresponding DRSTsim for each transformed
member of the young cohort. To summarize the change in
performance across the simulated age span, we calculated the
relative change in the mean DRSTsim from the young to the
aged models under each perturbation condition. This facilitated
comparison between performance on the simulated task (four
stimuli spaced evenly around a ring), and the real DRSTsp
(18 possible stimuli, organized spatially into three rows of
six wells each).

All four cases showed a strong linear relationship between
DRSTsim and parameter perturbations. As in the DRT model
above, the DRSTsp performance of the young model cohort was
much more sensitive to the excitability condition (Figure 7B)
than to the synapse condition (Figure 7A). While the synapse
condition showed a 4% improvement with aging for the
DRSTsp model (R2 = 0.98, p < 0.0001), the excitability-
only condition showed a 45% decrease in DRSTsim with aging
(R2 = 0.98, p < 0.0001). Applying the two observed
conditions together led to a 14% impairment with aging
(Figure 7C; R2 = 0.82, p < 0.0001); applying the observed
data conditions plus increasing the excitability of inhibitory
neurons led to a 17% impairment (Figure 7D; R2 = 0.81,
p < 0.0001). Thus, both cases of applying the observed data
conditions were comparable to the 20% impairment exhibited
by the empirical data (Figure 1B). These results are also
consistent with Figure 6F: the empirically-observed decrease
in synaptic excitation and inhibition to excitatory neurons
partially compensated the increased excitability of the excitatory
neurons, so that DRSTsim impairment with aging was less severe.
The model also suggests that hyperexcitability of inhibitory
neurons would impact performance on the DRT more than it
would the DRSTsp.

DISCUSSION

This study used computational modeling to explore how single
pyramidal neuron hyperexcitability and excitatory and inhibitory
synapse loss observed with aging in layer 3 of the rhesus
monkey dlPFC might contribute to spatial working memory
impairment. First, we presented new empirical data from rhesus
monkeys across the adult age span, consistent with past studies,
showing that working memory impairment and increased FRs
of neurons occur in some middle-aged monkeys. This replicated
previous studies showing a decline in cognitive performance
from young to aged monkeys (Herndon et al., 1997; Moore
et al., 2003, 2006; Konar et al., 2016; Motley et al., 2018), and a
concomitant increase in Rn and FR of dlPFC pyramidal neurons
(Chang et al., 2005; Coskren et al., 2015). These data motivated
the modeling, and were used to constrain a bump attractor
network model of the DRT (Wimmer et al., 2014) and our
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network model of working memory retention in the DRSTsp.
These models predict that the observed age-related firing rate
increase and synapse loss in rhesus dlPFC (Peters et al., 2008)
are sufficient to induce significant impairment of spatial working
memory function.

There is evidence that persistent neural activity during delay
periods of a working memory task is important for encoding
the memory of a stimulus (reviewed in Constantinidis et al.,
2018). When age-related alterations to the excitability properties
of neurons comprising the working memory network occur, the
network’s capacity for maintaining persistent activity—keeping
activity tuned to the original stimulus—is impaired (Wang et al.,
2011). To provide insight into the relationship between neuronal
firing rate and synaptic changes seen in aging and working
memory decline, we examined the parameter space of a bump
attractor model of the DRT, then extended the model to simulate
how aging might affect memory retention of multiple stimuli
in a more complex task—the DRSTsp. The region of parameter
space that simulated the DRT successfully was largest when the
pyramidal neuron excitability parameter (νce) was tuned to fit
the young FR data. The network model had its own built-in
compensatory mechanisms: when pyramidal neuron excitability
increased, the region with successful DRTmodels shifted to lower
excitatory and higher inhibitory synapse weights. This tradeoff
allowed networks to control the overall excitatory:inhibitory
balance needed to maintain TPA. These compensations were
consistent with empirical data showing an age-related decrease
in excitatory synapses, but not consistent with the reported
decrease in inhibitory synapses (Peters et al., 2008). However,
this compensatory mechanism led to lower firing rates during the
delay period, as well as during the cue period when the stimulus
current was also reduced, unifying our in vitro observations
with the in vivo data (Wang et al., 2011). We predict that
the network compensates higher FR in individual pyramidal
neurons with aging by lower total synaptic input current to
each neuron, and that the stimulus current could also be
decreasing with aging.

To test how hyperexcitability of pyramidal neurons and loss
of excitatory and inhibitory synapses with aging affected network
output, we ran a second set of simulations: “aging” model
neurons by decreasing both excitatory and inhibitory synaptic
strengths and increasing the FR of the excitatory neurons. DRT
model performance (represented by the number of networks
performing the task successfully) was substantially impaired in
middle-aged and aged simulations, more than reported in a
sample of rhesus monkeys (Wang et al., 2011), and the FR
increase affected DRT performance much more than the loss
of synapses did. Adding synaptic facilitation restored successful
function to many middle aged and aged DRT models. However,
only one of the aging cohort scenarios we tested captured
the hyperexcitable pyramidal neuron f -I curves observed in
vitro, dlPFC synapse loss observed with electron microscopy,
and the in vivo FR decrease during the DRT cue and delay
periods from Wang et al. (2011): the one without synaptic
facilitation but added hyperexcitability of inhibitory neurons
to restore excitatory:inhibitory balance. One next step is to
examine the excitability of dlPFC interneurons with aging,

but our simulations raise several other questions about the
DRT. Is there an age-related reduction in overall input to
dlPFC during the cue period? How central a role does synaptic
facilitation play during the task? How do age-related changes
in synaptic plasticity, discussed below, affect DRT performance?
Might neuromodulation (Arnsten et al., 2012; Davis et al., 2017;
Wang et al., 2019) during working memory task performance
reduce the pyramidal neuron hyperexcitability observed in vitro?
Computational models provide an essential means for testing and
refining hypotheses as future data become available.

Finally, we extended the DRT bump attractor model to
create a model of working memory retention in a task like
the DRSTsp. Other network models of working memory have
simulated several stimuli at once (Edin et al., 2009; Wei
et al., 2012; Mi et al., 2017). Yet, while the DRSTsp has
been used for many years to evaluate spatial working memory
capacity in rhesus monkeys (Herndon et al., 1997; Luebke
et al., 2004; Chang et al., 2005; Moore et al., 2005, 2017;
Peters et al., 2008; Luebke and Amatrudo, 2012)—including
in the present study—to our knowledge this is the first
computational model of this task. Increasing pyramidal neuron
FR strengthened the response to the initial spatial cue and
reduced the ability of the DRSTsp model networks to encode
memories of subsequent spatial cues, so that middle-aged and
aged networks had lower DRSTsim than young simulations.
As with the DRT model, “aging” the young DRSTsp model
cohort led to severe impairment when increasing pyramidal
neuron excitability alone, but not synapse loss alone. The
maintenance of the DRSTsp model performance under synapse
loss alone is consistent with Peters et al. (2008), which found
no correlation between the numerical density of synapses and
DRSTsp impairment. Simultaneously varying synapse loss and
pyramidal neuron hyperexcitability within ranges observed with
aging, both with and without hyperexcitability of interneurons,
the amount of DRSTsim impairment was similar to that seen in
DRSTsp scores across the adult rhesus monkey life span. Thus,
our model predicts that pyramidal neuron hyperexcitability
and synapse loss may be sufficient to explain empirically
observed levels of spatial working memory impairment. Future
experiments will examine whether the amount of synapse loss
reported in Peters et al. (2008), is also seen in the dlPFC of
a subset of monkeys from this study, and whether there are
correlations between those data, AP firing rates, and spontaneous
postsynaptic currents.

There is an open debate about the role of synaptic mechanisms
for working memory (Constantinidis et al., 2018; Lundqvist
et al., 2018). While delay activity is recognized as important to
working memory, a recent perspective posited that sparse spiking
activity and synaptic plasticity between spike times—rather
than asynchronous persistent activity—might be the mechanism
actually responsible for memory maintenance (Lundqvist et al.,
2018). This view is supported by several modeling studies
(Sandberg et al., 2003; Mongillo et al., 2008; Lundqvist et al.,
2011). Our models lend further support to an essential role
for both persistent activity and synaptic facilitation for working
memory tasks involving multiple cues. Synaptic plasticity
(both facilitation and depression) help overcome limitations of
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continuous attractor models, such as filtering out distractors
(Compte et al., 2000) and remembering multiple items (Itskov
et al., 2011; Wei et al., 2012; Hansel and Mato, 2013; Rolls
et al., 2013; Mi et al., 2017) as in our DRSTsp model. Bump
attractor models of visuo-spatial working memory have shown
that short-term synaptic facilitation in recurrent connections
of excitatory neurons slows down the drift of the bump often
seen in continuous attractor models (Itskov et al., 2011). Hansel
and Mato (2013) showed that short-term synaptic facilitation
might lead to the direction selectivity of synaptic weights
and network bistability in a DRT model. In vitro experiments
have shown synaptic facilitation in PFC pyramidal neurons
(Hempel et al., 2000; Wang et al., 2006). Several other studies
have shown age-related changes in synaptic plasticity (not
modeled here), some correlating these changes with learning
and memory deficits (Norris et al., 1998a,b; Bach et al., 1999;
Rosenzweig and Barnes, 2003; Thibault et al., 2007, 2013; Gant
et al., 2011, 2014, 2015).

This network-level study represents an extension of our
past modeling studies at the single-neuron level on parameters
affecting firing properties of individual pyramidal neurons with
aging (Coskren et al., 2015; Luebke et al., 2015; Rumbell et al.,
2016), in different cortical regions (Amatrudo et al., 2012), and
in neurodegeneration (Goodliffe et al., 2018). The elegance of
these network models lies in their ability to represent empirically
observed changes in FR and synaptic weights with aging as
perturbations to a small number of network parameters. Based
on our findings with two f -I curves, replacing our firing rate
model neurons with a spiking neuron model (Stein, 1967;
Hodgkin and Huxley, 1990; Izhikevich, 2003; Teeter et al., 2018)
in our DRT and DRSTsp networks should yield qualitatively
similar results. Our future network modeling will incorporate
age-related changes in passive and active channel parameters
predicted in our and other past studies (Wang et al., 2011;
Coskren et al., 2015; Rumbell et al., 2016), and other empirically
observed changes in aging dlPFC including increased slow after
hyperpolarization current (Luebke and Amatrudo, 2012); white
matter changes (review: Luebke et al., 2010; Kubicki et al., 2019);
and dysregulation of calcium homeostasis (Foster, 2007; Toescu
and Vreugdenhil, 2010; Oliveira and Bading, 2011). Age-related
changes to synaptic strength and neurotransmitters reduced the
probability of short-term memory recall from a discrete attractor
network model (Rolls and Deco, 2015); similar perturbations in a
spiking-network version of our DRT and DRSTsp models would
be extremely insightful.

The main limitation of our current DRSTsp model—assuming
that the network correctly identifies the novel stimulus among
several retained—is also a limitation of the classical bump
attractor as a whole. Experiments have shown that decision-
making and attentional tasks involve connections between dlPFC
and other cortical regions including posterior parietal cortex,
anterior cingulate cortex, and secondary motor areas (Medalla
and Barbas, 2010; Oemisch et al., 2015; Constantinidis and Qi,
2018; Marvel et al., 2019; Tsunada et al., 2019). These connections
may represent different aspects of a task like DRSTsp, such as
the monkey’s internal model of itself and the task; its level of
attention; signals of reward and error; and motor traces that

might correspond to rehearsal strategies between active stimulus
stages of the DRSTsp. Recent theoretical studies have shown that
model neurons with mixed selectivity, responding to sensory
stimuli as well as internal states of the system, can perform
complex cognitive tasks (Maass et al., 2002; Salinas, 2004; Rigotti
et al., 2010; Chaisangmongkon et al., 2017). Such units could
be well-suited for extending the DRSTsp model introduced here
to simulate choice of the novel spatial cue and related internal
signals, plus the full 3 × 6 array of wells presented to the
monkeys during the DRSTsp. There is evidence that aging affects
information flow between cortical regions, which can contribute
to working memory impairment (Engle et al., 2016; Lee et al.,
2016; Proskovec et al., 2016; King et al., 2018; Koen et al., 2019).
Any such age effects must be examined in concert with the
changes to dlPFC synapses and neuronal excitability, to predict
the extent to which these concomitant changes compound vs.
partially compensate each other.

In summary, our computational models of two spatial
memory tasks predicted that empirically observed changes in
pyramidal neuron excitability and synapse loss lead to spatial
working memory impairment with aging. Computational
studies such as this provide a means to evaluate connections
between physiological and behavioral—and in vitro vs.
in vivo—experiments, extending the impact provided by
animal studies.
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