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A novel deep learning based model called Multi-Planar Spatial Convolutional Neural

Network (MPS-CNN) is proposed for effective, automated segmentation of different

sub-regions viz. peritumoral edema (ED), necrotic core (NCR), enhancing and

non-enhancing tumor core (ET/NET ), from multi-modal MR images of the brain. An

encoder-decoder type CNN model is designed for pixel-wise segmentation of the

tumor along three anatomical planes (axial, sagittal, and coronal) at the slice level.

These are then combined, by incorporating a consensus fusion strategy with a fully

connected Conditional Random Field (CRF) based post-refinement, to produce the final

volumetric segmentation of the tumor and its constituent sub-regions. Concepts, such

as spatial-pooling and unpooling are used to preserve the spatial locations of the edge

pixels, for reducing segmentation error around the boundaries. A new aggregated loss

function is also developed for effectively handling data imbalance. The MPS-CNN is

trained and validated on the recent Multimodal Brain Tumor Segmentation Challenge

(BraTS) 2018 dataset. The Dice scores obtained for the validation set for whole tumor

(WT :NCR/NE+ET +ED), tumor core (TC :NCR/NET +ET ), and enhancing tumor (ET )

are 0.90216, 0.87247, and 0.82445. The proposed MPS-CNN is found to perform the

best (based on leaderboard scores) for ET and TC segmentation tasks, in terms of both

the quantitative measures (viz. Dice and Hausdorff). In case of the WT segmentation it

also achieved the second highest accuracy, with a score which was only 1% less than

that of the best performing method.

Keywords: convolutional neural network, brain tumor segmentation, spatial-pooling and unpooling, conditional

random field, multi-planar CNN, class imbalance

1. INTRODUCTION

Gliomas (tumors of glial cells) represent 40% of tumors of the Central Nervous System, and
80% of all malignant brain tumors. The World Health Organization (WHO) grades these tumors
based on the aggressiveness and infiltrative nature of their cells. Low-grade gliomas (LGG) are
categorized as lowest- and intermediate-grades (WHO grades II and III), while high-grade gliomas
(HGG) or glioblastoma constitute the highest-grade (WHO grade IV) (Louis et al., 2016). Diffuse
LGGs are infiltrative brain neoplasms which affect different histological classes, and are called
astrocytomas, oligodendrogliomas, and oligoastrocytomas (Louis et al., 2016). Although LGG
patients are observed to have better survival than those with HGG, they often progress to secondary
glioblastomas (GBMs) and eventual death (Li et al., 2013).
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Accurate detection of tumor regions makes the job of
the medical practitioner simpler, by allowing (i) appropriate
measurement of tumor volume, (ii) growth monitoring of
tumor in patients over time, and (iii) prognosis, with follow-
up evaluation, and prediction of overall survival (OS). Based
on the histological heterogeneity observed within a glioma
tumor, its cells are partitioned into different sub-regions, i.e.,
peritumoral edema (ED), necrotic core (NCR), enhancing and
non-enhancing tumor core (ET / NET) (Menze et al., 2015; Bakas
et al., 2018). These sub-regions reflect important and clinically
relevant information.

Magnetic Resonance Imaging (MRI) has become the standard
non-invasive technique for brain tumor diagnosis, over the last
few decades, due to its inherent improved soft tissue contrast
(DeAngelis, 2001; Cha, 2006).MR imaging can effectively capture
the intrinsic heterogeneity of gliomas using multimodal scans
with varying intensity profiles. Typically four MR sequences
viz. native T1-weighted (T1), T2-weighted (T2), post-contrast
enhanced T1-weighted (T1C), and T2-weighted with FLuid-
Attenuated Inversion Recovery (FLAIR), are used. The rationale
behind using multiple sequences is the fact that different tumor
regions are properly visible in different sequences, which again
are complementary to each other; thereby rendering them as
effective tools for accurately demarcating and distinguishing
between different types of tumors (Banerjee et al., 2016a, 2017).
Since gliomas are infiltrative, the sub-regions appear highly
heterogeneous in MRI scans. Therefore, segmentation of Glioma
sub-regions is considered to be one of the most challenging tasks
in medical image analysis (Bakas et al., 2018).

Although manual segmentation of tumors is considered
as the gold standard, it is time-consuming and prone to
errors due to human fatigue. Therefore, there is a growing
body of literature on computational algorithms, addressing
this important task through supervised and unsupervised
techniques (Menze et al., 2015; Banerjee et al., 2016b, 2018a,b;
Mitra et al., 2017; Bakas et al., 2018). Development of such
computer-aided tumor segmentation algorithms entails a lot
of challenges due to the large spatial and structural variability
among brain tumors. For example, segmenting HGG and LGG
tumors with the same algorithm is a difficult proposition.
It is also hard to compare any segmentation method with
other existing ones, since they were often designed and
validated on different private datasets. Such difficulty is due
to various critical factors like (i) modalities used for the
segmentation, (ii) state of the disease in which the image
was taken (prior to treatment, or post-operative), (iii) type
of the tumor (GBM or LGG, solid or infiltratively growing,
primary or secondary), and can significantly influence the
segmentation results.

Studies on tumor segmentation from brain MR images have
been abundant in the literature. Here we provide a very recent
literature review of the field. For extensive review on prior
techniques, the reader is referred to (Bauer et al., 2013; Gordillo
et al., 2013). Methodologically segmentation of tumors from
brain MRI images can be broadly categorized under generative
(Cuadra et al., 2004; Zacharaki et al., 2008; Menze et al., 2010;
Banerjee et al., 2018a) and discriminative (Bauer et al., 2011; Zikic

et al., 2012a,b; Wu et al., 2014; Menze et al., 2015; Bakas et al.,
2018) family of models.

Generative methods are explicitly designed according to the
anatomy and appearance of the tumor and the brain, and
incorporate a-priori information for decision-making. Tumors
can be modeled as outliers as compared to the expected shape
and anatomy of the brain, as reported in references (Cuadra et al.,
2004; Zacharaki et al., 2008). Menze et al. designed a generative
probabilistic model for channel-specific segmentation of the
tumor MRI in Menze et al. (2010). The generative approach in
references (Gooya et al., 2012) first computes the spatial a-priori
or “atlas” from healthy brain MRI scans. This is next modified
using an expectation maximization (EM) algorithm, over a given
set of patient images, to detect the most likely localization of
the tumor therein. The concept of visual saliency is used in
references (Banerjee et al., 2016b, 2018a; Mitra et al., 2017) for
identifying tumor regions from brain MR images. This helps
in automatically and quickly isolating the tumor region to be
subsequently used for delineation. However, generative models
are found to not generalize appropriately on unseen data; mainly
due to their simple hypothesis functions. Their dependence on
a-priori knowledge also makes them unsuitable to applications
where this is not available.

On the other hand, discriminative models directly learn
patterns from representation in the form of image features
from the underlying training data, while not depending on any
a-priori knowledge. These models may overfit the underlying
training data, but have been shown to consistently perform
well over unseen data due to their complex learned hypotheses.
A hierarchical fully automated approach was presented (Bauer
et al., 2011) for brain tissue segmentation, using support vector
machine and conditional random fields. A combination of
discriminative and generative models were developed (Zikic
et al., 2012a) for the segmentation of high grade gliomas into
the constituent sub-regions. This approach used decision forest
as the discriminative classifier, which was fed with three unique,
parameterized, contextually, and spatially aware features along
with probabilities generated from Gaussian mixture models
(Zikic et al., 2012b). Initial probability estimates were then
used with spatially non-local features and context-sensitive
decision forest for the classification of each data point. Another
discriminative approach (Wu et al., 2014) used superpixels
extracted from multi-modal MR images, with an SVM classifier
being trained with features extracted by Gabor wavelet filters. A
model-aware affinity model was defined, with its output being
used alongside the SVM for application of conditional random
fields theory before tumor segmentation.

Recently, Convolutional Neural Networks (LeCun et al., 1998)
(CNNs or ConvNets) have been shown to work impressively on
image recognition or classification problems (Krizhevsky et al.,
2012). ConvNets are particularly useful for data that comes in the
form of multiple arrays, like a color image. ConvNets essentially
revolutionized the field of computer vision and have since
become the de-facto standard for various object detection and
recognition tasks (Farabet et al., 2013; Goodfellow et al., 2013;
Sermanet et al., 2013; Simonyan and Zisserman, 2014). Inspired
by their success, several medical imaging researchers have
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applied them toward abnormality detection and segmentation;
particularly, for brain MRIs. 3D ConvNets were used as a voxel
wise classifier (Urban et al., 2014). Instead of looking at each
slice of each sequence, the 3D ConvNet works directly with the
volumetric MRI sequences; classifying each voxel into tumor
or background. The problems with this approach are the high
computational cost incurred during training and testing phases,
as well as the requirement of huge datasets. A similar approach
was used (Zikic et al., 2014) with minimal pre-processing, by
looking at the 3D patch around each point in the sequence
and classifying the central point as one of the labels. A two-
way ConvNet architecture was developed (Havaei et al., 2017)
to exploit both local and global contexts of the input image.
Each pixel in every 2D slice of the MRI data was classified into
one of the four tumor sub-regions or background, by predicting
the label of the center pixel of an M × M patch. The idea of
local structure prediction was transferred (Havaei et al., 2017)
to the task of predicting dense labels of pathological structures
in multi-modal 3D volumes using patch-based label dictionaries.
Two separate ConvNet architectures were designed (Pereira et al.,
2016) for HGG and LGG-pixel wise label prediction, along
with the use of small kernels of size 3 × 3 throughout the
ConvNets. An ensemble of ConvNet architectures (Kamnitsas
et al., 2018) was introduced for robust brain tumor segmentation.
The contribution won the multimodal brain tumor segmentation
challenge (BraTS) in 2017. Three popular ConvNets, such as
“DeepMedic” (Kamnitsas et al., 2016), “Fully Convolutional
Network (FCN)” (Long et al., 2015), and “U-Net” (Ronneberger
et al., 2015) were used to generate the class-confidence of each
voxel in a multimodal MRI volume, with a class having the
highest confidence being assigned to be the segmentation label
of that voxel.

Inspired by the success of ConvNets in brain tumor
segmentation, we propose here a new deep learning method
for segmentation of different sub-regions viz. ED, NCR, ET,
and NET, from multi-modal MR images of the brain. An
encoder-decoder type ConvNet model is designed for pixel-
wise segmentation of the tumor along three anatomical planes
(axial, sagittal, and coronal) at the slice level. These are
then combined, using a consensus fusion strategy with a
fully connected Conditional Random Field (CRF) based post-
refinement (Krähenbühl and Koltun, 2011), to produce the final
volumetric segmentation of the tumor and its constituent sub-
regions. Novel concepts, such as spatial-pooling and unpooling
(Badrinarayanan et al., 2017) are used to preserve the spatial
locations of the edge pixels, for reducing segmentation error
around the boundaries. A new aggregated loss function is also
developed for effectively handling data imbalance.

The rest of the paper is organized as follows. Section 2
describes details of data, preparation of the patch database for
ConvNet training, the proposed multi-planar Spatial-ConvNet
model which uses a spatial-pooling layer, the aggregated loss
function for imbalanced data handling during segmentation,
and the radiomic analysis of the segmented volume of interest
for overall survival prediction. Section 3 provides experimental
results on the segmentation in multi-planar and multi-sequence
data, with overall survival prediction. It also demonstrates
their effectiveness through qualitative and quantitative analysis.

Finally section 4 draws conclusions, and provides directions for
future research.

2. MATERIALS AND METHODS

In this section we present a detailed description of the brain
tumor MRI dataset, and the proposed methods for tumor
segmentation and patient overall survival (OS) prediction.
Segmentation comprises of extraction of patches, training and
testing of the segmentation model, and post-processing. The
OS prediction consists of quantitative feature extraction and
dimensionality reduction.

2.1. Dataset
Multi-modal MRI volumes used in this paper, were taken from
the Multimodal Brain Tumor Segmentation Challenge (BraTS)
20181 (Menze et al., 2015; Bakas et al., 2017a,b,c, 2018). The
dataset consists of 210 HGG and 75 LGG glioma cases as
training, with 66 unlabeled (HGG or LGG) cases as validation
samples. Multi-modal or multi-channel MRI volumes, consisting
of T1, T1C, T2, and FLAIR, are available for each patient
with the MRI volume being composed of 155 slices of 240 ×

240 resolution. The MRI volumes are first carefully aligned to
the same anatomical template, skull-stripped, and interpolated
to 1mm3 voxel resolution, before being made available for
experimentation. Manual segmentation of the tumor sub-regions
is done by experts, following the same annotation protocol for
all patients. Their annotations were revised and approved by
board-certified neuro-radiologists. Finally, the predicted labels
are evaluated by merging three regions viz. whole tumor
(WT :NCR/NE+ ET + ED), tumor core (TC :NCR/NET + ET),
and enhancing tumor (ET) as shown in Figure 1.

2.2. ConvNet for Tumor Segmentation
Here we present the proposed multi planar ConvNet architecture
for automatic segmentation of different tumor sub-regions,
i.e., ED, ET, and NCR/NET from a given multi-modal MRI
scan. Novel spatial max pooling and unpooling layers are
introduced to better approximate the tumor anatomical structure
by minimizing segmentation errors around the tumor boundary
during up sampling. An adaptive fusion strategy for accurate
and robust segmentation, by combining output from the three
principal planes (axial, coronal, and sagittal), is described. A
weighted aggregated loss function is introduced to train the
networks in the presence of class imbalance.

2.2.1. Patch Based Learning
Tumors are typically heterogeneous, depending on cancer
subtypes, and contain a mixture of structural and patch-level
variability. Applying a ConvNet directly to the entire slice has
its inherent drawbacks. Since the size of each slice is 240 × 240,
therefore overall memory requirement of the model will increase.
Moreover, very little difference is observed in adjacent MRI
slices at the global level; whereas, patches generated from the
same slice often exhibit significant dissimilarity. We develop a
Fully Convolutional Network (FCN) architecture for pixel-wise

1https://www.med.upenn.edu/sbia/brats2018/data.html
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FIGURE 1 | T1 MRI of a sample HGG patient with 3D segmentation of different intra-tumoral structures (ED, ET, and NCR/NET) along three principal planes (axial,

sagittal, and coronal).

FIGURE 2 | Segmentation errors, with error around the boundary marked by blue ellipse and false positive errors are marked by white ellipses.

FIGURE 3 | (A) ConvNet architecture, with (B) Spatial-Max-Pooling and Unpooling, for segmentation.
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segmentation of the tumor regions. Since FCN does not contain
fully connected layers, it is invariant to input image size.
Therefore, we can use images of different resolutions during
training and testing (or inference).

2.2.2. ConvNet Architecture
The FCN architecture consists of three blocks “encoder or
downsampling path,” “bottleneck,” and “decoder or upsampling
path.” The encoder block contains four feature extraction blocks,
each having two consecutive convolution layers with filter (or
kernel) size 3 × 3. Four max-pooling layers of window size
2 × 2 are placed in between the feature extraction blocks, to
down sample an image into a set of high-level features. Pairs of
convolution layers are placed in the bottleneck block, between
the encoder and decoder blocks. The structure of decoder block
is the same as that of the encoder, with the only difference being in
the use of upsampling layer instead of max-pooling to construct
a pixel-wise segmentation of the input MR patch.

It was observed during model validation that the predicted
segmentation suffers mainly from two types of errors, as shown
in Figure 2; (i) error around the boundary, and (ii) false
positive at the top and bottom ends of the MRI volume.
The error around the boundary occurs because the network
loses spatial information during down sampling or pooling
operations. The unpooling layers in the decoder block try to
approximate the inverse of the pooling operation or upsample the
reduced image to its original resolution through interpolation.
In this process, the segmentation error percolates around the
boundary of the region-of-interest (ROI) or volume-of-interest
(VOI). This is considered as an important concern for a good
medical image segmentation method. We name this as error
around the boundary. The false positives error occur because
the model is trained on 2D MRI patches without considering
volumetric information.

2.2.3. Spatial-Max-Pooling and Unpooling
To circumvent the problem of error around the boundary to
some extent, we used a modified version of the pooling and
unpooling layers as proposed in references (Badrinarayanan
et al., 2017)—and call it “spatial-max-pooling” and “spatial-max-
unpooling.” Now spatial-max-pooling can retain the position
from where the max-pooling operation selected the maximum
value, to be subsequently used during unpooling through
the spatial-max-unpooling layer. Details of the process is
illustrated in Figure 3B. Although the spatial-max-pooling and
unpooling layers offer an advantage over regular nearest neighbor
upsampling or deconvolution, they also increase the memory
requirement of the overall model. Therefore, the max pooling
locations for each of the input activation maps need to be stored
for a mini batch, during each such operation, and reused in
subsequent mini batches. Shortcut connections are used to copy
and concatenate the high resolution response maps from the
encoder to the decoder. It helps the decoder network localize
and recover the object details more effectively. In this way we
achieve a perfect agreement between high level features and pixel
level details. Figure 3A illustrates the complete architecture of the
proposed ConvNet model.

TABLE 1 | Hyperparameters used for training.

Model Hyperparameters Value

CNN Weights and bias Xavier (Glorot and Bengio, 2010)

Optimizer ADAM (Kingma and Ba, 2014)

Epochs 25

Batch_size 16

Learning rate 1e−4

Hyperparameters Selected values Values searched

CRF ω1, ω2 2.5, 4.0 [2, 2.5, 3, 3.5, 4], [2, 2.5, 3, 3.5, 4]

σα,x , σα,y , σα,y 24, 24, 24 [12, 24], [12, 24], [12, 24]

σβ,x , σβ,y , σβ,z 17, 12, 10 [10− 20], [10− 20], [6, 8, 10, 12]

σγ ,c 8 [4, 8, 12, 16]

2.2.4. Multi-Planar Aggregation With 3D CRF Based

Refinement
The MRI scans are taken in the axial (X-Z) plane, which
represents voxels (or an unit volume) of the 3-Dimensional
human brain. Therefore, it can be reconstructed into coronal
(Y-X) plane and sagittal (Y-Z) planes for having different
3D views of the brain. Using the multi-view property of MR
imaging, we propose a solution for the second error, i.e.,
false positive error. We train three separate ConvNets (same
architecture as Figure 3A) for segmenting the tumor along the
three individual planes/views. Next the predicted probability
maps generated by the softmax layers of the three ConvNets
(paxial, pcoronal, psagital) are fused by averaging the probability
maps, i.e., p = (paxial + pcoronal + psagittal)/3. It is found that
the integrated prediction from multiple planes are superior as
compared to the estimated region based on any single plane
in terms of accuracy, and robustness of decision. This is due
to utilization of more information and minimization of the
estimated loss.

Next a 3D fully-connected Conditional Random Field (CRF)
based bilateral filtering (Krähenbühl and Koltun, 2011) is
used to refine the fused prediction, while maintaining the
local and contextual consistency of the segmentation. The 3D
CRF integrates the four MRI sequences with the multi-planar
fused predicted probability map, to produce an optimized
segmentation by minimizing the energy function

E =
∑

i

− log p
(l)
i + ζ (li, lj)[ω1P(λi, λj)+ ω2f (λi, λj)], (1)

where

P(λi, λj) = exp

(

−
∑

d∈{x,y,z}

|si,d − sj,d|

2σ 2
α,d

)

, (2)

f (λi, λj) = exp

(

−
∑

c∈{T1,T1C,T2,FLAIR}

|Ii,c − Ij,c|

2σ 2
γ ,c

−
∑

d∈{x,y,z}

|si,d − sj,d|

2σ 2
β ,d

)

.

(3)
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FIGURE 4 | Aggregated architecture combining multiple planes, with CRF-based refinement.

Here p
(l)
i is the fused probability of assigning label l to voxel

i and ζ (li, lj) is the label compatibility function between voxel
pairs [li 6= lj], with λi being the feature vector of voxel i
containing seven features (viz. four intensities from the four MR
sequences along with its 3D coordinate values). Note that Ii,c
corresponds to the intensity of the ith voxel in the four MRI
sequences denoted by c, and si,d represents the spatial 3D location
of the voxel i. While function P(·) controls the smoothness of the
segmented region by considering the influence of neighborhood
(using the hyperparameter σα,d), the function f (.) strives to
preserve local and contextual consistency of the segmented
output by controlling the level of similarity and proximity (using
hyperparameters σγ ,c and σβ ,d). Optimizing the energy function
also removes small isolated regions from the segmented output.
All the model hyperparameters (α1, α2, σα , σγ , σβ ) are chosen
through grid searching, as reported in Table 1.

The final model, represented in Figure 4, includes spatial-
max-pooling and unpooling, multi-planar aggregation and 3D
fully connected CRF based refinement. This will be referred to
as “MPS-CNN” in the sequel.

2.2.5. Loss Function for Handling Class Imbalance
Since the dataset is highly imbalanced, with around 98% of
the voxels belonging to either the healthy tissue or to the
black surrounding area (as depicted in Figure 5), standard loss
functions used in the literature are not suitable for training and
optimizing the ConvNet. In such cases training can be dominated
by the most prevalent class, with the classifiers focusing on
learning the larger classes; thereby resulting in poor classification
accuracy for the smaller classes. Therefore, we propose a new loss
function. It is a sum of two factors viz.—Weighted Generalized
Dice Loss (WGDL) (Sudre et al., 2017) and Weighted Log
Loss (WLL) (Ronneberger et al., 2015). Both loss functions
are computed between the soft binary segmentation or the
probability map generated by the network using the softmax layer
(P), and the corresponding gold standard/ground-truth image
(G). TheWGDL andWLL are defined as

WGDL = 1− 2

∑|C|
c=1 wac

∑N
n=1 GcnPcn

∑|C|
c=1 wac

∑N
n=1 Gcn + Pcn

, (4)

FIGURE 5 | Tumor sub-class distribution for a sample MRI slice.

and

WLL = −
1

N

N
∑

n=1

|C|
∑

c=1

wscGcn log(Pcn), (5)

where C = {Background,ED,ET,NCR/NET}, N is the total
number of pixels in the image. Here the contribution of each
class is multiplied by the adaptive weight wac = 1

(
∑N

n=1 Gcn)2
,

which is inversely proportional to the class volume. Thereby
it controls the contribution of larger classes while helping to
learn smaller classes by reducing the classifier bias. Here wsc
is a four dimensional vector, storing the static class weights
for [Background,ED,ET,NCR/NET], and is assigned based on
the class ratio. Parameters Gcn and Pcn correspond to the
ground truth value and the predicted output, respectively, for
the nth pixel w.r.t. the cth class. Optimizing the Generalized
Dice Loss (WGDL) produces over segmented regions, while log
loss generates under-segmented regions. Therefore, we combine
WGDL and WLL in a weighted fashion, so that while cross-
entropy treats every pixel as an independent prediction, the
dice-score looks at the resulting mask in a more holistic
manner. Moreover, considering the fact that these two losses
yield significantly different masks, each with its own merits
and errors, a combination of such complementary information
should be beneficial.

3. EXPERIMENTAL SETUP AND RESULTS

The ConvNet models were developed using TensorFlow, with
Keras in Python. The experiments were performed on the Intel
AI DevCloud platform having cluster of Intel Xeon Scalable
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FIGURE 6 | Box plots of segmentation performance for the proposed MPS-CNN and the other 10 (A–J) models, measured by Dice score and Hausdorff distance, for

the WT, TC, and ET tumor sub-regions of 66 patients from the BraTS 2018 validation dataset. The p-values <0.05, <0.001, <0.0001, and <0.00001 for each

comparison are represented by ∗, ∗∗, ∗∗∗, and ∗∗∗∗, respectively, w.r.t. MPS-CNN.

processors and 96 GB of RAM. The proposed segmentation
model was trained and validated on the corresponding training
and validation datasets provided by the BraTS 2018 (Menze et al.,
2015; Bakas et al., 2017a,b,c, 2018) organizers and is described
in section 2.

The CNN models were trained on the patches extracted from
the standardized and cropped MRI volumes. The BraTS 2018
datasets contains MRI volumes of size 155 × 240 × 240, which
are cropped to have a size of 146 × 192 × 152 for discarding
some unwanted background. This helps minimize the number
of patches extracted from the “non-brain” region. Then patches
of size 128 × 128 (experimentally found to be the best) were

extracted randomly from all the four MRI sequences, with a
constraints such that the center pixel of a patch does not belong
to the minimum intensity value in the FLAIR modality. This
condition helps minimize the extraction of “non-tumor” patches.
A total of 111,690, 142,160, 118,400 training patches were
extracted from the axial, coronal and sagittal planes, respectively.
During inference the entire stack of slices (155 × 240 × 240)
of a patient is input from the test dataset, to produce pixel-wise
segmentation of the tumor regions and the background.

Quantitative metrics used for evaluating the segmentation
results (P) w.r.t. the ground truth (G) (in case of training) and
through the Leaderboard/blind testing (in case of validation)
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FIGURE 7 | Sample segmentation results for four patients from the BraTS 2018 training dataset. The green label is edema, the red label is non-enhancing or necrotic

tumor core, and the yellow label is enhancing tumor core.

FIGURE 8 | Comparative study on segmentation obtained by our model MPS-CNN, with respect to the ground truth and Model A, for a sample patient (PID:

BraTS18_2013_11_1).

are (i) Dice score =
( 2|P1

∧

G1|

|P1|+|G1|

)

, (ii) sensitivity =
( |P1

∧

G1|

|G1|

)

,

(iii) specificity =
( |P0

∧

G0|

|G0|

)

, and (iv) Hausdorff distance

= max{supp∈∂P1 infg∈∂G1 d(p, g), supg∈∂G1 infp∈∂P1 d(g, t)},

computed for WT, TC, and ET (Menze et al., 2015). Here voxels

with label 0 and 1 are denoted by P0/T0 and P1/T1, respectively.

The Hausdorff distance computes maximum of the shortest
least-square distance d, between all points on the surfaces ∂P1
and ∂G1 of the two volumes P1 and G1.

We performed two experiments to analyze (a) the effect on
performance improvement through the proposed modifications
in the vanilla FCN structure, and (b) the effect of the proposed

aggregated loss function in terms of handling class imbalance.
The hyperparameters, employed through all the experiments,
are provided in Table 1. These were selected through automatic
cross-validation of the baseline model. Since deep CNNs entail
a large number of free trainable parameters, the effective number
of training samples were artificially enhanced using real time data
augmentation in the form of linear transformation like random
rotation (0–10◦), horizontal and vertical shifts, horizontal and
vertical flips. A small part of the training set (20%) was used
for validating the ConvNet model, after each training epoch, for
parameter selection and detection of overfitting. Each model was
trained for 20 epochs, with a single epoch consuming about an
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FIGURE 9 | Comparative study on segmentation obtained by our model MPS-CNN, with respect to the ground truth and Models B–E, for a sample patient (PID: PID:

BraTS18_2013_7_1).

FIGURE 10 | Segmentation results obtained by Model MPS-CNN on the validation dataset for three sample patients (PIDs: BraTS18_CBICA_AAM_1,

BraTS18_CBICA_ALZ_1, and BraTS18_CBICA_AUE_1).

hour (approximately) on Intel AI DevCloud platform. Inference
time, including 3D CRF based refinement, required about 10 min
per patient (approximately).

3.1. Experiment 1
The proposed model MPS-CNNwas compared with ten variants,
as outlined below.

• Model A: Replacing the spatial-max-pooling and max-
unpooling layers of the MPS-CNN by normal max-pooling
and upsampling layers.

• Models B–D: Architectures same as MPS-CNN, but without
incorporating multi-planar aggregation and CRF based post-
processing. Models B, C, and D were trained by patches,
extracted (respectively) along axial, sagittal, or coronal
plane only.

• Model E: MPS-CNN model excluding only the CRF
based post-refinement.

• Models F–J: Training MPS-CNN with unweighted [Equation
(4) with wac = 1] and weighted dice loss (Equation 4) to
generate models F and G. Next unweighted [Equation (5) with

Frontiers in Computational Neuroscience | www.frontiersin.org 9 January 2020 | Volume 14 | Article 3

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Banerjee and Mitra Novel Volumetric Segmentation in Gliomas

T
A
B
L
E
2
|
C
o
m
p
a
ra
tiv
e
p
e
rf
o
rm

a
n
c
e
o
f
M
P
S
-C

N
N
(r
a
d
io
m
ic
s-
m
iu
)
w
ith

th
e
to
p
fiv
e
m
o
d
e
ls
o
n
th
e
B
ra
T
S
2
0
1
8
le
a
d
e
r
b
o
a
rd

(“
N
V
D
L
M
E
D
,”
“S
C
U
T
_E

E
_C

S
C
,”
“S

H
e
a
lth

,”
“M

IC
-D

K
F
Z
,”
a
n
d
“S

U
S
Te
c
h
”)
.

M
e
tr
ic

Te
a
m

R
a
d
io
m
ic
s
-m

iu
M
P
S
-C

N
N

N
V
D
L
M
E
D

S
C
U
T
_E

E
_C

S
C

S
H
e
a
lt
h

M
IC

-D
K
F
Z

S
U
S
Te

c
h

E
T

0
.8
2
4
4
5

0
.8
2
5
3
1

0
.8
1
0
7
9

0
.8
1
5
4
4

0
.8
0
8
7
1

0
.8
0
5
2
2

W
T

0
.9
0
2
1
6

0
.9
1
2
0
5

0
.9
0
5
2

0
.9
1
2
0
4

0
.9
1
2
5
7

0
.9
0
4
4
4

D
ic
e

T
C

0
.8
7
2
4
7

0
.8
7
0
4
9

0
.8
5
5
3
4

0
.8
5
6
4
7

0
.8
6
3
3
7

0
.8
4
9
4
3

E
T

0
.8
6
9
0
9

0
.8
4
4
9
7

0
.8
3
1
7
7

0
.8
5
0
5
3

0
.8
3
1
1
5

0
.8
3
0
6
4

W
T

0
.9
1
3
7
2

0
.9
2
3
1
1

0
.9
2
3
4
5

0
.9
1
9
6
8

0
.9
1
8
7
2

0
.9
0
6
8
8

S
e
n
si
tiv
ity

T
C

0
.8
7
3
5
9

0
.8
6
4
0
5

0
.8
7
2
2
7

0
.8
5
2
3
5

0
.8
4
4
4
3

0
.8
3
1
5
6

E
T

0
.9
9
7
4
2

0
.9
9
7
9
1

0
.9
9
7
9
0

0
.9
9
7
5
3

0
.9
9
7
9
2

0
.9
9
8
1
5

W
T

0
.9
9
3
2
9

0
.9
9
5
1
9

0
.9
9
4
0
4

0
.9
9
4
7
4

0
.9
9
5
4
6

0
.9
9
5
4
9

S
p
e
c
ifi
c
ity

T
C

0
.9
9
7
2
7

0
.9
9
8
2
3

0
.9
9
7
6

0
.9
9
7
7
3

0
.9
9
8
6
0

0
.9
9
8
6
3

E
T

2
.6
3
6
0
8

3
.9
9
7
0
5

2
.5
5
5
1

4
.0
4
6
1
2

2
.4
1
3
1
2

2
.7
7
7
1
9

W
T

4
.7
4
8
5
1

4
.5
3
7
3

4
.1
0
4
5
3

4
.2
3
6
1
9

4
.2
6
7
9
7

6
.3
2
7
5
3

H
a
u
sd

o
rf
f9
5

T
C

5
.0
6
1
2
4

6
.7
6
1
3
3

7
.1
7
3
1
3

7
.2
1
8
0
9

6
.5
1
8
2
3

6
.3
7
3
1
8

To
p
th
re
e
s
c
o
re
s
a
re
m
a
rk
e
d
in
re
d
,
g
re
e
n
,
a
n
d
b
lu
e
c
o
lo
rs
,
re
s
p
e
c
ti
ve
ly
.

wsc = 1] and weighted log loss (Equation 5) were considered
to formulate models H and I. Model J was designed by training
MPS-CNN with multiclass Focal loss (Lin et al., 2017), which
was developed for addressing massive class imbalance.

Different models were compared based on their segmentation
performance on the validation dataset, for which the organizers
did not share the tumor grade (HGG/LGG) or the ground truth
segmentation. During testing, the participants were required to
upload the segmentation masks generated by their algorithm
to the dedicated server https://www.cbica.upenn.edu/BraTS18/
for evaluation.

The box-and-whisker plots in Figure 6 report the Dice score
and Hausdroff performance of the segmentation result for the
nested tumor sub-regions WT, TC, and ET for the 66 patients
from BraTS 2018 validation dataset for the MPS-CNN as well
as the other ten (A–J) models. The plots report the minimum
& maximum; lower, median, upper quartiles; mean Dice and
Hausdorff scores. The mean is marked by a red square in each
case. Student’s t-test is used to check whether the performance
difference between the proposedMPS-CNN and each of the other
ten compared models (A–J) is statistically significant based on
their Dice score. It is evident from Figure 6 that the proposed
MPS-CNN achieved the best Dice score (Dice) and Hausdorff
distance (HD) for all the three tumor sub-regions (viz. ET,
TC, and WT). Figure 7 demonstrates the segmentation obtained
by our model MPS-CNN with reference to the corresponding
ground truth, for two sample HGG and LGG patients from the
training dataset.

Figures 8, 9 present a comparative study on the qualitative
segmentation results by our model MPS-CNN and models A-
E (as outlined above), to visualize the effect of the proposed
modifications with respect to the basic FCN architecture.
This serves to highlight the effect of the novel concepts of
spatial-max-pooling and unpooling layers, along with that of
multiplanar aggregation through visual demonstration on sample
patients from the training dataset along all three planes (viz.
axial, sagittal, coronal). Each figure also displays the ground
truth segmentation. It is visually evident from Figure 9 that
segmentation by model A suffers from misclassification error
along the boundary of the different tumor sub-regions, with gross
error in segmenting the small sub-region ET. On the other hand,
our model MPS-CNN produced comparable segmentation w.r.t.
the ground truth, for each of the tumor sub-regions.

Figure 9 demonstrates the role of multiplanar aggregation
and CRF based post-processing for a sample patient. The first
row presents segmentation results obtained with multiplanar
aggregation with (and without) CRF based post-processing by
the models MPS-CNN (and E), respectively, with reference to
the corresponding ground truth. The second row illustrates
segmentation by models trained on patches extracted only
along a single anatomical plane (axial, sagittal, and coronal),
corresponding to models B, C, D, respectively. It is clearly
observed that the aggregated models, MPS-CNN and E, perform
better than any of B, C, D which were trained only along a single
plane. Besides, the CRF based post-processing helps MPS-CNN
to achieve more structured predictions by retaining the local and
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contextual consistency. Thereby, some of the isolated NCR/NET
regions get correctly segmented by our MPS-CNN as compared
to Model E.

Figure 10 depicts the segmentation results, obtained by our
MPS-CNN, on the validation dataset provided for three sample
patients. Incidentally the models F, G, which were trained using
unweighted versions of dice and log losses, were found to
perform the worst due to the problem of class imbalance (as
discussed in section 2.2.5). The performance gradually improved
by introducing class weights to the loss functions in models
H and I. However, the Focal loss function is observed to
perform well in handling intra-class imbalance (for example,
the amount of ET in the TC is not the same for HGG and
LGG patients). However, it is less useful for cases involving
inter-class imbalance.

3.2. Experiment 2
Our proposed model (MPS-CNN) was next compared with
the top five models (based on the leaderboard performance
on the validation dataset) that participated in the BraTS
2018 challenge, available online at (https://www.cbica.upenn.
edu/BraTS18/lboardValidation.html). The name of our team
is “radiomics-miu” and the other five teams selected for
the comparison are “NVDLMED,” “SCUT_EE_CSC,” “SHealth,”
“MIC-DKFZ,” and “SUSTech.” Segmentation performance of
each model is measured in terms of “Dice score,” “Sensitivity,”
“Specificity,” and “Hausdorff distance” (Menze et al., 2015). Three
colors (red, blue, and green) are used to mark the first, second,
and third highest scores, respectively (for each measure), as
reported in Table 2.

It is observed that our model MPS-CNN attained the
highest scores in five comparisons. It performed the best for
ET and TC segmentation tasks, as compared to its nearest
competitor (“NVDLMED”) in terms of both the quantitative
measures (Dice and Hausdorff). It is to be noted that the
segmentation of ET and TC is challenging, and our MPS-CNN
consistently performed best for both these tasks. In case of the
WT segmentation it also acquired the second best accuracy,
with a score which was only 1% less than that of the best
performing method.

4. CONCLUSIONS

Manual segmentation of tumors from MRI is a highly tedious,
time-consuming and error-prone task, mainly due to factors,
such as human fatigue, overabundance of MRI slices per
patient, and an increasing number of patients. Such manual
operations often lead to inaccurate delineation. Development of
automated and reproducible methodologies for accurate brain
tumor segmentation is likely to have great clinical impact, since
automated decision-making reduces human bias and is faster.
We have developed a deep learning based model called Multi-
Planar Spatial Convolutional Neural Network (MPS-CNN), for
the automated segmentation of brain tumors from multi-modal
MR images. The encoder-decoder type ConvNet model for

pixel-wise segmentation was found to perform better than other
patch-based models, mainly due to the introduction of new
concepts like spatial max-pooling and unpooling to preserve the
spatial locations of the edge pixels while reducing segmentation
error around the boundaries. Integrated prediction frommultiple
anatomical planes (axial, sagittal, and coronal) was superior, in
terms of accuracy and robustness of decision (as the data comes
from multiple sources), with respect to the estimation based on
any single plane. Shortcut connections were also incorporated to
copy and concatenate the receptive fields, from the encoder to the
decoder parts, to help the decoder network localize and recover
the object details more efficiently. Very high segmentation scores
were obtained on the test dataset in the blind testing phase.
The effectiveness of the proposed aggregated loss function was
demonstrated in terms of handling data imbalance, and the
MPS-CNN model was found to be perform the best for the
smaller classes viz. ET and TC. The CRF based post-refinement
enhanced the segmentation accuracy by eliminating false
positive regions.
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