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Optogenetics is revolutionizing Neuroscience, but an often neglected effect of light

stimulation of the brain is the generation of heat. In extreme cases, light-generated heat

kills neurons, but mild temperature changes alter neuronal function. To date, most in vivo

experiments rely on light stimulation of neural tissue using fiber-coupled lasers of various

wavelengths. Brain tissue is irradiated with high light power that can be deleterious

to neuronal function. Furthermore, absorbed light generates heat that can lead to

permanent tissue damage and affect neuronal excitability. Thus, light alone can generate

effects in neuronal function that are unrelated to the genuine “optogenetic effect.” In

this work, we perform a theoretical analysis to investigate the effects of heat transfer

in rodent brain tissue for standard optogenetic protocols. More precisely, we first use

the Kubelka-Munk model for light propagation in brain tissue to observe the absorption

phenomenon. Then, we model the optothermal effect considering the common laser

wavelengths (473 and 593 nm) used in optogenetic experiments approaching the

time/space numerical solution of Pennes’ bio-heat equation with the Finite Element

Method. Finally, we then modeled channelrhodopsin-2 in a single and spontaneous-firing

neuron to explore the effect of heat in light stimulated neurons. We found that, at

commonly used light intensities, laser radiation considerably increases the temperature

in the surrounding tissue. This effect alters action potential size and shape and causes an

increase in spontaneous firing frequency in a neuron model. However, the shortening of

activation time constants generated by heat in the single firing neuron model produces

action potential failures in response to light stimulation. We also found changes in the

power spectrum density and a reduction in the time required for synchronization in

an interneuron network model of gamma oscillations. Our findings indicate that light

stimulation with intensities used in optogenetic experiments may affect neuronal function

not only by direct excitation of light sensitive ion channels and/or pumps but also by

generating heat. This approach serves as a guide to design optogenetic experiments

that minimize the role of tissue heating in the experimental outcome.
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INTRODUCTION

Optogenetics refers to a group of techniques that rely on genetics
and optics for the deterministic control or study of (generally
excitable) cells from a similar genetic background (Fenno et al.,
2011). The radical idea of using light-driven ion channels and
pumps from unicellular organisms to modulate neurons was
pioneered by Deisseroth, Nagel, and Boyden and has now spread
to neuroscience laboratories throughout the world (Knöpfel et al.,
2010; Fenno et al., 2011). Limiting factors of the technique
include the availability of genetic markers (Lerchner et al., 2014),
the invasiveness of the gene delivery and especially difficulties
of delivering light throughout large brain volumes (Lerchner
et al., 2014). Perhaps for these reasons, optogenetics studies are
vastly more common in small animals, especially mice and rats
(Aravanis et al., 2007; Madisen et al., 2012).

To date, most in vivo experiments rely on light stimulation of
neural tissue using fiber-coupled lasers of various wavelengths.
Blue and yellow lasers are broadly employed for optogenetic
experiments, but due to poor penetration of these light
frequencies in the brain, high laser power and/or fibers of
high numerical aperture are often used to achieve functional
stimulation of deep brain regions (Adamantidis et al., 2014;
Adelsberger et al., 2014). Hence, brain tissue is irradiated
with high light power that can be deleterious to neuronal
function, but surprisingly little attention has been paid on the
effects of light stimulation itself in optogenetic experiments.
Absorbed light generates heat that can lead to permanent tissue
damage. Additionally, neuronal excitability is acutely affected by
temperature through the changes in Nernst equilibrium potential
and by altering the gating properties of ion channels (Andersen
and Moser, 1995; Kim and Connors, 2012). Thus, light alone can
generate effects in neuronal function that are unrelated to the
genuine ‘optogenetic effect’. In modeling studies, an empirical
factor (Q10) is used to multiply rate constants to add temperature
dependence to the classical Hodgkin and Huxley formalism
(Fitzhugh, 1966).

Fiber optics delivered light in biological tissues is partially
reflected at the fiber-tissue interface and partially transmitted
through the tissue. A previous study (Stujenske et al., 2015)
demonstrates that light emitted into the brain through fiber
optic delivery is sufficient to increase local temperature and
cortical firing rates of single neurons during optogenetics
experiments. They also show that in vivo temperature recordings
validate model predictions of heat induction. They provide an
optogenetics MATLAB package for predicting light and heat
spread in human brain tissue. On the other hand, the study of
Arias-Gil and colleagues (Arias-Gil et al., 2016) uses thermal
imaging to directly measure temperature rises at the surface of
live mouse brains during laser illumination, with wavelengths
and intensities typically used for optogenetics. They use a simple
logarithmicmodel to validate their empirical model by predicting
the temperature rise caused by pulsed stimulation paradigms.

The absorbed light is converted to heat, radiated in the form
of fluorescence and/or consumed in photobiochemical reactions.
The time-dependent heat production in brain tissue can be
described by the bio-heat equation (Pennes, 1948), in which

changes in tissue temperature can be calculated in time and space.
These equations can also account for the buffering of temperature
by blood perfusion. Furthermore, laser radiation increases stored
energy that results in the diffusion of heat away from the
irradiated area in proportion to the temperature gradients
generated within the tissue (Welch and Van Gemert, 2011).
Therefore, the conclusion drawn from optogenetic experiments
may be hindered if the direct heat effect of light stimulation is
not accounted for.

In this work, we model the optothermal effect in mice brain
tissue produced by visible light laser sources (with a Gaussian
profile) in both continuous and pulsed modes (Aravanis et al.,
2007; Bernstein et al., 2008) to understand how heat can affect
the transfer function of single neurons and how it can alter
their response to photocurrents.We first approach the time/space
numerical solution of Pennes’ bio-heat equation comprising
the effects of blood perfusion and metabolism with the finite
element method (FEM) (Zimmerman, 2004). We then simulate
the effect of varying heat in two single neuron models (Wang and
Buzsáki, 1996; Rothman and Manis, 2003) that include a voltage
and light-dependent current based on the channelrhodopsin-2
dynamics (Williams et al., 2013) to demonstrate that heat itself
can considerably alter neuronal dynamics.

METHODS

Absorption
Absorption is a process involving the extraction of energy from
light by a molecular species. It is important in diagnostic and
therapeutic applications in biomedical photonics. The concept
of the cross section is used for absorption, where the power
absorbed is part of the incident intensity. Therefore, for a given
absorber, the absorption cross-section, σa, can be defined as
(Welch and Van Gemert, 2011; Vo-Dinh, 2014):

σa(â) =
Pa

Iw
, (1)

where, â is the propagation direction of the plane wave relative
to the absorber, Pa is the absorbed power, and Iw is the intensity
of the wave. Therefore, a medium with absorbing particles can be
characterized by the absorption coefficient, µa:

µa = ρaσa , (2)

where, ρa represents the numeric density (m−3) of the absorbers.
Similar equations are found in the literature to explain the
scattering phenomenon (Welch andVanGemert, 2011; Vo-Dinh,
2014).

Refraction
The relation between the angle of incidence, θ1, and the angle
of refraction, θ2, for the transmitted light is given by Snell’s law
(Balanis, 2012; Peatross and Ware, 2015):

sin(θ2) =
n1

n2
sin(θ1) . (3)
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Similarly, the relation between the incident wavelength (medium
1) and the refracted wavelength (medium 2) can be obtained by
(Vo-Dinh, 2014):

λ2 =
n1

n2
λ1 . (4)

Photon Flux
Since light frequency does not depend on the refractive index,
the photon energy is always the same as in a vacuum, according
to (Welch and Van Gemert, 2011; Vo-Dinh, 2014):

E = hf , (5)

where, h = 6.626 · 10−34 J · s is Planck’s constant and f is the
photon frequency (Hz).

Photon flux in a laser light beam is defined as the total number
of photons crossing a particular section of the light beam, per unit
area and per unit time (Svelto and Hanna, 2010). The number of
photons emitted per second is given by:

Np/s = P
λ

hc
, (6)

in which, P is the laser power. Then, the photon flux, φp, can be
obtained as a function of the cross section area (A,m2) of the
light beam as well as the intensity (I,W/m2) of the light beam,
according to (Svelto and Hanna, 2010):

φp =
P

A

λ

hc
= I

λ

hc
. (7)

Gaussian Laser Beam
Assuming that a laser beam in the z direction attenuates
exponentially with the distance d in the tissue (Welch and
Van Gemert, 2011), the irradiance can be defined as the radiant
energy flux incident on the point of the surface, divided by
the area of the surface. Many laser sources emit beams that
approximate a Gaussian profile, in which case the propagation
mode of the beam is the fundamental transverse electromagnetic
mode (TEM00) (Balanis, 2012; Sadiku, 2014).

Gaussian functions can assume multidimensional forms by
composing the exponential function with a concave quadratic
function (Weisstein, 2015). A particular example of a two-
dimensional Gaussian function, in the x− y plane, is:

f (x, y) = A exp

[

−

(

(x− x0)2

2σ 2
x

+
(y− y0)2

2σ 2
y

)]

. (8)

Considering a bell curve shape for the Gaussian function, the
parameter A is the maximum amplitude of the curve, x0 and
y0 are the center position of the curve in x and y axis, and σx
and σy are the x and y spreads or standard deviations of the
Gaussian curve.

Light Propagation in Brain Tissue
In vitro and in vivo optogenetic experiments commonly use a
relatively simple setup that consists of laser sources coupled to

optical fibers to deliver light to a region of interest (ROI) in the
tissue, in an accurate and efficient manner. In vivo experiments in
deep regions of the brain, for example, also require a stereotactic
surgery to position the tip of the optical fiber in the ROI into
the brain (Zhang et al., 2015). Depending on the distance from
the fiber tip and the optical properties of the surrounding tissue,
the emitted light can propagate with uneven intensity.

The transmittance, T, is the relationship between the light
intensity measured in the tissue at a distance d, and the light

intensity measured without tissue, I(d)
I(d=0) , considering both

scattering and absorption effects, and is given by (Vo-Dinh,
2014):

T =
b

a sinh(bdµs)+ b cosh(bdµs)
, (9)

in which, µs is the scattering coefficient and can be given in
mm−1 (Aravanis et al., 2007; Bernstein et al., 2008), d is the
distance in the brain tissue (mm), and a and b are given by
(Vo-Dinh, 2014):

a = 1+
µa

µs
, (10)

b =
√

a2 − 1 . (11)

here, µa can also be given in mm−1 (Aravanis et al., 2007;
Bernstein et al., 2008).

The light intensity can be estimated by the product between
the transmittance T and the geometric loss gloss due to light
spreading in the tissue. The geometric loss is obtained by the
decrease in light intensity due to the conical shape observed from
the fiber tip (d = 0) to a certain distance d in the tissue. The
divergence angle, θdiv, for a multimode fiber is given by (Aravanis
et al., 2007):

θdiv = sin−1
(

NAfib

nt

)

, (12)

where, nt is the refractive index of the tissue and NAfib is
the numerical aperture of the optical fiber. Considering the
conservation of energy, we can calculate the geometric loss, gloss,
to a given distance, d, in the tissue as (Aravanis et al., 2007):

gloss =
ρ2

(d + ρ)2
, (13)

with,

ρ = r

√

√

√

√

(

nt

NAfib

)2

− 1 , (14)

in which, r is the fiber core radius. In this way, the expression
for the normalized light intensity, IN (mW/mm2), considering
scattering, absorption and geometric loss is given by:

IN =
I(d)

I(d = 0)
= gloss · T . (15)
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TABLE 1 | Parameters used in scattering and absorption simulations.

Parameters Values References

Fiber core radius (r) 0.2 mm dat, 2015

Fiber numerical aperture (NA) 0.48 dat, 2015

Fiber core refractive index (n1) Blue: 1.4644 Yellow: 1.4587 dat, 2015

Scattering coefficient (µs) Blue: 10.0 mm−1 Yellow:

9.0 mm−1

Bernstein et al.,

2008

Absorption coefficient (µa) Blue: 0.070 mm−1 Yellow:

0.027 mm−1

Bernstein et al.,

2008

Laser input power (P) 20 mW

Laser coupling fraction (η) 1 or 100%

We can consider I(d = 0) as the light intensity at the fiber tip that
can be obtained inmW/mm2 simply by:

I(d = 0) =
P

Aη
, (16)

where, P is the power emitted by the light source (mW),
A = πr2 is the area of the optical fiber (mm2), and η is
the coupling efficiency between the optical fiber and the light
source (dimensionless). We chose η = 1 for all the scattering and
absorption simulations.

Finally, the light intensity (mW/mm2) at a region of interest
in the tissue, assuming a distance d (mm) from the fiber tip, is
given by:

I(d) = I(d = 0) · IN . (17)

We used MATLAB commercial software to simulate scattering
and absorption characteristics in mice brain tissue. Table 1 shows
the parameters and respective values used for these simulations.

Heat Transfer in Mice Brain Tissue
Heat transfer is a known physical problem already modeled in
many areas of knowledge (Ahmed et al., 2019; Taheripour et al.,
2019). For biology, heat is inevitable when light propagates and is
absorbed by biological tissues.

The traditional bio-heat equation describes the change in
tissue temperature over time that can be expressed at a distance
d in the tissue. Furthermore, blood perfusion occurs in living
tissues, and the passage of blood modifies the heat transfer
in tissues. Pennes (1948) has established a simplified bio-heat
transfer model to describe heat transfer in tissue by considering
the effects of blood perfusion, ωb, and metabolism, Hm (Elwassif
et al., 2006; Vo-Dinh, 2014):

ρCp
∂T

∂t
= ∇(k∇T)− ρbωbCb(T − Tb)+Hs +Hm , (18)

where, ρ is the tissue density (kg/m3), Cp is the specific heat
of the tissue (J/kg◦C), k is the thermal conductivity of the
tissue (W/m◦C), ρb is the blood density (kg/m3), ωb is the
blood perfusion (1/s), Cb is the specific heat of the blood
(J/kg◦C), T is the temperature of the tissue (◦C), Tb is the blood
temperature (◦C),Hs is the heat source due to photon absorption

(W/m3), and Hm is the term that represents heat generated by
metabolism (W/m3). Equation (18) is almost linear for small
temperature changes, therefore, it is expected that temperature
rises are approximately proportional to the energy input (that is,
duty cycle).

The interaction between metabolic heat generation and
blood perfusion was investigated, and it was proved that the
temperature increases during Deep Brain Stimulation (DBS).
Other environmental interactions that can affect the stored
energy include radiation and convection from the sample surface,
the loss of vapor phase water from the sample, and convection
with blood that is perfused through the vascular network from
arterial and venous sources. This network has a very specific
geometry that is unique to a tissue or organ and can affect
significantly the capability to exchange heat with the tissue in
which it is embedded (Welch and Van Gemert, 2011).

Additionally, thermal boundary interactions occur over the
surface area with the environment and are often characterized
as convective and irradiative processes. Laser irradiation process
increases the stored energy from its initial state and, as a result, it
diffuses the heat away from the irradiated area in proportion to
the temperature gradients developed in the tissue. A quantitative
characterization of the formation of these gradients and the heat
flow that they drive are the focus of heat transfer analysis (Welch
and Van Gemert, 2011).

In the case of convective boundary conditions, heat transfer
occurs when a solid substrate is in contact with a fluid at
a different temperature (Welch and Van Gemert, 2011). The
magnitude of the heat exchange can be calculated according to
Newton’s law of cooling, that describes the convective flow,Hconv

(W/m2), at the surface in terms of the convective heat transfer
coefficient, h (W/m2◦C) and the temperatures of the sample, T,
and the external environment, Text , in ◦C:

Hconv = h(T − Text) . (19)

We consider the geometry and shape of the boundary layer region
of the fluid in which convection occurs, to calculate the free
convective flow. Convective effects are hard to estimate once
different process characteristics must be considered depending
on the convective transport problem. Typical values of h
for free convection in liquids are in the range of 20–1,000
(W/m2◦C) (Welch and Van Gemert, 2011). It is important to
choose small values of h, such as 25 W/m2◦C, so that the
temperature variations between the environment and the sample
are properly evidenced.

Heating generated within the biological material is governed
by the following expression (Elwassif et al., 2006):

H(x, y, z) = P(1− R)
µa

πσxσy
exp

[

−

(

(x− x0)2

2σ 2
x

)

+
(y− y0)2

2σ 2
y

]

exp(−µaz) , (20)

in which, the first exponential function represents the two-
dimensional Gaussian distribution in x − y plane, in accordance
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TABLE 2 | Parameters and material properties used in heat transfer simulations.

Parameters Values References

Refractive index of the tissue (nt ) 1.36 (gray

matter)

Vo-Dinh, 2014

Specific heat of the tissue (Cp) 3650 J/kg◦C Elwassif et al., 2006

Density of the tissue (ρ) 1040 kg/m3 Elwassif et al., 2006

Thermal conductivity of the

tissue (k)

0.527 W/m◦C Elwassif et al., 2006

Metabolic heat (Hm) 13698 W/m3 Elwassif et al., 2006

Blood density (ρb) 1057 kg/m3 Elwassif et al., 2006

Blood perfusion (ωb) 0.012 1/s Elwassif et al., 2006

Specific heat of the blood (Cb) 3600 J/kg◦C Elwassif et al., 2006

Temperature of the tissue (T ) 37◦C Elwassif et al., 2006

Blood temperature (Tb) 36.7◦C Elwassif et al., 2006

Heat transfer coefficient (h) 25 W/m2 ◦C Welch and Van Gemert, 2011

Standard deviations in x and y

axis (σx , σy )

0.5

Reflection coefficient (R) 0

to Equation (8). The second exponential function represents the
exponential decay due to absorption (Yang and Miklavcic, 2005).

Some considerations in using Equation (20) are: the reflection
(R) and absorption coefficients are assumed to be constant; the
sample is assumed to have a planar surface aligned with the xy-
plane of the global coordinate system and whose top matches
z = 0 (distance at the fiber tip); the center of the beam can be
easily shifted by changing x0 and y0; the beam width can be easily
controlled by the standard deviation parameters σx and σy. We
assumed R = 0 and σx = σy = 0.5 for the analysis of heat transfer
performed in this work.

Heat transfer simulations were accomplished using the
computational modeling software, COMSOL Multiphysics 4.4,
that allows numerical solutions for partial differential equations
based on the Finite Element Method (FEM) (Zimmerman,
2004). Laser heating was simulated considering two stationary
conditions: continuous mode and pulsed mode. We used
biological material with mice brain tissue characteristics (gray
matter). Thematerial properties were assumed to be constant and
are shown in Table 2.

Channelrhodopsin-2 and Neuron Models
We first modeled the effect of temperature alone in a pyramidal
cell model and in a network of basket cells known to generate
gamma oscillations. We have implemented a single compartment
CA1 neuron model described by Migliore (Migliore, 1996). He
has implemented a multicompartment model in his original
work, but here we only employ the soma with an inactivating
sodium conductance (max. 30 nS), a delayed rectifier K+

conductance (max. 10 nS), conductance from anM current (max.
0.6 nS) and from an H current (max. 0.3 nS). Kinetics for all
currents were download from ModelDB (https://senselab.med.
yale.edu/modeldb/, Accession:2937).

In addition, we have used the same Q10 values for all voltage-
gated currents as the original publication (Wang and Buzsáki,
1996). Temperature values from the heat transfer simulation

were fed to the neuron model by a “look up time/temperature
table” where each rounded ms value corresponded to a single
temperature value. Simulations were run for 90 s (30 s for
stabilization with constant temperature and 60 s with variable
temperature). The model was solved inMATLAB using the built-
in solver “ode23”. The interneuron network gamma model was
simulated using Neuron with no changing in parameters from
the model available from ModelDB (Accession:26997) exception
by setting the temperature to 37 or 39◦C. These simulations
were run for 500 ms with a constant temperature. Note that
the original study of Wang and Buzsáki did not account for
temperature; however, the uploaded model in ModelDB includes
Q10 for kinetic variables (Wang and Buzsáki, 1996).

Power spectrum density analysis and cross-correlation of
action potentials were calculated from spike trains transformed
in a series of 0 s (no spike) and 1 s (spike) with 0.1 ms-
precision (Hilscher et al., 2013). Power spectral density analysis
of binary spike series was performed using Welch’s method
(pwelch command in MATLAB). Cross-correlograms (CCGs)
were calculated as described previously (Hilscher et al., 2013)
and then smoothed by a moving average filter with a span of 10
ms (Hilscher et al., 2013). Cross-correlations over a lag range of
±0.1 s. Synchrony index (SI) is defined as the maximum value of
the CCG.

We have implemented the channelrhodopsin-2 empirical
model (Williams et al., 2013) in two single neuron models
to test the interaction of temperature and optocurrents: a
single basket cell from Wang and Buzsaki network model
(Wang and Buzsáki, 1996) and an anteroventral cochlear
nucleus bushy cell model (Rothman and Manis, 2003). The
equations and parameters from the neuron models can be
found in the original publications (Wang and Buzsáki, 1996;
Rothman and Manis, 2003) and equations and parameters for
channelrhodopsin optocurrents are found in (Williams et al.,
2013). All models were implemented in MATLAB (Mathworks),
and the codes can be downloaded from https://github.com/
cineguerrilha/Neurodynamics/tree/master/Cell_Models.

RESULTS

In this work, we first simulated the light propagation and
absorption in the brain of mice in a typical optogenetic setup.
Figure 1A shows a diode pumped solid state - DPSS laser source
coupled to a multimode optical fiber that transmits light directly
to the region where the brain implant was performed (Zhang
et al., 2015).

Subsequently, we simulated the effect of heat in single neurons
and networks. We have also examined the additive effect of
heat and light in simulations that included a channelrhodopsin-
2 model (Williams et al., 2013). The bio-heat transfer was
solved numerically using Pennes’ equation with the finite element
method and temporal changes in temperature at a given point in
space were applied to a single compartment neuron model (with
Hodgkin and Huxley formalism).

We first simulated beam geometry and light spreading.
A DPSS laser emits a Gaussian beam that the propagation
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FIGURE 1 | Light propagation properties when interacting with brain tissue. (A) Diagram showing a typical optic stimulation setup used in freely moving animals. The

setup consists of a computer, a data acquisition (DAQ) board, and a laser source coupled to a fiber transmitting light to a target region into the mouse brain at a

divergence angle (θdiv ) calculated using Equation (12). (B) Transversal electromagnetic fundamental propagation mode (TEM00) of the laser source. (C) Gaussian beam

shape. (D) 2D view of the geometric loss due to light spreading in the tissue (conical shape) at a certain distance from the fiber tip. (E) The flux of irradiated photons as

a function of distance during 15, 60, and 100 ms light pulses considering a region of unit area. (F) Wavelength shift during light propagation through different media.
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mode is the fundamental transversal electromagnetic (TEM00)
(Figures 1B,C and Equation 8). Figure 1D shows the normalized
geometric loss due to light spreading in z-x plane within the
tissue as a function of the distance from the fiber tip in z
direction. The divergence angle is determined by the optical
fiber numerical aperture, according to Equation (12). After light
power at a given point is calculated, photon flux (number of
irradiated photons per unit time and per unit area) at that
point can be obtained by Equation (7). Photon flux can then be
correlated to photocurrents in channelrhodopsin models (Foutz
et al., 2012). Photon flux simulations are shown in Figure 1E,
in which, a 20 mW, 473 nm laser is pulsed with durations of
15, 60, and 100 ms. The different pulse durations were chosen
to illustrate that the pulse width changes alter the amount of
photons passing through a surface. Light speed is altered during
propagation because of the difference of refractive indices and
their dependence with wavelength. Consequently, the wavelength
can change during propagation and this effect is not only
observed in the interface between fiber and tissue, but also
within the tissue, due to its anisotropic refractive indexes between
different brain regions. The wavelength change between two
different media, which is calculated using Snell’s law (Equation
3), is illustrated in Figure 1F. Assuming that light propagates
from an optical fiber (medium 1) to the tissue (medium 2), where
N is a perpendicular line to the surface of separation between
the two media, and considering n1b = 1.4644 as the refractive
index of the fiber core at 473 nm, n1y = 1.4587 the refractive
index of the fiber core at 593 nm, and n2 = 1.36 the refractive
index of the tissue (mouse brain, gray matter), the wavelength
shifts for blue (473 nm) and yellow (593 nm) lights due to
refraction are 36 nm and 43 nm, respectively, according to
Equation (4). Yet small, wavelength shifts have to be considered
specially in modeling studies as there is an obvious relationship
between wavelength and light absorption in both light-sensitive
ion channels and fluorescent proteins (Zhang et al., 2015), even
if the photon energy remains the same, once small changes in the
wavelength affect the response of the light-sensitive ion channels
and fluorescent proteins.

We then used the Kubelka-Munk model to calculate light
intensity vs. distance considering absorption (Mobley and Vo-
Dinh, 2003). Light absorption by the tissue has no direct relation
to the production of photocurrents by channelrhodopsin;
however, absorption produces heat, a side effect of light
stimulation (Shapiro et al., 2012). Light absorption also changes
(although slightly) the relation between light intensity and tissue
depth (Figure 2A). Assuming a threshold of 10mW/mm2 (green
line), which is a sound intensity value when stimulating a large
group of stimulated cells (Bernstein et al., 2008), the depth
for channelrhodopsin-2 activation is 0.39 mm (473 nm) and
for halorhodopsin activation is 0.42 mm (593 nm). Figure 2B
shows the transmittance (Equation 9) as a function of distance
d, considering both scattering and absorption effects. These
simulations indicate that only cells and neurites at the vicinity
of the fiber are affected by light stimulation and are in agreement
with a previous study (Stujenske et al., 2015).

We next computed the production of heat in the tissue
caused by light absorption using FEM. For heat transmission

simulations, we used a rectangular prism of dimensions equal
to 3.5 × 3.5 × 5 (mm3) representing a mouse brain tissue.
Optogenetic experiments often use specific stimulation protocols
with yellow light to activate halorhodopsin and blue light to
activate channelrhodopsin (Cardin et al., 2009; Mikulovic et al.,
2016). We, therefore, simulated the interaction between the
mouse brain and the yellow light radiation (593 nm wavelength),
with the laser source operating in continuous mode, while the
blue light radiation (473 nm wavelength) laser source operating
in pulsed mode.

Temperature changes at a distance d = 10 µm from the fiber
tip caused by continuous light radiation (593 nm) as a function
of time are shown in Figure 3A. We simulated heat transfer due
to continuous yellow light for different values of power emitted
by the laser source: 1, 10, 20, 30, and 40 mW. According to
Figure 3A, during the first 5 s, the rate of temperature variation
is higher. After that, the temperature continues to increase more
slowly moving toward the steady state condition. For light power
up to 10mW, temperature increases about 0.5◦C. For 20, 30, and
40 mW, the increase in temperature after 1 min of radiation is
between 1 and 2◦C. Figure 3B shows a temperature distribution
in 3D view, 2D top view (x-y), and 2D slice center view (z-
x, constant y), for continuous yellow light radiation (20 mW
and 60 s, indicated by the red asterisk shown in Figure 3A and
pulsed blue light radiation (473 nm), 12 Hz and 18% of duty
cycle-percentage of a period in which the light is turned on
(black asterisk indicated in Figure 3C). We have also computed
temperature changes for 20 mW blue light, at 60 s and 10 µm
from the fiber tip, for frequencies varying from 1 to 40 Hz with
duty cycles varying from 1% to 100% (Figure 3C). These results
show that lower duty cycles minimize temperature changes by
light stimulation.

Currents produced by voltage-gated ion channels are directly
influenced by temperature. It is known for decades that channel
opening and closing are generally faster in higher temperatures
and conductance/voltage relationship and ion reversal potential
are also be affected by temperature (Fitzhugh, 1966). To illustrate
the effect of temperature in firing, we used a basket cell model
(Wang and Buzsáki, 1996). For these simulations, we used
two temperatures (37◦C and 39◦C the latter can be quickly
produced by a pulsed laser at 40 Hz and 90% duty cycle and
at 10 µm distance from the center of the fiber tip Figure 4). In
the model implemented here, action potentials become smaller
and briefer (Figures 4A,B). Spontaneous firing frequency of
the neuron used in this simulation also increases (Figure 4C).
Optogenetics has been used to study the mechanisms behind
neuronal synchrony and brain rhythm generation (Cardin
et al., 2009). Hence, we further investigated the effect of heat
generated by light stimulation itself (rather than photocurrents
in channelrhodopsin-expressing neurons) in a network model
comprised solely by basket cells that synchronize in gamma
frequency (Wang and Buzsáki, 1996). The model is composed
of 100 interconnected fast spiking interneurons (same as in
Figure 4) (Wang and Buzsáki, 1996). In the Wang and Buzsákis
model (Wang and Buzsáki, 1996), neurons in the network
take around 200–300 ms to fire in gamma frequency from a
relatively asynchronous onset (Figures 4A,D). If the temperature
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FIGURE 2 | Scattering and absorption effects as light propagate into mouse brain tissue. (A) Light intensity vs. penetration distance for 473 nm (blue) and 593 nm

(yellow) wavelengths. At a distance d = 0.4 mm from the fiber tip (dashed green line), a reference value for light intensity of 10 mW/mm2 (solid green line) was chosen

for blue and yellow light with (solid lines) and without (dashed lines) absorption. Inset. Distance in which light decays to 10 mW/mm2 in simulations with and without

absorption. (B) Transmittance vs. penetration distance for blue and yellow lights, including scattering and absorption effects.

is raised by 2◦C the network is synchronized in less than
50 ms (Figures 4A,D) from the onset of simulation. Firing
frequency of the interneurons in the network also increased
by raising the temperature in 2◦C (Figure 4C). This changing
in frequency caused a shift in the peak of ‘gamma oscillation’
in the power spectrum (Figure 4C). Hence, heat itself can
theoretically facilitate the generation of oscillations and/or alter
their frequency.

We further assess the effect of raising the temperature
in neuronal synchronization using previously described
synchrony metrics (Leao et al., 2005; Hilscher et al., 2013).
Autocorrelation histograms of all 100 neurons in the model
are shown in Figure 5A for 37◦C and at 39◦C. Heating the
network model caused neurons to fire at greater rhythmicity
(Figure 5A). In addition, cross-correlogram also showed
greater synchrony when simulations were executed at 39◦C
(compared to 37◦C). This increase in synchrony is reflected by
a significant rise in the synchronization coefficient (Figure 5B).
The mean synchronization index (SI) for all possible neuron pair
combinations (9,900 pairs) was equal to 0.16 for 37◦C and 0.22
for 39◦C. These results show that heating can, not exclusively,
change the frequency of brain oscillations but also alter the
coordination and synchrony of neuronal firing.

We then combine temperature and irradiation in modeled
neurons that also contained a channelrhodopsin-2-driven
photocurrents (Wang and Buzsáki, 1996; Williams et al., 2013).
We have used two distinct cell models to illustrate the interaction
of channelrhodopsin photocurrents with other ionic currents
in the neuron. The basket cell shows high-frequency firing
that increases proportionally to the injected current (Martina
et al., 1998) and a bushy cell of the dorsal cochlear nucleus
that show single action potentials in response to continuously
injected currents (Leao et al., 2006). At 1 mW power, the

basket cell model fired action potentials at the beginning of
each pulse whether at 37◦C or 39◦C (Figure 6A). However, the
bushy cell model only fired APs at physiological temperature
(Figure 6A). The tissue reaches 39◦C quickly for duty 50% or
90% duty cycles, but the temperature only rises mildly for 10%
duty cycle (Figure 6B). Nevertheless, even at 10% duty cycle,
bushy cell light-elicited AP amplitude is still affected by the
small increase in temperature (Figures 6C,D). Taken together,
this data suggests that temperature can alter the efficiency of
photocurrents in eliciting APs. Most importantly, the effect of
temperature and light stimulation interaction in the membrane
is greatly dependent on native voltage-gated channels.

DISCUSSION

In the context of optogenetics, the first study that addressed the
interaction of light emanating from an optical fiber with brain
tissue omitted absorption (Aravanis et al., 2007). Aravanis and
colleagues argued that the effect of light (400–900 nm) absorption
could be neglected when simulating light transmission in the
brain (Aravanis et al., 2007). However, while absorption does
not affect significantly the spatial computation of light intensity
(as most of the loss occurs through scattering), it is through
absorption that heat is generated. Also, we opt to use the simpler
Kubelka-Munk model for light transmission instead of a more
accurate Monte Carlo method as the former generates values
that approximate empirical results for short distances (∼ 1 mm)
(Aravanis et al., 2007; Džimbeg-Malčić et al., 2011).

Our bio-heat transfer results corroborate with recent studies
found in the literature (Stujenske et al., 2015; Arias-Gil et al.,
2016). These authors were the first to explores heat generation
by light in optogenetic experiments and compare simulations
with empirical measurements. Our work, instead, explore
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FIGURE 3 | Heat transfer simulations for blue and yellow light in mouse brain tissue. (A) Temperature variations for 593 nm wavelength as a function of time for 1, 10,

20, 30, and 40 mW of continuous radiation. The red asterisk indicates continuous yellow light radiation for 20 mW and 60 s. (B) Temperature distribution in space for

593 nm and 473 nm. Right. Top. 2D Gaussian beam (x-y) for the top view and with z → 0. Bottom 2D slice view (z-x) of the temperature distribution. (C) Heat map for

the temperature distribution (473 nm) as a function of frequency (1–40 Hz, bin size of 1 Hz) and duty cycle (1–100%, bin size of 10%) at 60 s of light radiation (10 µm

from the fiber tip). The black asterisk indicates pulsed blue light radiation, 12 Hz and 18% of duty cycle. The dashed black line shows a pulse width of 10 ms.

the effect of bio-heat transfer in neurons and networks, in
particular, with a few differences compared to the study by
Stujenske and colleagues (Stujenske et al., 2015). For instance,
these authors used light absorption and scattering coefficients
obtained from human brain tissue interpolated from different
wavelengths while here we employ coefficients obtained from
rodent brains in specific wavelengths used in optogenetic
experiments (Bernstein et al., 2008; Stujenske et al., 2015).
Besides, we have calculated temporo-spatial photon flux in
brain tissue. Ultimately, photon flux determines the opening
of channelrhodopsin pores, and these values could be directly
used for simulation of channelrhodopsin activation (Zhang et al.,
2015).

We used homogeneous absorption coefficients for a given
wavelength, but it is clear from optical measurements that
light is unevenly absorbed in the brain (Jacques, 2013).
Thus, the temperature can also increase unevenly based on
anisotropic absorption coefficients. Besides, blood vessels are not
homogeneously distributed in all brain regions; therefore, spatial
differences in temperature buffering will further complicate

the network effect of heat generation by optical stimulation.
In other words, the effect of the increase in temperature in
optogenetic experiments will depend on the region, neuron type,
and connections and can significantly affect neuronal processing.
Minimizing stimulation time may help to prevent unwanted
heat effects in neuronal function. In experiments where long
stimulation times are desirable, step-function opsins may be
the tool of choice for avoiding heat-related changes in firing
and behavior.

The temperature effect in the gating of voltage-dependent
channels is classically modeled by using an empirical factor
(Q10) to multiply rate constants (incorporating temperature
dependence to the classical Hodgkin and Huxley formalism)
(Thompson et al., 1985). In addition, ion reversal potentials
in semipermeable membranes are directly proportional to
temperature. We simulated the effect of a 2◦C change in a
classical model of interneuron network gamma (ING) oscillation
(Wang and Buzsáki, 1996). The idea that gamma oscillation arises
from the interaction of fast spiking interneurons originated from
slice and modeling studies (Whittington et al., 1995; Wang and
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FIGURE 4 | A 2◦C raise in temperature increases the firing frequency of neurons in a network model of gamma oscillations. (A) Membrane potential of two neurons

from a network of 100-interneuron network when simulation was executed with temperatures of 37◦C (gray and black traces left) and 39◦C (blue and dashed dark

blue right). (B) Phase plots from one action potential of one interneuron at 37◦C and at 39◦C (black and dark blue traces, respectively). (C) Mean firing power

spectrum density (see section Methods) of the 100 interneurons in the network at 37◦C and at 39◦C (black and dark blue traces, respectively). (D) Scatter plots

showing the action potential firing of the gamma network at 37◦C (left) and at 39◦C (right).

Buzsáki, 1996) and it was demonstrated by a highly influential
optogenetics study (Cardin et al., 2009). Cardin and colleagues
elicited gamma oscillation in the neocortex by rhythmical optical
stimulation of cells expressing the enzyme Cre recombinase (and
channelrhodopsin) in a Parvalbumin-Cre animal (Cardin et al.,
2009). To generate gamma oscillations, the authors optically
stimulated neurons at the same frequency as the recorded local
field potential (Cardin et al., 2009). It is known that rhythmical
stimulation is likely to interfere with the local field potential
recording due to the optoelectric effect (Mikulovic et al., 2016).
However, the effect of temperature caused by optical stimulation

in network responses is largely unexplored. Parvalbumin is
especially found in soma targeting fast spiking interneurons
(but it is also found in several other types of interneurons)
(Klausberger et al., 2005; Mikulovic et al., 2016). UsingWang and
Buzsaki’s model of ING (1996), we found that an increase of two
degrees significantly organizes the inhibitory neuron network.
At 39◦C, firing in gamma can be observed in less than 50 ms
from the simulation onset (when firing of individual neurons is
random) while at 37◦C, that network takes almost 5 times longer
to organize its spikes at gamma frequency. Also, network firing
frequency increases in several Hz. Changes in gamma oscillation
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FIGURE 5 | Synchrony is greatly increased in a gamma oscillation network model by a 2◦C raise in temperature. (A) Top, Normalized autocorrelograms of all 100

neurons in the network at 37◦C (left) and at 39◦C (right). Bottom, Normalized crosscorrelograms of all 100 neurons crosscorrelated with all 100 neurons in the network

at 37◦C (left) and at 39◦C (right). (B) Peak normalized correlation index between all 100 neurons when simulations were performed at temperatures of 37◦C (left) and

39◦C (right).

frequency by temperature has been observed experimentally
(Leao et al., 2009), and as the increase in temperature depends
on the proximity of targeted neurons to the optical fiber,
light stimulation could generate small networks that oscillate
incoherently from non-heated networks and this effect is not
directly associated to opsin expression.

Here, we show that different types of neurons can have very
different responses to similar light pulses. There has been little
concern in optogenetic experiments regarding native currents
of neuronal populations of interest (Adamantidis et al., 2015).
However, we show that native voltage-gated currents can have
a huge impact on how neurons fire to light stimulation. For
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FIGURE 6 | Temperature changes caused by light absorption affects membrane response to photocurrents. (A) Membrane potential of a basket cell (BC) and a dorsal

cochlear nucleus bushy cell (GBC) models to 10 mW-473 nm light pulses at 37◦C (top) and 39◦C (bottom). (B) Temperature at 10 µmfor 4 Hz stimulation (20 mW) for

10% (blue), 50% (magenta) and 90% (red) duty cycles (inset shows 0.5 s pulses with the three different duty cycles). (C) BC and GBC responses for 10% duty cycle

(4 Hz) light pulses with fixed temperatures (37◦C black and 39◦C red) and when temperature raises (green) in response to light pulses (black trace in B). (D) Action

potential amplitude evolution in time of GBC model in response to light pulses in (C). The red square is the amplitude of the single AP the GBC model fired when

temperature was set to 39◦C.

example, neurons that express strong low threshold K+ currents
to avoid repetitive firing when currents are injected will only
fire one to a couple of spikes independent of the duration
of the light pulse (Leao et al., 2008). On the other hand,
fast spike neurons expressing high-threshold K+ currents like
basket cells (Martina et al., 1998) will respond, most likely,
with multiple spikes after each light pulse. Neurons with strong
inward currents activated by hyperpolarization (e.g., Ih) could
also produce strong depolarizations (and action potentials) by
activation of Ih rather than the reversal of Cl− gradients (Leao
et al., 2011; Adamantidis et al., 2015). It is important to note
that the simple ChR2 model used here describes well the
behavior of macroscopic photocurrents for short periods (that
cover a large number of optogenetic experiments) (Williams
et al., 2013). Hence, this ChR2 model could be added to
specific cell models that are readily available in databases like

the ModelDB (McDougal et al., 2017) for optimization of light
protocol design.

Finally, temperature affects the transfer function of a given
neuron according to the diversity of ion channels in it (Cao
and Oertel, 2005). For that reason, while some neuron types
increase spontaneous firing, other populations may become quiet
when the temperature is changed (Kim andConnors, 2012).Most
importantly, changes in temperature and native channels may
hinder optogenetic stimulation. Our optogenetic simulations
using the bushy cell model showed that light pulses are unable
to elicit spikes when the cell is heated to 39◦C. Bushy cells
are known to express low threshold potassium channels (Kv1)
(Rothman and Manis, 2003), and these channels prevent the
firing of multiple APs in response to tonic currents (Couchman
et al., 2011). Thus, accelerating the opening of Kv1 channels
could prevent spike generation by photocurrents. However,
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the interaction of channelrhodopsin photocurrents with native
voltage-gated currents of a given cell is a subject largely explored,
especially when changes in temperature caused by the light
stimulation affects the gating dynamics of native channels. Future
studies should assess the interaction of photocurrents with native
voltage-gated currents and examine the effect of temperature.

CONCLUSION

In this work, we have used the finite element method to
address brain temperature changes caused by light stimulation
in optogenetics and its effect in neuron firing. We found that
temperature can increase by about 2.6◦C in 1 min for blue
light stimulation (20 mW of power, Figure 3C). A two-degree
change in temperature, when applied to amodel of a spontaneous
firing neuron, caused a dramatic increase in firing frequency
and change in action potential shape. Conversely, a 2◦C-increase
in temperature in a fast spiking interneuron network model
of gamma oscillation produced a large increase in neuronal
synchrony and oscillation frequency. Moreover, the effect of
channelrhodopsin-driven photocurrents on membrane potential
is dramatically affected by temperature changes provoked by light
stimulation itself, especially in the single-firing cell model.

In summary, we have shown that temperature increase
caused by brain optical stimulation, with light intensities
commonly used in optogenetic experiments (Cardin et al.,
2009; Adamantidis et al., 2011) can considerably affect neuron
and network properties independently of opsin expression.
Moreover, the temperature can alter cellular responses to
optical stimulation. As the usage of channelrhodopsin becomes
widespread, studies tend to assume that optical stimulation elicits
spiking activity without assessing cellular responses (Ahlbeck
et al., 2018; Almada et al., 2018). Thus, the whole cell current-

and voltage-clamp assessment of the cell response to optical
stimulation may still be necessary to determine optimal light
stimulation protocols.
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