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In this work, we propose a novel cascaded V-Nets method to segment brain tumor

substructures in multimodal brain magnetic resonance imaging. Although V-Net has been

successfully used in many segmentation tasks, we demonstrate that its performance

could be further enhanced by using a cascaded structure and ensemble strategy.

Briefly, our baseline V-Net consists of four levels with encoding and decoding paths and

intra- and inter-path skip connections. Focal loss is chosen to improve performance

on hard samples as well as balance the positive and negative samples. We further

propose three preprocessing pipelines for multimodal magnetic resonance images to

train different models. By ensembling the segmentation probability maps obtained from

these models, segmentation result is further improved. In other hand, we propose to

segment the whole tumor first, and then divide it into tumor necrosis, edema, and

enhancing tumor. Experimental results on BraTS 2018 online validation set achieve

average Dice scores of 0.9048, 0.8364, and 0.7748 for whole tumor, tumor core and

enhancing tumor, respectively. The corresponding values for BraTS 2018 online testing

set are 0.8761, 0.7953, and 0.7364, respectively. We also evaluate the proposedmethod

in two additional data sets from local hospitals comprising of 28 and 28 subjects, and the

best results are 0.8635, 0.8036, and 0.7217, respectively. We further make a prediction

of patient overall survival by ensemblingmultiple classifiers for long, mid and short groups,

and achieve accuracy of 0.519, mean square error of 367240 and Spearman correlation

coefficient of 0.168 for BraTS 2018 online testing set.

Keywords: deep learning, brain tumor, segmentation, V-Net, multimodal, magnetic resonance imaging

INTRODUCTION

Gliomas are the most common brain tumors and comprise about 30 percent of all brain tumors.
Gliomas occur in the glial cells of the brain or the spine (Mamelak and Jacoby, 2007). They can
be further categorized into low-grade gliomas (LGG) and high-grade gliomas (HGG) according
to their pathologic evaluation. LGG are well-differentiated and tend to exhibit benign tendencies
and portend a better prognosis for the patients. HGG are undifferentiated and tend to exhibit
malignant and usually lead to a worse prognosis. With the development of the magnetic resonance
imaging (MRI), multimodal MRI plays an important role in disease diagnosis. Different MRI
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modalities are sensitive to different tumor tissues. For example,
T2-weighted (T2) and T2 Fluid Attenuation Inversion Recovery
(FLAIR) are sensitive to peritumoral edema, and post-contrast
T1-weighted (T1Gd) is sensitive to necrotic core and enhancing
tumor core. Thus, they can provide complementary information
about gliomas.

Segmentation of brain tumor is a prerequisite while essential
task in disease diagnosis, surgical planning and prognosis (Bakas
et al., 2017a). Automatic segmentation provides quantitative
information that is more accurate and has better reproducibility
than conventional qualitative image review. Moreover, the
following task of brain tumor classification heavily relies on the
results of brain tumor segmentation. Automatic segmentation is
considered as a powered engine and empower other intelligent
medical application. However, the segmentation of brain tumor
in multimodal MRI scans is one of the most challenging tasks
in medical imaging analysis due to their highly heterogeneous
appearance, and variable localization, shape and size.

Before deep learning developed, random forest (RF) achieves
better performance in brain tumor segmentation (Zikic et al.,
2012; Le Folgoc et al., 2016). In recent years, with the
rapid development of deep leaning techniques, state-of-the-
art performance on brain tumor segmentation have been
achieved with convolutional neural network (CNN). For
example, in Cui et al. (2018), an end-to-end training using fully
convolutional network (FCN) showed satisfactory performance
in the localization of the tumor, and patch-wise CNN was used
to segment the intra-tumor structure. In Wang et al. (2018),
a cascaded anisotropic CNN was designed to segment three
sub-regions with three Nets, and the segmentation result from
previous net was used as receptive field in the next net. Ensemble
strategy also shows great advantages, and most models are based
on 3D U-Net, DeepMedic, and their variants (Isensee et al., 2018;
Kamnitsas et al., 2018). One recent paper arguing that a well-
trained U-Net is hard to beat (Isensee et al., 2019). Instead of
modifying architectures, they focused on the training process
such as region based training and additional training data, and
achieved competitive Dice scores.

Inspired by the superior performance of V-Net in
segmentation tasks, we propose a cascaded V-Nets method to
segment brain tumor into three substructures and background.
In particular, the cascaded V-Nets not only take advantage of
residual connection but also use the extra coarse localization
and ensemble of multiple models to boost the performance.
A preliminary version of the method has been presented in a
conference (Hua et al., 2019). Here we extend it to include more
descriptions of the method details and additional experiments
to further evaluate the performance of the proposed method in
local hospital data sets.

METHOD

Dataset and Preprocessing
The data used in experiments come from the released data of
BraTS 2018 online challenge (Menze et al., 2015; Bakas et al.,
2017a,b,c). The training set includes totally 210 HGG patients
and 75 LGG patients. The validation set includes 66 patients and

the testing set includes 191 patients. Each patient has four MRI
modalities including T1-weighted (T1), T2, T1Gd, and FLAIR,
where ground truth labels of tumor substructures are available
only in training set. The images were already skull stripped and
normalized together, with resolution of 1 × 1 × 1 mm3 for
all modalities. We use 80 percent of the training data for our
training, and the rest 20 percent of the training data as our local
testing set.

Meanwhile, in order to further test the performance of the
proposed method, we prepare two additional data sets that
include 28 patients from China-Japan Union Hospital of Jilin
University and another 28 patients from Affiliated Drum Tower
Hospital of Nanjing University Medical School. The resolution
of the T1 images from China-Japan Union Hospital of Jilin
University is 0.6 × 0.6 × 6 mm3, while the resolution of the
T1 images from Affiliated Drum Tower Hospital of Nanjing
UniversityMedical School is 0.67× 0.67× 0.67mm3. The images
of T2, T1Gd, and FLAIR are linearly aligned to its corresponding
T1 image for each subject. Skull stripping is performed on
T1 and the mask is applied to other modalities. The ground
truth labels of the brain tumors are manually delineated by
an experienced radiologist. The experienced radiologist (Z.M.)
was asked to delineate the tumor subregions according to the
image delineating principles of BraTS 2018. Results would serve
as ground truth to evaluate the generalizability of the method.
In detail, the delineating principle includes three subregion
segmentations of the tumor, including the necrotic (NCR) and
the non-enhancing (NET) tumor core, the enhancing tumor (ET)
and the peritumoral edema (ED). The NCR and the NET tumor
core was the low intensity necrotic structures in T1Gd when
compared to T1. The ET area was confirmed as hyper-intensity
structures in T1Gd when compared to T1 images, and when
compared to normal brain in T1Gd. The ED area was identified
as abnormality visible in T2 and FLAIR excluding ventricles and
cerebrospinal fluid.

All data used in the experiments are preprocessed with specific
designed procedures. A flow chart of the proposed preprocessing
procedures is shown in Figure 1, as follows: (1) Apply bias field
correction N4 (Tustison et al., 2010) to T1 and T1Gd images,
normalize each modality using histogram matching with respect
to a MNI template image, and rescale the images intensity values
into range of −1 to 1; (2) Apply bias field correction N4 to all
modalities, compute the standardized z-scores for each image
and rescale 0–99.9 percentile intensity values into range of −1 to
1; (3) Follow the first method, and further apply affine alignment
to co-register each image to the MNI template image.

V-Net Architecture
V-Net was initially proposed to segment prostate by training an
end-to-end CNN onMRI (Milletari et al., 2016). The architecture
of our V-Net is shown in Figure 2. The left side of V-Net reduces
the size of the input by down-sampling, while the right side of V-
Net recovers the semantic segmentation image that has the same
size with input images by applying de-convolutions. The detailed
parameters about V-Net is shown in Table 1. Both left side of
the network and right side of the network were divided into four
blocks that operate at different resolutions. Each block comprises
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FIGURE 1 | The flow chart of the preprocessing procedures.

one to three convolutional blocks. The input of each block is

added to the output of the current block to learn a residual

function, and added to the input of the corresponding block
which has the same resolution in the right side of the network
as a skip connection. By means of introducing residual function
and skip connection, V-Net has better segmentation performance
compared with conventional CNN. Each convolutional block
comprises two convolutional layers with the kernel size of 1 × 1
× 1 at the start and the end of the convolutional block. By means

of introducing the 3D kernel with size of 1× 1× 1, the number of
parameters in V-Net is decreased and the memory consumption
is greatly reduced. Appropriate padding and ReLU non-linearity
are applied throughout the network.

Proposed Cascaded V-Nets Framework
Although V-Net has demonstrated promising performance in
segmentation tasks, it could be further improved if incorporated
with extra information, such as coarse localization. Therefore,
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FIGURE 2 | The architecture of the used V-Net.

we propose a cascaded V-Nets method for tumor segmentation.
Briefly, we (1) use one V-Net for the whole tumor segmentation;
(2) use a second V-Net to further divide the tumor regions into
three substructures, e.g., tumor necrosis, edema, and enhancing
tumor. Note that the coarse segmentation of whole tumor in the
first V-Net is also used as receptive field to boost the performance.
Detailed steps are as follows.

The proposed framework is shown in Figure 3. There are two
networks to segment substructures of brain tumors sequentially.
The first network (V-Net 1) includes models 1–3, designed to
segment the whole tumor. These models are trained by three
kinds of preprocessed data mentioned in part of 2.1, respectively.
V-Net 1 uses four modalities MR images as inputs, and outputs
the mask of whole tumor (WT). The second network (V-Net
2) includes models 4–5, designed to segment the brain tumor
into three substructures: tumor necrosis, edema, and enhancing
tumor. These models are trained by the first two kinds of
preprocessed data mentioned in part of 2.1, respectively. V-Net
2 also uses four modalities MR images as inputs, and outputs
the segmented mask with three labels. Note that the inputs of V-
Net 2 have been processed using the mask of WT as region of
interest (ROI). In other words, the areas out of the ROI are set
as background. Finally, we combine the segmentation results of
whole tumor obtained by V-Net 1 and the segmentation results
of tumor core (TC, includes tumor necrosis and enhancing
tumor) obtained by V-Net 2 to achieve more accurate results
about the three substructures of brain tumor. In short, the
cascaded V-Nets take advantage of segmenting the brain tumor
and three substructures sequentially, and ensemble of multiple
models to boost the performance and achieve more accurate
segmentation results.

Ensemble Strategy
We employ a simple yet efficient ensemble strategy. It works by
averaging the probability maps obtained from different models.

We use ensemble strategy twice in the two-step segmentation
of the brain tumor substructures. For example, in V-Net 1,
the probability maps of WT obtained from model 1, model 2,
and model 3 were averaged to get the final probability map
of WT. In V-Net 2, the probability maps of tumor necrosis,
edema, and enhancing tumor obtained from model 4 and model
5 were averaged to get final probability maps of brain tumor
substructures, respectively. In order to evaluate the effect of
ensemble strategy for enhancing the performance of our cascaded
V-Nets, ablation experiments were conducted onMICCAI BraTS
2018 validation dataset. Briefly, model combinations include
Model 1–4,Model 12–4,Model 123–4,Model 123–45, andModel
123–45-fuse. To evaluate the significance of the results between
different model combinations, we first evaluated the overall
difference across model combinations with Kruskal-Wallis H
test, and then checked the difference between each of two groups
with Mann-Whitney U test. Multiple comparison correction was
performed using Bonferroni criteria.

Network Implementation
Our cascaded V-Nets are implemented in the deep learning
framework PyTorch. In our network, we initialize weights with
kaiming initialization (He et al., 2015), and use focal loss (Lin
et al., 2018) illustrated in formula (1) as loss function. Focal
loss has the advantage of balancing the ratio of positive and
negative samples, and decreases the importance of easy classified
samples to focus more on difficult samples (Lin et al., 2018).
Adaptive Moment Estimation (Adam) (Kingma and Ba, 2014) is
used as optimizer with learning rate of 0.001, and batch size of 8.
Experiments are performed with a NVIDIA Titan Xp 12GBGPU.

Focal_Loss
(

pt
)

=−α

(

1−pt
)r
log

(

pt
)

(1)

where, α denotes the weight to balance the importance
of positive/negative samples, r denotes the factor to
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TABLE 1 | The detailed parameters of the used V-Net, as shown in Figure 2.

Blocks Sub-blocks or layers Input dimensions Output dimensions

Input block Conv(k = 3, p = 1, s = 1) + BN + ReLU 96 × 96 × 96 × 4 96 × 96 × 96 × 16

Down block 1 Conv(k = 2, p = 0, s = 2)+ BN + ReLU 96 × 96 × 96 × 16 48 × 48 × 48 × 32

Conv(k = 3, p = 1, s = 1) + BN* 48 × 48 × 48 × 32 –

(input+output) + ReLU* 48 × 48 × 48 × 32 –

Down block 2 Conv(k = 2, p = 0, s = 2) + BN + ReLU 48 × 48 × 48 × 32 24 × 24 × 24 × 64

Conv block × 2* 24 × 24 × 24 × 64 –

(input+output) + ReLU* 24 × 24 × 24 × 64 –

Down block 3 Conv(k = 2, p = 0, s = 2) + BN + ReLU 24 × 24 × 24 × 64 12 × 12 × 12 × 128

Conv block × 3* 12 × 12 × 12 × 128 –

(input+output) + ReLU* 12 × 12 × 12 × 128 –

Down block4 Conv(k = 2, p = 0, s = 2) + BN + ReLU 12 × 12 × 12 × 128 6 × 6 × 6 × 256

Conv block × 3* 6 × 6 × 6 × 256 –

(input+output) + ReLU* 6 × 6 × 6 × 256 –

Up block 1 Conv(k = 2, p = 0, s = 2) + BN + ReLU 6 × 6 × 6 × 256 12 × 12 × 12 × 128

Cat(output, skip)* 12 × 12 × 12 × 128 12 × 12 × 12 × 256

Conv block × 3* 12 × 12 × 12 × 256 –

(input+output) + ReLU* 12 × 12 × 12 × 256 –

Up block 2 Conv(k = 2, p = 0, s = 2) + BN + ReLU 12 × 12 × 12 × 256 24 × 24 × 24 × 64

Cat(output+skip)* 24 × 24 × 24 × 64 24 × 24 × 24 × 128

Conv Block × 3* 24 × 24 × 24 × 128 –

(input+output) + ReLU* 24 × 24 × 24 × 128 –

Up block 3 Conv(k = 2, p = 0, s = 2) + BN + ReLU 24 × 24 × 24 × 128 48 × 48 × 48 × 32

Cat(output+skip)* 48 × 48 × 48 × 32 48 × 48 × 48 × 64

Conv(k = 3, p = 1, s = 1) + BN + ReLU* 48 × 48 × 48 × 64 –

Conv(k = 3, p = 1, s = 1)+BN* 48 × 48 × 48 × 64 –

(input+output) + ReLU* 48 × 48 × 48 × 64 –

Up block 4 Conv(k = 2, p = 0, s = 2) + BN + ReLU 48 × 48 × 48 × 64 96 × 96 × 96 × 16

Cat(output+skip)* 96 × 96 × 96 × 16 96 × 96 × 96 × 32

Conv(k = 3, p = 1, s = 1) + BN* 96 × 96 × 96 × 32 –

(input+output) + ReLU* 96 × 96 × 96 × 32 –

Out block Conv(k = 1, p = 0, s = 1) + BN + ReLU 96 × 96 × 96 × 32 96 × 96 × 96 × 4

Softmax 96 × 96 × 96 × 4 96 × 96 × 96 × 1

Each Conv sub-block contains three convolution layers: Conv1 (k = 1, p = 0, s = 1), Conv2 (k = 3, p = 1, s = 1), and Conv3 (k = 1, p = 0, s = 1). k, kernel size; p, padding; s, stride.

The symbol “–” means the output dimensions are the same with input dimensions. The symbol “*” denotes that these layers in each block are residual units.

FIGURE 3 | The proposed framework of cascaded V-Nets for brain tumor segmentation.

increase the importance of correcting misclassified
samples, and pt denotes the probability of the
ground truth.

In order to reduce the memory consumption in the training
process, 3D patches with a size of 96 × 96 × 96 are used. And
the center of the patch is confined to the bounding box of the
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brain tumor. Therefore, every patch used in training process
contains both tumor and background. The training efficiency of
the network has been greatly improved.

Post-processing
The predicted tumor segmentations are post-processed using
connected component analysis. We consider that the isolated
segmentation labels with small size are prone to artifacts and
thus remove them. Our strategy is as follows. After the V-Net
1, the small clusters with voxel number <T = 1,000 are directly
discarded. For each cluster with size between 1,000 and 15,000,
its average probability of being a tumor is calculated. This cluster
will be retained if the probability is no <0.85 and removed
otherwise. The rest big clusters with voxel number over T =

15,000 are also retained. A binary whole tumor map is thus
obtained. After the V-Net 2, we also calculated the connected
component and removed the small clusters with voxel number
<1,000. While if all cluster sizes are <1,000, the largest cluster
will be retained.

Evaluation of Tumor Segmentation
Performance
The models trained by MICCAI BraTS 2018 training data are
applied to our local testing set, MICCAI BraTS 2018 validation
set, MICCAI BraTS 2018 testing set, and the additional clinical
testing sets. In order to evaluate the performance of our method,
Dice score, sensitivity, and specificity are calculated for whole
tumor, tumor core and enhancing tumor, respectively. Dice
score indicates the ratio of the area where the segmentation
image intersects with the ground truth image to the total areas.
Sensitivity indicates the ratio of the detected tumor voxels to
all tumor voxels. Specificity indicates the ratio of the detected
background voxels to all background voxels. The evaluation
results for MICCAI BraTS 2018 validation set and testing set are
provided by the organizer of the BraTS 2018 online challenge,
and Hausdorff95 is also included, which indicates the distances
of the two tumor voxels sets with a percentile value of 95%.

Dice =
2
∣

∣A
⋂

B
∣

∣

|A| + |B|
(2)

Sensitivity =
TP

TP+FN
(3)

Specificity =
TN

TN+FP
(4)

Hausdorff95 = max[max (95%)
a∈A

min
b∈B

‖a - b‖,

max(95%)
b∈B

min
a∈A

∥

∥b - a
∥

∥] (5)

where, A denotes the segmentation image, B denotes the ground
truth image, TP denotes the number of the true positive voxels,
FN denotes the number of the false negative voxels, TN denotes
the number of the true negative voxels, and FP denotes the
number of the false positive voxels.

For the additional testing sets of local hospitals, only Dice
scores are evaluated. Given that the images from two data sets

TABLE 2 | Selected features in the training data for the prediction of patient

overall survival.

Features Number of

features

Age 1

Volume of whole brain 1

Volume of whole tumor 1

Volumes of three tumor substructures 3

Ratio of the whole tumor in whole brain 1

Ratios of three tumor substructures in whole tumor 3

Extent of lesion in x, y, z directions 3

Center coordinates of the whole tumor 3

Means and variances of three tumor substructures in four

MR modalities

24

First order statistics features of three tumor substructures 411

Shape-based features of three tumor substructures 78

Gray level cooccurence matrix features of three tumor

substructures

180

Gray level run length matrix features of three tumor

substructures

96

Neigbouring gray tone difference matrix features of three

tumor substructures

96

Gray level dependence matrix features of three tumor

substructures

84

have different resolution, we calculate the average Dice scores
for whole tumor, tumor core and enhancing tumor in two data
sets, respectively.

Prediction of Patient Overall Survival
Overall survival (OS) is a direct measure of clinical benefit to a
patient. Generally, brain tumor patients could be classified into
long-survivors (e.g., >15 months), mid-survivors (e.g., between
10 and 15 months), and short-survivors (e.g., <10 months).
For the multimodal MRI data, we propose to use our tumor
segmentation masks and generate imaging markers through
Radiomics method to predict the patient OS groups.

From the training data, we extract 40 hand-crafted features
and 945 radiomics features (Isensee et al., 2018) in total. The
detailed extracted features are shown in Table 2. All features are
normalized into range of 0–1. Pearson correlation coefficient is
used for feature selection. All features are ranked by Pearson
correlation coefficient from large to small, and the top 10%
features are used as the inputs of the following classifiers.
We use support vector machine (SVM), multilayer perceptrons
(MLP), XGBoost, decision tree classifier, linear discriminant
analysis (LDA), and random forest (RF) as our classifiers in an
ensemble strategy. F1-score is used as the evaluation standard.
The final result is determined by the vote on all classification
results. In order to reduce the bias, a 10-fold cross-validation
is used. For the validation and testing data, these selected
features are extracted and the prediction is made using the
above models.
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FIGURE 4 | The comparison of segmentation results and ground truth on representative cases from local testing set and two clinical testing sets. (A) The

segmentation results and ground truth from local testing set. (B) The segmentation results and ground truth from clinical testing set of China-Japan Union Hospital of

Jilin University. (C) The segmentation results and ground truth from clinical testing set of Affiliated Drum Tower Hospital of Nanjing University Medical School.
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TABLE 3 | Dice, sensitivity, and specificity measurements of the proposed

method on local testing set.

Whole tumor Tumor core Enhancing tumor

Dice mean ± SD 0.8505 ± 0.0972 0.7842 ± 0.1919 0.7426 ± 0.2080

Sensitivity mean ± SD 0.9180 ± 0.1091 0.7596 ± 0.2199 0.7174 ± 0.2337

Specificity mean ± SD 0.9981 ± 0.0012 0.9996 ± 0.0008 0.9997 ± 0.0003

TABLE 4 | Dice, sensitivity, specificity, and Hausdorff95 measurements of the

proposed method on BraTS 2018 validation set.

Whole tumor Tumor core Enhancing tumor

Dice mean ± SD 0.9048 ± 0.0648 0.8364 ± 0.1609 0.7768 ± 0.2355

Sensitivity mean ± SD 0.9146 ± 0.0949 0.8453 ± 0.1781 0.8166 ± 0.2382

Specificity mean ± SD 0.9945 ± 0.0041 0.9971 ± 0.0041 0.9977 ± 0.0032

Hausdorff95 mean ±

SD (mm)

5.1759 ± 7.3622 6.2780 ± 7.7681 3.5123 ± 4.5407

RESULTS

Segmentation Results on Local Testing Set
of 57 Subjects
We use 20 percent of all data as our local testing set, which
includes 42 HGG patients and 15 LGG patients. Representative
segmentation results are shown in Figure 4A. The green shows
the edema, the red shows the tumor necrosis, and the yellow
shows the enhancing tumor. In order to evaluate the preliminary
experimental results, we calculate the average Dice scores,
sensitivity, and specificity for whole tumor, tumor core, and
enhancing tumor, respectively. The results are shown in Table 3.
The segmentation of whole tumor achieves best result with
average Dice score of 0.8505.

Segmentation Results on MICCAI BraTS
2018 Validation Set of 66 Subjects
The segmentation results on BraTS 2018 online validation set
achieve average Dice scores of 0.9048, 0.8364, and 0.7768 for
whole tumor, tumor core, and enhancing tumor, respectively.
That performance is slightly better than that in local testing
set, while the whole tumor still has best result and enhancing
tumor is the most challenging one. The details are shown in
Table 4. For the ablation experiments, the distribution of Dice
scores for whole tumor, tumor core and enhancing tumor are
shown in Figures 5A–C, respectively. Generally, the average
Dice scores for whole tumor, tumor core and enhancing tumor
increase when ensembling more models to our cascaded V-
Nets architecture. The difference of Dice scores for whole tumor
between the baseline V-Nets architecture and our proposed
architecture reaches significance as p = 0.011. Other model
combination methods show the same trend although not get
through Bonferroni correction.

Segmentation Results on MICCAI BraTS
2018 Testing Set of 191 Subjects
The segmentation results on BraTS 2018 online testing set
achieve average Dice scores of 0.8761, 0.7953, and 0.7364 for

whole tumor, tumor core and enhancing tumor, respectively.
Compared with the Dice scores on MICCAI BraTS 2018
validation set, the numbers are slightly dropped. The details are
shown in Table 5. The prediction of patient OS on BraTS 2018
testing set achieve accuracy of 0.519 and mean square error
(MSE) of 367240. The details are shown in Table 6. The BraTS
2018 ranking of all participating teams in the testing data for both
tasks has been summarized in Bakas et al. (2018), where our team
listed as “LADYHR” and ranked 18 out of 61 in the segmentation
task and 7 out of 26 in the prediction task.

Segmentation Results on Clinical Testing
Sets of 56 Subjects
Representative segmentation results on two local hospital testing
sets are shown in Figures 4B,C. The average Dice scores for
whole tumor, tumor core and enhancing tumor in two data sets
are calculated, respectively. The details are shown in Table 7.
Overall, the images from China-Japan Union Hospital of Jilin
University which are acquired using 2D MRI sequences achieve
better segmentation results with Dice scores of 0.8635, 0.8036,
and 0.7217 for whole tumor, tumor core, and enhancing tumor,
respectively. On the other hand, the images from Affiliated Drum
Tower Hospital of Nanjing University Medical School which are
acquired using 3D MRI sequences achieve poor Dice score of
0.6786 for tumor core.

DISCUSSION

In this paper, we propose a cascaded V-Nets framework to
segment brain tumor. The cascaded framework breaks down a
difficult segmentation task into two easier subtasks including
segmenting whole tumor from background and segmenting
tumor substructures from whole tumor. Different from other
methods, our method takes full account of the effect of
preprocessing on the segmentation results, and use a customized
preprocessing approach to process the data and train multiple
models. The cascaded V-Nets are trained only using provided
data, data augmentation and a focal loss formulation. We achieve
state-of-the-art results on BraTS 2018 validation set. Specifically,
the experimental results on BraTS 2018 online validation set
achieve average Dice scores of 0.9048, 0.8364, and 0.7768 for
whole tumor, tumor core and enhancing tumor, respectively. The
corresponding values for BraTS 2018 online testing set are 0.8761,
0.7953, and 0.7364, respectively.

Generally, all the three average Dice scores degenerate in
testing set compared with validation set. The reason may be that
the sample size of testing set is much larger than that of validation
set, and includes more anatomical variances. For clinical testing
sets, we achieve 2% higher average Dice scores in images acquired
using 2D MRI sequences than images acquired using 3D MRI
sequences. The reason may be that the public dataset provided
by the organizers of MICCAI BraTS 2018 includes more images
acquired using 2DMRI sequences than images acquired using 3D
MRI sequences. The trained model thus favors more 2D testing
data than that of 3D. However, given that 2D MRI sequences
are widely adopted in clinical practice for shorter acquisition
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FIGURE 5 | The distribution of Dice scores for whole tumor, tumor core and enhancing tumor in ablation experiments. (A) The bar plot of Dice scores for whole tumor.

The difference between the baseline V-Nets architecture and our proposed architecture reaches significance as p = 0.011. (B) The bar plot of Dice scores for tumor

core. (C) The bar plot of Dice scores for enhancing tumor (The height of the bar indicates the mean Dice scores, and the error bars indicate the standard deviation).

TABLE 5 | Dice and Hausdorff95 measurements of the proposed method on

BraTS 2018 testing set.

Whole tumor Tumor core Enhancing tumor

Dice mean ± SD 0.8761 ± 0.1247 0.7953 ± 0.2543 0.7364 ± 0.2592

Hausdorff95 mean ±

SD (mm)

7.0514 ±

11.5935

6.7262 ±

11.8852

3.9217 ± 6.1934

TABLE 6 | The prediction of patient overall survival on BraTS 2018 testing set.

Scores

Accuracy 0.519

Mean squared error (MSE) 367239.974

Median square error (MedianSE) 38416

Standard deviation square error 945593.877

SpearmanR 0.168

time, the generatedmodelmay bemore practical andmeaningful.
Therefore, for sites using major 3D images, the training set could
include more 3D data and a specific 3D model could be trained.

There are several benefits of using a cascaded framework.
First, the cascaded framework breaks down a difficult
segmentation task into two easier subtasks. Therefore, a
simple network V-Net can have excellent performance. In fact,
in our experiment, V-Net does have better performance when
segment the tumor substructures step by step than segment
background and all the three tumor substructures together.
Second, the segmentation results of V-Net 1 helps to reduce the

TABLE 7 | Dice measurements of the proposed method on clinical testing set.

China-Japan Union

Hospital

Nanjing Drum Tower

Hospital

# of subjects 28 28

Image resolution (mm3 ) 0.6 × 0.6 × 6 0.67 × 0.67 × 0.67

WT Dice mean ± SD 0.8635 ± 0.0838 0.8692 ± 0.1307

TC Dice mean ± SD 0.8036 ± 0.1476 0.6786 ± 0.3093

ET Dice mean ± SD 0.7217 ± 0.1968 0.7054 ± 0.3557

receptive field from whole brain to only whole tumor. Thus,
some false positive results can be avoided.

In addition to cascaded framework, ensemble strategy
contributes to the segmentation performance. In our cascaded
V-Nets framework, V-Net 1 includes models 1–3 and V-Net
2 includes models 4–5. Every model uses the same network
structure V-Net. However, the training data is preprocessed with
different pipelines mentioned in part of 2.1. According to our
experimental experience, the Dice scores will greatly decrease
due to the false positive results. While we did try several ways
to change the preprocessing procedures for the training data, or
change the model used in the segmentation task, the false positive
results always appear. Interestingly, the false positive results
appear in different areas in terms of different models. Therefore,
ensemble strategy works by averaging probability maps obtained
from different models. The results of the ablation experiments
also confirm the proposed ensemble strategy works.

Moreover, we find three interesting points in the experiment.
Firstly, for multimodal MR images, the combination of data
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preprocessing procedures is important. In other words, different
MRI modalities should be preprocessed independently. For
example, in our first preprocessing pipeline, bias field correction
only applied to T1 and T1Gd images. The reason is that the
histogram matching approach may remove the high intensity
information of tumor structure that has negative impact to the
segmentation task. Secondly, we use three kinds of preprocessing
methods to process the training and validation data, and
compared their segmentation results. As a result, there is
almost no difference between preprocessing methods in the
three average Dice scores for whole tumor, tumor core and
enhancing tumor, respectively. However, after the ensemble of
the multiple models, the three average Dice scores all rose at
least 2 percent. This suggests that data preprocessing methods is
not the most important factor for the segmentation performance,
while different data preprocessing methods are complementary
and their combination can boost segmentation performance.
Thirdly, the post-processing method is also important that it
could affect the average Dices scores largely. If the threshold
is too big, some of small clusters will be discarded improperly.
If the threshold is too small, some false positive results will be
retained. In order to have a better performance, we test a range
of thresholds and choose the most suitable two thresholds as the
upper and the lower bounds. For the components between upper
and lower bounds, their average segmentation probabilities are
calculated as a second criterion. Of course, these thresholds may
not be suitable for all cases.

CONCLUSIONS

In conclusion, we propose a cascaded V-Nets framework to
segment brain tumor into three substructures of brain tumor
and background. The experimental results on BraTS 2018 online
validation set achieve average Dice scores of 0.9048, 0.8364,
and 0.7768 for whole tumor, tumor core and enhancing tumor,
respectively. The corresponding values for BraTS 2018 online
testing set are 0.8761, 0.7953, and 0.7364, respectively. The

corresponding values for clinical testing set are 0.8635, 0.8036,
and 0.7217, respectively. For clinical data set, images acquired
using 2D MRI sequences achieve higher average Dice scores
than images acquired using 3D MRI sequences, demonstrates
that the proposed method is practical and meaningful in clinical
practice. The state-of-the-art results demonstrate that V-Net is a
promising network for medical imaging segmentation tasks, and
the cascaded framework and ensemble strategy are efficient for
boosting the segmentation performance.
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