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Advances in computation and neuronal modeling have enabled the study of entire
neural tissue systems with an impressive degree of biological realism. These efforts have
focused largely on modeling dendrites and somas while largely neglecting axons. The
need for biologically realistic explicit axonal models is particularly clear for applications
involving clinical and therapeutic electrical stimulation because axons are generally
more excitable than other neuroanatomical subunits. While many modeling efforts
can rely on existing repositories of reconstructed dendritic/somatic morphologies to
study real cells or to estimate parameters for a generative model, such datasets for
axons are scarce and incomplete. Those that do exist may still be insufficient to build
accurate models because the increased geometric variability of axons demands a
proportional increase in data. To address this need, a Ruled-Optimum Ordered Tree
System (ROOTS) was developed that extends the capability of neuronal morphology
generative methods to include highly branched cortical axon terminal arbors. Further,
this study presents and explores a clear use-case for such models in the prediction
of cortical tissue response to externally applied electric fields. The results presented
herein comprise (i) a quantitative and qualitative analysis of the generative algorithm
proposed, (ii) a comparison of generated fibers with those observed in histological
studies, (iii) a study of the requisite spatial and morphological complexity of axonal arbors
for accurate prediction of neuronal response to extracellular electrical stimulation, and
(iv) an extracellular electrical stimulation strength–duration analysis to explore probable
thresholds of excitation of the dentate perforant path under controlled conditions.
ROOTS demonstrates a superior ability to capture biological realism in model fibers,
allowing improved accuracy in predicting the impact that microscale structures and
branching patterns have on spatiotemporal patterns of activity in the presence of
extracellular electric fields.

Keywords: deep brain stimulation (DBS), axons, multi-scale, electrical stimulation (ES), morphology, spatio-
temporal analysis
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INTRODUCTION

In the study of extracellular electrical stimulation of neural
systems, spatial and temporal patterns of activity are strongly
influenced by tissue geometry. One established approach to
studying this relationship is through morphologically detailed
equivalent circuit models of neurons, including axons. While
these models are invaluable for many different applications,
they are especially useful for prediction of tissue response to
extracellular stimulation, where explicit morphologies aid the
prediction of activation thresholds under varying biological and
stimulating conditions (Ranck, 1975; Nowak and Bullier, 1996,
1998). For biologically realistic network models, a common
method involves arranging individual neuron models in virtual
space to reconstruct elements of the tissue system being studied
(Grill, 1999; McIntyre and Grill, 1999; Howell and McIntyre,
2016; Anderson et al., 2018; Bingham et al., 2018). This approach
enables accurate prediction of membrane potentials in response
to changes in electric field geometry and gradient (Clark and
Plonsey, 1970; Figure 1).

Despite an understanding that geometry and topology
influence activity, much of the biological realism in these studies
is reserved for dendritic rather than axonal arbors. This lack
of realism in axonal fibers becomes especially disconcerting
when considering both that (i) central nervous system axon
terminal arbors are often highly branched and tortuous relative
to the mostly straight and long nerves of the periphery, and
(ii) under most typical stimulating conditions, axons have
shorter chronaxies than somas and dendrites (Ranck, 1975;
Johnson and McIntyre, 2008; Rattay et al., 2012). It follows that

FIGURE 1 | Adding biological realism to axon models for the study of
extracellular electrical stimulation allows more accurate analysis of evoked
neural network activity. The proposed algorithm, ROOTS, was developed
specifically to provide increased realism in fiber models. The utility of ROOTS
is to mitigate the challenge portrayed above: without explicit axonal
reconstructions, how does one accurately estimate the site of action potential
initiation and appropriate orthodromic conduction latencies through the
terminal region in the presence of externally applied electric fields? (A)
corresponds to the case where distance-based pure-delay mechanisms are
used. (B) corresponds to explicit and biologically accurate axon
representations.

suprathreshold stimulation events result in coupled local (driven
by the injected electric field) and distal (synaptically driven)
activity, with substantial realism being necessary to predict the
spatiotemporal pattern of the resulting response in totality.
Deliberate arrangement of neuronal structures is also useful
for accurate model-based prediction of tissue–tissue interactions
due to electric fields arising from endogenous current sources
(Anastassiou and Koch, 2015). Accurate estimation of local
field potentials (LFPs) and, therefore, predictions of the region-
specific impact of ephaptic coupling are sensitive to the degree
of biological realism implemented in a model system (Bingham
et al., 2018). Lastly, network models that lack explicit axonal
structures may have unrealistic conduction delays between
connected populations of neurons, leading to potential prediction
errors (Kim et al., 2019). While delays may be trivially added
to network connections once they are known, biologically
appropriate behaviors must first be estimated. Therefore,
geometrical and anatomical realism may also be necessary to
study emergent network activity such as co-oscillatory activity in
hippocampal networks (Whittington et al., 1997; Fries, 2005).

Despite the long record of hippocampal observation, axonal
morphology is not as scrupulously described as the somas
and dendrites of many cell types. With a few exceptions,
studies yielding explicit reconstructions through morphometric
analysis of neuronal branching have focused on dendritic
arbors and overlooked their axons (Desmond and Levy, 1985;
Hama et al., 1989; Claiborne et al., 1990). The dearth of
robust datasets is exacerbated by the general observation from
staining experiments performed in the hippocampus that axonal
structures, even of the same cell type, may be less stereotyped than
dendritic arbors (Hjorth-Simonsen and Jeune, 1972). Perforant
path axon terminal arbors from layer 2/3 entorhinal cortical (EC)
spiny stellate cells are not constrained to simple conical, fanned,
or star-shaped volumes like so many dendritic arbors (Tamamaki
and Nojyo, 1993). Geometric and topological heterogeneity make
the prospect of using explicit reconstructions unfeasible for
direct use in computational models which require in situ cell
density at tissue scale. This becomes particularly apparent when
considering that the unique geometry of the dentate gyrus,
which changes from septal to temporal poles, requires dramatic
inter-region variety in the volume, orientation, and contour of
afferent EC axons.

Despite the general absence of morphometrics for axons, the
shape of terminal fields, distribution of synaptic spines, and a
rough measure of anatomic domains of axon terminal fields
from either histology or other imaging methods provide data
from which minimally functional axons can be grown. Explicit
dendritic reconstructions, spine counting, and anterograde and
retrograde staining experiments provide information regarding
synaptic targets. Distributions of synaptic targets combined with
a knowledge of the general path and origin of a fiber is sufficient
to generate a functional structure that captures the tertiary
conformation and local divergence of the axon terminal arbor.
When representing a neural process as a graph, nodes placed
at synapses and edges to connect between them and the soma
can effectively reconstruct a functional dendritic arbor (Türetken
et al., 2011). Likewise, presynaptic boutons provide nodes that
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can be connected to each other and the soma with a deliberate
arrangement of edges to form a spatial network or graph. In
other words, a minimally functional axon connects a parent cell
to synaptic targets.

Beyond minimally functional morphologies, sophisticated
models of realistic neuronal branching have been proposed with
primary application to either generating unique and artificial
dendritic trees or reconstructing them from a series of images.
There are two chief types of generative models: (i) stochastic
(Rozenberg and Salomaa, 1980) or (ii) greedy (Cuntz et al.,
2007, 2010; Budd et al., 2010; Budd and Kisvarday, 2012).
Stochastic models operate by sampling distributions of branching
statistics extracted from experimentally measured neurons, while
greedy graph-based models are much more frequently used to
reconstruct three-dimensional dendritic trees from stacks of
manually labeled images (Türetken et al., 2011). Although each
of these approaches have been useful under certain conditions,
neither has been properly adapted for use in the generation of
virtual biologically realistic axons.

Consequently, we present in this paper a new graph-based
algorithm for generating biologically realistic tree representations
of axon terminal arbors. The proposed model is inspected
for its utility in studying extracellular electrical stimulation of
cortical tissue through analysis of the impact of arbor topography
and morphometry on activation thresholds and, by extension,
spatiotemporal patterns of activity in the hippocampus. The
results of this work comprise (i) a quantitative analysis
of the generative algorithm proposed, (ii) presentation and
quantitative/qualitative description of generated fibers, (iii)
comparison to leading alternative methods, (iv) demonstration
of a method to reduce spatial complexity of axonal arbors
while maintaining accurate prediction of neuronal response
to extracellular electrical stimulation, and (v) an extracellular
electrical stimulation strength–duration study. The value of these
studies is twofold: (i) establishing the novelty and utility that
this modeling system yields and (ii) determining if stimulation–
response recruitment order (i.e., large before small) for straight,
long, large-diameter, and myelinated peripheral fibers is similarly
true of small, highly branched, and unmyelinated cortical fibers.

MATERIALS AND METHODS

The study presented here focuses on accurately capturing the
emergent spatial features of spiny stellate EC axons within the
dentate gyrus in Sprague-Dawley rats. The model is designed to
be flexible to the inclusion of novel morphometric criteria as new
experimental data become available but, at present, it is clearly
important that (i) fibers are constrained to 1–1.5 mm within the
septotemporal axis (Tamamaki and Nojyo, 1993), (ii) laminar
organization along the transverse axis is inviolate, with medial
and lateral EC axons confined to the middle and outer thirds of
the dentate molecular layer, respectively, and (iii) axons synapse
with a pronounced en passant connective schema, where most
pre-synaptic boutons are non-terminal. Many more features and
their sources are detailed in Table 1. A greedy, graph-based, or
ruled-optimum ordered tree system (ROOTS) was developed to

TABLE 1 | Principle features (left) of entorhinal cortical axons found in the dentate
gyrus perforant path and the studies which reported them (right).

Feature References

Strictly laminar dentate perforant path Hjorth-Simonsen and Jeune, 1972;
Witter, 2007

En passant; mostly non-terminal
boutons

Witter, 2007; Bindocci et al., 2017

Distribution of bifurcation angles
≈80.3 ± 35.7◦

Budd and Kisvarday, 2012

0.1 µm fiber diameter, ≈0.7 µm
boutons

Tamamaki and Nojyo, 1993

Primary bifurcation at/near crest,
envelopes entire transverse of dentate,
continues to CA3

Hjorth-Simonsen and Jeune, 1972;
Schwartz and Coleman, 1981;
Tamamaki and Nojyo, 1993; Witter,
2007

≈17,700 synapses per EC axon Desmond and Levy, 1985; Hama et al.,
1989; Claiborne et al., 1990

Myelination – mixed, though clearest
images show no myelination below the
crest of dentate

Tamamaki and Nojyo, 1993

These features, when combined with the topography of spines in the outer and
middle thirds of the dentate gyrus provide guiding parameters for construction of
artificial tree models. The proposed method utilized these as criteria for generation
of dentate perforant path fibers that provide a test-case for ROOTS as a method.

control these features. First, we will explain the development of
constraints and inputs to the method and then explain, in detail
the functions of the method.

Volume and Nodal Constraints
In the construction of a spatial ordered tree, the number and
topography of target nodes strongly determines the emergent
features of the resulting graph. Therefore, the selection of nodes
is an important step in the successful generation of biologically
appropriate axonal trees. This process was executed using the
Kjoenigsen rat hippocampal atlas slice at −3.34 from Bregma to
segment model boundaries (Kjonigsen et al., 2008). Past efforts
have elucidated the approximate number and spatial distribution
of synaptic targets within the dentate perforant path (Claiborne
et al., 1990; Bingham et al., 2016; Hendrickson et al., 2016). The
approximate number and density of granule cells found within
the dentate region of a 1.5 mm extruded slice was calculated based
on density measurements reported in the literature (Gaarskjaer,
1978; Patton and McNaughton, 1995). Spine counts and the
laminar topology of entorhinal–dentate connections were used
to create a pool of synaptic targets and the number of perforant
path arbors from which afferent connections might be formed
(Desmond and Levy, 1985; Hama et al., 1989; Claiborne et al.,
1990). An abbreviated table derived from Hendrickson et al.
(2016) can be found below to summarize these parameters as they
were used in this study:

To summarize: the number of synaptic spines in the
outer and middle third of hippocampal granule cell dendritic
arbors the size, number, and density of granule cells, and
the number/density of EC cells contributing to the perforant
path provide the necessary arithmetic for deducing the
number of synapses made within each axon terminal field
(Table 2 and Figure 2). When combined with observational
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TABLE 2 | Parameters describing the entorhinal cortical–dentate gyrus topology
used to design the topography of synaptic targets for axon fiber growing
described in later sections.

Entorhinal cortical–dentate gyrus topological parameters

Granule cell # spines: middle 1/3: 1050–1200

Granule cell # spines: outer 1/3: 1100–1300

This table provides a range of spine-counts per dentate granule cell with which
the perforant path fibers may synapse (Claiborne et al., 1990; Desmond and
Levy, 1985). Medial entorhinal cortical fibers synapse in the middle 1/3 and
lateral entorhinal cortical fibers synapse in the outer third of the granule cell
dendritic arbors.

FIGURE 2 | Features of granule cell arbors – including the distributions of
longitudinal, transverse, and dentate normal lengths of arbors shown above –
and afferent connectivity provides guiding information for both the sampling of
target nodes for generation of axon morphologies and the simplification of
generated morphologies (Claiborne et al., 1990).

data regarding the septotemporal range of these axons, this
information provided an approximate volume throughout which
nodes could be distributed and a plausible synthetic terminal
arbor could be grown. These same parameters were used to
construct much larger, more complex, and previously validated
mechanistic models of a rat dentate hippocampus; therefore,
additional details can be found in Bingham et al. (2018)
and Hendrickson et al. (2016).

Constraining Patterns of Axon Branching
While many of the possible branching patterns of a functional
arbor are constrained by the topography of synaptic targets, there
remain as many as n(n−2) trees that span a set of targets (n), few
of which are biologically plausible (Cayley, 1889). It follows that
encouraging biological realism requires additional non-trivial
steps to constrain branching features of generated topologies.
Figure 3 is an algorithm flow diagram and pseudocode (provided
in Supplementary Figure S1) for proper preprocessing and
successful execution of ROOTS. This process generated the trees
analyzed in later sections of this manuscript. In brief, ROOTS
seeks to minimize the quantity of membrane required to span a
set of synaptic targets while satisfying user-specified branching
criteria. These criteria (at the time of writing) include: branch
extension angle (meander) and length (“Extension Criteria”), and
bifurcation angle and length (“Bifurcation Criteria”). The method
was also designed in a manner that allows additional global

criteria (branch order, number of bifurcations, total length, etc.)
to be designed and applied within ROOTS. The process by which
this is accomplished involves serially considering sorted (by
source–target distance or “Likely Path”; according to Figure 3)
open points by alternating between branch extension (appending
points to an existing branch) and bifurcation (beginning of
a new branch). If in the process of extending a branch it is
found that no points satisfy branch extension criteria, then the
algorithm switches to bifurcation. If a bifurcation can be created
according to bifurcation criteria, then the algorithm switches
back to extending the newly begun branch. This iterative process
continues until either extension and bifurcation criteria cannot
be satisfied or no open points remain. Model inputs (synaptic
targets, branching and bifurcating criteria, and global criterial)
dually exert control over the emergent spatial/geometric features
of the entire terminal field and the branching patterns that
develop as the fiber is constructed.

While the core of this algorithm is capable of growing axons
with highly particular geometries, it is limited in the cases
where axons execute acute turns without forming connections
that cross the resulting sulcus. An additional rule can be used
to mitigate this case-specific flaw: a relative location sensitive
dynamic source point and reference angle (Figure 3B). The
principle difference between simplified and dynamic source
updating modes (Figures 3A vs. 3B) is the way in which points
are sorted and, therefore, the order in which points are considered
for inclusion into the tree and the reference angles that are
subsequently calculated. The “likely path sort” components in
Figure 3B, effectively, allow fibers to be grown along manifold
surfaces where the simplified algorithm is for efficient growth
of conical or star-shape fibers. This approach requires additional
preprocessing – replacing the initial sorting of points with respect
to a single source point with a more sophisticated sort and
a dictionary of relative source-points and reference directions.
This new process is performed by (i) finding spatial clusters of
synaptic targets using K-means, (ii) fitting a mesh to the spatial
clusters using Delaunay triangulation, and (iii) discovering the
most likely path to any cluster center from the origin source-point
through the constructed mesh (Hartigan and Wong, 1979; Chew,
1989). The most likely path, found using Dijkstra’s shortest path
algorithm, is then used as a lookup table where the edges leading
to the cluster within which any new point being considered may
be found are used to constrain angles of branch extension and
bifurcation (Chen, 2003). Execution of these three new steps
results in a path directed sorting of targets. It should be noted
that K-means is the least critical new component and is only
used to regularize the triangulation and reduce the complexity
for the steps that follow (between 2500 and 3000 clusters were
used in this implementation to have the desired effect). This
new rule allows successful execution of acute turns, where the
fiber bends backward toward the source point without crossing
the resulting cleft or forming any cycles. Critically, these acute
turns are executed without relaxing constraining parameters for
branching and bifurcating.

While there are many clustering algorithms and many
sophisticated meshing algorithms, K-means and Delaunay
algorithms were selected because of their speed and reliability.
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FIGURE 3 | Flow diagrams describing the ROOTS algorithm. For greater efficiency, the generative algorithm was designed to operate in one of two modes: (A)
Without or (B) with dynamic source-point updating criteria. This feature enables generated morphologies to successfully conform to acute turns of varying radius.
Disabling this feature when not needed improves efficiency.

Because dynamic sourcing (Figures 3B vs. 3A) adds considerable
computational burden, it is valuable to select preprocessing
methods which do not add to this burden needlessly.
Supplementary Figures S2–S4 show development of this stage
of the algorithm and its three constituents: K-means clustering,
Delaunay triangulation, and Dijkstra’s shortest path methods.

Synaptic Boutons
In recognition that axons have complex surfaces and are not
just a series of smooth and simple pipes, additional functions
were written to allow complexities such as synaptic boutons to
be added to an already grown fiber. These boutons, as they are
seen in the dentate perforant path at non-terminal presynaptic
densities, are described by Tamamaki as “periodic varicosities”
(Tamamaki and Nojyo, 1993). Each bouton is ≈5 µm long,
≈0.7 µm in diameter, with varying distances between, depending
on the topography of the synaptic targets. Because neither the
exact distribution of inter-bouton distances nor multisynapse
formation behavior is known in this tissue system, it was assumed
that they were uniformly distributed throughout the terminal
axon arbors every 25 µm, with each bouton being 5 µm in
length and 0.7 µm in diameter. Because these boutons are
non-terminal they are likely to be actively conducting. Lacking
experimental evidence to frustrate this assumption, sodium,
calcium, and potassium channel densities and conductances were
implemented with the same parameters in bouton compartments
as in non-bouton axonal regions.

Following development and testing of this algorithm, fibers
were exported for simulation in environments such as NEURON
(Hines and Carnevale, 2003). Later in this paper, extracellular
electrical stimulation studies performed with the generated
morphologies are presented to demonstrate the maturity of this
analysis pipeline.

Arbor Simplification and Computational
Complexity
Simulation of detailed neuronal models is computationally
expensive. While this study was enabled by non-competitive
access to a 4,040 processors computing cluster, there remain
concerns about impractical and unnecessary model complexities.
With as many as 17,700 possible synaptic connections made by
each EC arbor, it became clear that an approach to morphology
simplification would be necessary to reduce the computational
burden of both generating and simulating arbors in NEURON.
While the exact number is not known, because of the en passant
nature of the perforant path fibers it is likely that a passing
fiber synapses more than once with any target granule cell. This
provides the opportunity to generate trees using fewer nodes due
to the relative co-locality of synaptic connections between an
arbor and any given granule cell. To examine this assumption,
we generated arbors with 8,850 (two synapses per target cell)
or 5,900 (three synapses per target cell) target cells rather than
17,700 target cells and used a single node from each to guide
arbor growth. Perforant path fibers were generated using each
of these node counts and then each was also line simplified. The
Ramer–Douglas–Peucker (RDP) algorithm for line simplification
was used on each of these trees to determine the minimum node
count required to approximate full complexity fibers (Saalfeld,
1999). Using a fraction of the typical dentate granule cell
dendritic arbor height and width (e.g., 20% or ∼45 µm) to set
a maximum RDP-epsilon ensured that path deviations would be
much less likely to make otherwise probable EC–DG connections
anatomically impossible.

Alternative Generative Models
To test the functionality of this algorithm in comparison with
others that already exist, we attempted to create satisfactory
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arbors with two commonly used alternative tools which were
originally designed to grow dendritic arbors: the TREES Matlab
toolbox (Cuntz et al., 2010), and L-NEURON (Ascoli and
Krichmar, 2000; Scorcioni and Ascoli, 2005).

The TREES toolbox, like ROOTS, depends upon carefully
selected nodes or points to grow a graph; therefore, spanning
trees generated by this method can use the same set of synaptic
or cellular targets as those utilized by the proposed system.
Unlike ROOTS, however, the only parameter that can be adjusted
to improve the performance of the resulting morphology is
the balancing factor (BF). This BF represents the weighting
of priority for path length versus conductive delay in the
spanning tree that is generated. To study this approach, a new
topology grown via TREES utilizing the same control points as
a ROOTS fiber. The BF was calibrated by minimizing a multi-
objective function (MOF), formulated as an unweighted sum
of independently normalized mean root square error for each
of the following morphometrics: Euclidean distance/path-length
(BF), branch order, bifurcation angle, and total path length.
The BF of the arbor generated by TREES was set at the value
that minimized the difference between the MOF scores of the
arbors generated by each system. To maximize similarity between
these two morphologies through calibration of the TREES BF,
direct (Euclidean) vs. path length ratios were calculated for
each carrier node, then a histogram of these data was fit with
a kernel density estimate (KDE via Gaussian smoothing). This
process was repeated for path length, branching order, branch
length, and branching angle. The KDEs for direct vs. path length
and branching angle for the TREES axon were subtracted from
those for the ROOTS fiber. These differences were independently
normalized and the RMSE was calculated. Each of these metrics
were summed without any weighting. The TREES BF was then
calibrated through minimizing the summed normalized root
mean-squared error of these differences (U) according to Eq. 1.

U = dBF+ dBO+ dPL+ dBL+ dBA (1)

where each term represents the normalized summed difference of
BF (dBF), branching order (dBO), total path length (dPL), branch
length (dBL), and bifurcation angle (dBA). Unlike TREES and the
proposed algorithm, L-NEURON doesn’t rely on a preselection
of target nodes to construct a topology, but rather depends upon
measures of branching structure of a tree, or morphometrics.
Fitted distributions to these measurements are then stochastically
sampled to grow a tree. This approach is intended to capture
branching patterns without much regard for the emergent spatial
features of a tree. Because of the lack of an extensive database
of EC axons from which to take branching measurements, we
resorted to using the companion tool L-MEASURE to extract
morphometrics from one of our own generated arbors to
gauge the feasibility of using stochastic methods to generate
axonal arbors when such a dataset does become available
(Scorcioni et al., 2008). Extracted morphometrics were then fed
to L-NEURON to generate a morphometrically equivalent arbor.

Virtual arbors were ultimately evaluated based on their ability
to capture known spatial features of EC axon terminal fields,

including a complex geometry which conforms to the contours
of the dentate gyrus.

Strength–Duration Relationship in
Response to Extracellular Electrical
Stimuli
To understand how fiber geometry in the hippocampus gives rise
to patterns of activity, fibers with varying patterns of diameter
were simulated in response to a range of current source–arbor
distances and stimulus amplitudes. Images of spiny stellate fibers
from Tamamaki and Nojyo (1993) and more evidence from
Bindocci et al. (2017) show continuous fibers with “periodic
varicosities,” or non-terminal synaptic boutons on the en passant
fibers. Because fiber diameter has been shown to influence
both conduction velocity and excitability, it was important to
explore the response characteristics of fibers with this sub-
micron variation in diameter (Clark and Plonsey, 1970). A fiber
was generated by ROOTS and instantiated with one of three
patterns of diameter in the simulation environment, NEURON
7.6.2, so that its behavior could be simulated (Hines and
Carnevale, 2003). Hodgkin–Huxley membrane biophysics under
in vivo temperature conditions were inserted in all compartments
and d-lambda rules were used to determine appropriate space
constants for compartmentalization of the fibers (Hines and
Carnevale, 2003). All other biophysical features were borrowed
from nodal biophysics described in Johnson and McIntyre
(2008). An itemized table of biophysical properties can be found
in Supplementary Figure S5. All morphological features for
these fibers, other than the deliberate variations in diameter,
remained as presented in Table 1.

Monopolar point-source stimuli were used in all stimulation
experiments presented in this article. Electrodes were placed
in one of two locations near the primary bifurcation of the
perforant path at distances of 100 and 500 µm from the nearest
neuronal compartment.

Following model construction, two sets of analysis were
performed. The first comprised a strength–duration study of
complex arbors. Square-wave pulses of anodic or cathodic charge
polarities (+ and −, respectively) with widths between 0.025
and 1.4 ms were delivered at each of the two distances. The
extracellular voltage throughout the model space was estimated
using an analog of Coulomb’s law with material resistivity of
3.8 �-m (Eqs 2 and 3) (Clark and Plonsey, 1970; Holt and Koch,
1999; Bingham et al., 2018).

φ(x, y, z) =
I0

4π∗σ∗i ri
(2)

where 8 is the field potential resulting from a current source, I.
The conductance, σ, is the inverse of resistivity. Radial distance,
r, is found by Eq. 3:

ri =
√

(xi − x0)2 + (yi − y0)2 + (zi − z0)2 (3)

By adding new voltage sources in series with the circuital
elements representing each section of membrane, extracellular
potentials calculated via Eqs 2 and 3 were applied to
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neuronal compartments within the NEURON model using the
“extracellular” mechanism. Stimulation was delivered over a
range of current amplitudes designed to cover, at a minimum,
rheobase to twice rheobase for each set of stimulating conditions.

The second analysis examined the same models and
stimulating setup but focused on the temporal distribution of the
response at rheobase. The time it took each compartment in the
fiber to reach action potentiation was recorded, used to populate a
histogram, and then Gaussian smoothed to present a KDE. These
plots were used to identify the impact of boutons on conduction
velocity throughout the complex arbor.

Comparison With Implied Axon
Conduction Latency Estimates
In order to demonstrate the differences between the relatively
sophisticated axonal models grown via ROOTS and more
simple axon representations, a simple distance-based delay
was estimated based on the average conductance velocities
of the ROOTS fibers and visualized using KDEs after the
manner previously described. The distance-based conduction
delay mechanism just explained is described in figures and
relevant results sections as a “pure-delay” mechanism because
no explicit cable model is used to approximate the delay. To
clearly demonstrate the differences that are not readily seen
in the KDE, pair-wise differences (residuals) of compartmental
APs using ROOTS and the pure-delay mechanism were
measured and plotted.

Data/Model Sharing
It is important to us that the method by which functional cortical
axons were generated be highly accessible to other members
of the computational neuroscience community, especially
those studying neuromodulation for the treatment of diverse
neurological disorders. Therefore, the graph-based algorithm
used in this study has been compiled in a user-friendly manner
and distributed to the Python Package Index under the name
Neural Roots (Roots)1,2 along with concise documentation.
Neural Roots was written with Python 3.6.9 and has a few non-
standard dependencies, including: SciPy, NetworkX (Hagberg
et al., 2005), Mayavi (Ramachandran, 2001), Shapely, and Pandas
(McKinney, 2010) (searchable in PyPi, the Python Package
Index). While some backward compatibility is likely, this has not
been extensively tested. The model is also being prepared for
submission to ModelDB where it will be available alongside other
elements presented in this paper.

RESULTS

Results comprise three parts: (i) a qualitative and quantitative
assessment of the proposed algorithm, (ii) a comparative
analysis with alternative methods, and (iii) the presentation
of strength–duration curves and an analysis of EC fiber
recruitment order and temporal distribution of the response to
extracellular stimulation.

1https://github.com/bingsome/roots
2https://pypi.org/project/Roots/

Algorithm Assessment and Validation
There are two chief loops within the core ROOTS algorithm:
branch extension and bifurcation. As the algorithm proceeds,
the complexity of branch extension decreases while that
of bifurcation increases, this can be seen in Figure 4 as
a linear/slightly supra-linear shape of each individual line.
Bifurcation criteria become more difficult to satisfy as the axon
graph becomes more complete, resulting in exponential increases
in time-to-completion when larger and larger axons (more nodes
to connect) are generated. Many aspects of these trends are
dependent upon the spatial topography of the nodes themselves.
For example, if nodes fall along a straight enough line, a single
branch extension loop with no bifurcations will complete the
axon graph and the time-to-completion will be perfectly linear
with respect to the number of nodes.

Arbor Simplification and Computational
Complexity
Consideration of the complexity of the resulting fiber is essential
because simulation of just a few of these fibers at full complexity
could be highly taxing on a single-processor computer.
Supplementary Figure S6 demonstrates the relationship between
simulation efficiency and fiber complexity using the NEURON
engine. Simulation efficiency is reported as the ratio of clock-
time to simulated time. As fiber complexity increases, the
amount of processing time (clock-time) required to complete
an otherwise controlled simulation also increases linearly. Data
for Supplementary Figure S6 were collected on an Acer Aspire
TC-885-UR17 desktop computer.

Ramer–Douglas–Peucker line simplification was performed
on axons with two or three synapses per target granule cell (8,850
or 5,900 nodes). Figure 5 demonstrates that axons with as few
as 2,944 and 2,097 target nodes can be used to approximate the
behavior of an arbor with maximum complexity, 8,850 and 5,900
target granule cells, respectively. These simplifications can be
made while allowing, at most, 38–42 µm deviations from original
contours and <5% reduction in total path length.

FIGURE 4 | Each line represents the time-course of ROOTS execution to
generate an axonal graph with dentate perforant path topography using
different numbers of carrier-points, ranging from 300 to 2000. Each iteration of
the algorithm includes one loop for branch extension and another for
bifurcation. While the above plot presents performance while growing a
specific type of arbor, method performance is highly dependent upon input
parameters and may be faster or slower for other model types.
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FIGURE 5 | As an approach to reducing computational complexity, Ramer–Douglas–Peucker (RDP) line simplification was studied over a range of epsilon (the
maximum distance a simplified curve can be removed from an the original), for reduction in node count (Left y-axis) and change in total path length (Right y-axis).
Simplification was performed for the cases where two or three synapses were made with each targeted cell (˜8,850 or 5,900 starting nodes, left and right plots).
Above 95% path length is preserved by setting epsilon to 38 and 42 µm, resulting in reduction of required number of nodes to 2,944 and 2,097, respectively (˜60%).

Example graph models of EC axon terminal fields which
incorporate these simplifications generated by the proposed
algorithm are presented in Figure 6. The algorithm described in
Figure 3B yielded fibers that captured the known features of layer
2/3 EC spiny stellate axons which make up the dentate perforant
path (Table 1). These features include but were not limited
to: distribution of bifurcation angles of approximately 80±34◦;
a septal–temporal range of between 1 and 1.5 mm; laminar
organization with the MEC and LEC in the outer and middle
thirds of the dentate molecular layers, respectively; saturation of
branching order at a reasonable level to encourage en passant
synapsing; presentation of both DG and CA3 terminal fields
with the preservation of a fissure between the two fields; and
finally, the tree structure passed through a plausible topography

of DG and CA3 arbor domains which enables in situ levels
of connectivity.

Alternative Generative Models
A morphology generated via our own graph-based algorithm
(Figure 3B) was selected and morphometrically described via
L-Measure and then, using the stochastic system called L-Neuron,
attempted to regenerate a morphometric equivalent. This exercise
failed to return a morphology which could conform to the
topography of the molecular layer of the dentate gyrus. The chief
reason being that purely stochastic methods are unable to prevent
excursion of fibers beyond natural boundaries in the volume of
tissue system being modeled. The general stochastic method is,
therefore, unsuitable for generation of anatomically appropriate

FIGURE 6 | Example graph models (red, LEC; teal, MEC) of entorhinal cortical axon terminal fields, generated by the proposed algorithm. These axons have features
expected in in situ fibers, namely: en passant terminal topography, laminar architecture (i.e., MEC/LEC are spatially segregated within the dentate molecular layer),
and fibers proceed to the ends of each supra/infrapyramidal blade of the dentate gyrus and proceed to a terminal field in CA3/2/1.
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FIGURE 7 | (Top) Dorsal aspect of the enclosed blade (suprapyramidal) portion of an entorhinal cortical axon generated by one of two methods: Trees Matlab
toolbox (BF = 5), and the proposed algorithm. Balancing factor, and connection threshold for the Trees toolbox were selected to align these distributions aligned
favorably. (Bottom) Fundamental statistical distributions comparing the two methods in terms of nodal path length, direct distance vs. path distance, branching
order, branch lengths, and bifurcation angles. The plotted curves represent probability densities and the box represents the mean. Despite matching many features
of the proposed algorithm, the Trees generated arbor does not capture the en passant nature of the perforant path [seen in branching order (A), and length (B)] and
has lingering bifurcations which have extreme angles (C).

axonal morphologies without further modification to constrain
emergent spatial characteristics.

Attempts were also made to generate accurate morphologies
using the TREES MatLab toolbox. These efforts yielded trees
superior to those generated by the L-Neuron method, though
still deficient in important ways. An axon generated by TREES
was selected for quantitative and qualitative comparison with
that yielded by earlier analysis using the ROOTS system (Arbor
Simplification and Computational Complexity). Each tree was
constructed using the same set of target nodes; therefore,
all differences in patterns of branching arise from differences
between the two algorithms. The TREES BF was then calibrated
through minimizing a MOF, attempting to find the best possible
match between TREES and ROOTS arbors. This process yielded
a functional axon from the TREES algorithm, though differences
remained that could not be resolved through manipulation of the
BF alone (Figure 7). Despite a high degree of similarity in direct

(Euclidean) vs. path length, total path length, and branching
angle distributions, TREES resulted in a higher than expected
number of terminal branchlets. This shifted the branching order
and branch length distributions to the right and left, respectively.
These shifts demonstrate difficulty for the TREES approach in
appropriately capturing the en passant connection schema which
typifies EC axons of the perforant path, where terminal branchlets
are reportedly rare. Figure 8 (branch length vs. branch order)
further highlights this conformational difference between the
two fibers and provides a useful comparison to experimental
measurements. In this figure, the black line denotes the branch
order at which 99% of the total path length was achieved in layer
two spiny stellate axons reported by Budd et al. (2010). While the
comparison with Budd’s report is useful, it is made with hesitancy
because of the variability of branching that occurs within the long
stretch of fiber between the entorhinal cortex and the extensively
branching terminal arbor. The difficulty TREES has in controlling
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branch order arises from the paradigm of control implemented in
the system. More specifically, the balancing of total path length
versus conduction time (BF) does not provide for fine control of
the shape and branching properties of an arbor within a volume.
The significance of this limitation of TREES with respect to
ROOTS is particularly clear when considering the implications
for extracellular stimulation where it is thought that terminations
and thorough-fare fibers behave differently in the presence of
extracellular electric fields (Joucla and Yvert, 2009).

An additional challenge not satisfied by the TREES approach
is that of performing acute turns. A portion of the perforant
path innervates the CA3/CA2 region of the hippocampus
and therefore must be able to extend from the end of
the enclosed blade of the dentate into these other domains.
The algorithm presented in Figure 3B (dynamic source)
describes how updating reference angles allow the fiber to
bend around complex anatomies successfully without violating
morphometric constraints (Figures 6, 9). An attempt to replicate
this feat using the TREES Matlab toolbox is presented in
Supplementary Figure S7.

Strength–Duration Relationship in
Response to Extracellular Electrical
Stimuli
To determine the importance of including boutons when
simulating extracellular electrical stimulation of axon models,
strength–duration curves for three diameter patterns of a
ROOTS arbor (generated via the algorithm described in
Figure 3B), where diameters correspond to bouton and inter-
bouton sizes (according to Figure 9), were estimated and
presented in Figure 10. When stimulating with anodal pulses,
these results agreed with previous reports that larger diameter
fibers have shorter chronaxies than small, and that this difference
is exaggerated by large electrode-fiber distances and longer
stimulation pulses. For cathodal impulses of such small and
highly branched fibers, the model yielded negligible opportunity
for selective activation of fibers by diameter. This protocol was
repeated for a biologically realistic arbor, complete with boutons.
The recruitment pattern of the boutoned fiber was no different
in a cathodal field but under anodal conditions had activation
thresholds between those of the 0.7 and 0.1 µm uniform diameter
arbors. The differences in threshold between the boutoned fiber
and the 0.7 µm fiber decreased with increasing electrode–
fiber distance. These differences dissolved as the pulse-width
approached 700 µs.

The impact of boutons on temporal dynamics are presented in
Figure 11. The time of first action potential is plotted along the
horizontal axis for each neuronal compartment in the biologically
realistic arbor with the vertical axis representing probability
density (frequency). A fiber with each of three patterns of fiber
diameters (uniform 0.1, 0.7, or boutoned) were simulated in
response to 1 ms stimuli at rheobase amplitude. Activity was
initiated near the electrode and then actively conducted to other
compartments, including those beyond the effective volume of
the extracellular electric field where artifact voltage dropped to
tens of microvolts. In Figure 11 are plotted, as a KDE, the

FIGURE 8 | Plotting path length vs. branch order makes it clear that ROOTS
more accurately captures the en passant nature of the perforant path than
does TREES. Each dot represents the branch order of a NEURON section.
99% of total axon path length of entorhinal cortical spiny stellate cells should
be achieved with fiber of branch order no greater than ≈7 (Budd et al., 2010).
Increased levels of early terminations in TREES is a geometric challenge that
may have significant implications for extracellular stimulation (Joucla and
Yvert, 2009).

time-course of threshold activity of all compartments in each
case. As the average fiber diameter is increased, the shape of
the KDE shifts to the left, indicating that activity in the arbor
is occurring with less delay following stimulation. This shift
is explained by the increased conduction velocity throughout
the arbor which results from changing compartment diameters.
Average conduction velocities were 0.88, 0.53, and 0.12 m/s in
the 0.7 µm, boutoned, and 0.1 µm fibers, respectively. The
boutoned fiber nearly mirrored temporal patterns of activity
of the uniform 0.7 µm fiber, except at very close electrode–
fiber distances.

Comparison With Implied Axon
Conduction Latency Estimates
When compared with a pure-delay mechanism, as in Figure 12
left, ROOTS fibers exhibited a smoother distribution of
compartmental Aps, though the KDEs for the pure-delay
mechanism had similar shape and length. When exploring
the impact of varying the conductance velocity on pair-wise
compartmental AP latencies between the pure-delay mechanism
and each of the ROOTS fiber geometries, the role of fiber
topology on the precise latencies of conduction to each
compartment is more obvious. Especially when comparing
the pure-delay mechanism estimate to the 0.1 µm ROOTS
fiber behavior (Figure 12 right), very large differences in AP
latencies emerge. This demonstrates how sensitive this test is
to conduction velocity alone but also illustrates the importance
of accurate representations of fiber microstructure features
and arbor topology. Even as the differences are reduced in
comparisons with larger and faster conducting fibers, errors
of several milliseconds remain. Even should a modeler be so
lucky to correctly select a proper conduction velocity (not
to mention correctly predicting the site of action potential
initiation), differences are difficult to eliminate without more
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FIGURE 9 | Rendering of a highly branched perforant path axon with presynaptic boutons dispersed evenly throughout the terminal field. 5 µm boutons were
spaced 25 µm apart according to Tamamaki and Nojyo (1993). This arbor, with three different representations (A–C) of diameter, was then used in a set of
stimulation experiments to study the impact of microstructure geometry on emergent patterns of spatiotemporal patterns of activity.

FIGURE 10 | Arbors of three patterns of diameter corresponding to stem and bouton diameters observed by Tamamaki and Nojyo (1993), and a fiber with
appropriately distributed boutons, were simulated in response to cathodal pulses (25 µs–1.25 ms) and a range of stimulus amplitudes from distances of 100 and
500 µm (Left, Right) Tamamaki and Nojyo (1993). Larger fibers have shorter chronaxies than small and this difference is exaggerated by large electrode–fiber
distances and longer pulse-widths. 0.7, 0.1, and Boutoned legend keys correspond to A, B, and C in the Figure 9 legend.
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FIGURE 11 | Kernel density estimates (1.5 ms Gaussian kernel) for compartmental action potential delays in perforant path arbors with a diameter of 0.7 and
0.1 µm, and a boutoned fiber when stimulated at ˜rheobase amplitude for 1 ms. From top to bottom, left to right, showing two electrode-fiber distances and
anodal and cathodal stimulation. Excepting at very close distances, boutoned fibers had temporal activation features best approximated by a fiber with uniform
0.7 µm diameter. 0.7, 0.1, and Boutoned legend keys correspond to A, B, and C in the Figure 9 legend.

FIGURE 12 | (Left) Kernel density estimates (1.5 ms Gaussian kernel) for expected compartmental action potential delays calculated based on the Euclidean
distance from the site of action potential initiation (obtained from ROOTS fibers simulated in Figures 10, 11) to compartment centroids. Three cases are visualized
based on the average conductance velocity calculated from fiber behavior in the ROOTS explicit fiber at threshold (100 µm-case). Average velocities were 0.88,
0.53, and 0.12 m/s, for 0.7 µm, boutoned, and 0.1 µm ROOTS fibers, respectively. (Right) Pair-wise compartmental latencies were compared between a
distance-based delay mechanism and explicit fiber representation via ROOTS across a range of conduction velocities plotted along the x-axis. As the conduction
velocity moved nearer to the average velocity of the ROOTS fiber, average residuals decreased. Error was largest when comparing the smallest ROOTS fiber, but
differences were still on the order of milliseconds near ideal conduction velocity for the faster conducting ROOTS fibers.
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sophisticated methods of approximating the path length to
each compartment.

DISCUSSION

Together with increased computing power, more robust
repositories of electrophysiological and histological information
have created opportunities for neural models of greater
complexity. Despite these ever-improving sources of data,
biologically realistic neural modeling has outpaced experimental
studies in many areas of inquiry, providing a testbed for new
hypotheses as well as a wealth of preliminary data to aid the
design of superior in vitro or in vivo studies. However, the
mismatch in biological realism between experimental and
computational modeling, and continuing ambitions to advance
computational neuronal modeling, creates a need for sound
approaches to generate functional neuronal models that can
be refined as the quantity and quality of experimental data
improve. The modeling approach presented in this paper
demonstrates this utility.

General Application of ROOTS
This manuscript has demonstrated the application of ROOTS to
a single fiber system, but this process could be followed for the
generation of appropriate models from other anatomical regions
with different morphological features. This is true because the
criteria used by ROOTS are generally applicable to axon terminal
arbors that form a spatial network by connecting parent cells
to synaptic targets with a unique branching pattern. The degree
of accuracy that can be obtained with ROOTS is directly linked
to the quality of anatomical data available to constrain the
method. There are three basic tasks that must be accomplished
to generate usable models: identify the topography of synaptic
targets, identify the branching properties of terminal arbors,
and identify the volume from which arbors begin. While these
tasks present a challenge, none are as difficult as describing and
extracting enough explicit reconstructions from histology to fully
recapitulate a large-scale pathway model.

Identifying the topology of synaptic targets, at its most basic,
means combining knowledge of the spatial range of terminal
arbors with an estimate of the number of terminal boutons
expected for each fiber. Identifying branching properties of
terminal arbors requires reduction of experimental observations
of these terminal arbors to a statistical distribution of bifurcation
angles, at the very least. Knowledge of the number of bifurcations,
total fiber length, meander angles, and inter-bifurcation lengths
is also useful. Lastly, identifying the volume from which
arbors initially bifurcate is important in order to force a
fundamental directionality on generated arbors. Each of these
steps yields important parameters that ROOTS expects and uses
to encourage realism in the morphologies that are output by
the software. Should one of these specific data not be available,
the modeler should not be discouraged from attempting to use
ROOTS anyway, as each statistic is merely one part of the
puzzle ROOTS seeks to solve. Generated fibers can still be a

useful stand-in and can always be augmented as superior data
become available.

Limitations and Alternative Methods
Despite the demonstrated functionality of the model presented
herein, it is not without limitations. First among potential
limitations is biological realism, which may still be limited due to
lack of accurate and well described experimental measurements
of fibers from hippocampal tissue samples. The clearest limitation
(though simultaneously the chief motivation for development)
of this modeling approach and the study presented in this
paper is the lack of an extensive dataset describing EC axons
in the perforant path, including rich morphometrics. Existing
explicit reconstructions have readily identifiable errors and,
therefore, should not be used as solitary sources of branching
morphometrics or be virtualized and used in stimulation
models without sophisticated automated and/or manual repair
(Tamamaki and Nojyo, 1993; Budd et al., 2010). The issues
include slicing artifacts which distorts both distances along or
across serial slices and bifurcation angles where branches span
multiple slices; angle and distance mismeasurements due to
imaging along a single axis and, therefore, failing to correct
for the impact of rotation of neural processes with respect
to observer perspective; and failures of automated algorithms
which may result in orphaned sections or even cycles in the
final tree (Quilichini et al., 2010). Despite the unavailability or
verifiability of these data, the modeling methodology presented
in this study represents the most detailed and sophisticated
functional model of layer 2/3 EC spiny stellate dentate perforant
path axons to date. In general, the utility of this modeling
approach is most apparent for cases in which explicitly
reconstructed morphologies are sparse, poorly described, and
the fibers to be modeled have complex geometry and branching
structure. Further, the parameterization of the model is such
that, should this data later become available, the generative
morphologies could be updated to reflect new knowledge of
in situ morphometrics.

While the present study espouses a ROOTS, there are
many algorithms that might achieve topological characteristics
reminiscent of neuronal branching.

Although existing stochastic models may be effective for
dendritic arbor generation, they are not naturally adapted to
the construction of axonal morphologies because they fail to
reliably conform to pre-determined geometries or volumes
that are irregular or highly non-symmetrical (Rozenberg and
Salomaa, 1980). The ability to conform to a predetermined
volume or geometry is a particularly important feature
for axons in the hippocampus, which often have lamellar
organization between layers and laminar organization within
their terminal fields. For stochastic models to accomplish
this, new pre-processing intensive and potentially inefficient
volumetric constraints would be required, adding to algorithmic
complexity (e.g., randomly walking line that must also connect
arbitrary points).

When guided by serial histological sections, spanning-tree
algorithms provide an efficient approach to reconstructing
spatial trees. However, without some modification, traditional
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minimum-spanning-tree algorithms can result in spatial error
and distorted branching patterns (Budd et al., 2010). Using
higher resolution images forces significant biological realism
onto the resulting graph, making error more manageable.
However, minimum-spanning-trees generated from points
sampled at random from a volume representing an axon
terminal field are less biologically realistic due to the extreme
path lengths that result. To moderate this outcome, some
investigators have proposed a spanning-tree algorithm which
balances the minimization of membrane against path length
(Cuntz et al., 2007, 2010; Budd et al., 2010; Budd and Kisvarday,
2012). However, optimizing this balance is known to be an
np-hard problem due to the direct conflict introduced by
including these two variables in the same loss function (Hu,
1974; Alpert et al., 1995; Khuller et al., 1995; Wu et al., 2000;
Gastner and Newman, 2006). Another challenge to using
path-length/membrane-minimization balancing algorithms
is that it only allows indirect control over important tree
morphometrics such as bifurcation angle, branch extension
angle, and inter-bifurcation length. Prominent implementations
of this approach do not allow explicit morphometric thresholds
to be set and, therefore, extreme branching patterns remain
possible. Inflexibility and lack of sufficient parameterization
represent significant limitations of these prior efforts
because branching patterns directly impact spatiotemporal
patterns of activity.

It is plausible that established stochastic methods, known to
be highly proficient at recapitulating tree morphometrics, could
be modified to allow directedness and improved conformation
to terminal field volumes. Despite these feasible and time-worthy
alternatives, the model presented in this study has demonstrated
sufficient performance in terms of accuracy, flexibility, and
computational complexity.

While many alternatives to RDP for tree simplification
exist, this method was preferable to other node cluster-
and-merge methods (e.g, Kruskal’s algorithm) because these
alternatives have the potential to introduce large differences in
branching patterns, creating additional challenges in evaluating
the equivalence of simplified and unsimplified fibers. Evaluation
of the RDP simplification approach could be done in a
very straightforward fashion because line simplification doesn’t
result in changes in branching patterns—simplified arbors were
compared to the reference case on the basis of path length
and subjective evaluation of an acceptable RDP-epsilon, or the
maximum distance between original and simplified contours.

Analysis in this paper involving extracellular field estimations
used analytical methods that fail to completely account for
anisotropy and heterogeneous resistivity of the tissue volume
or full-wave propagation of electric fields. More sophisticated
field estimation techniques (e.g., finite element, finite volume,
boundary element, or admittance methods) that account for
complex impedance or by filtering point-source estimations to
account for amplitude dampening and phase-shift of stimuli
could have been used but were deemed unnecessarily complex
for the principle questions under examination in this article
(Bossetti et al., 2007; Al-Humaidi, 2011). It should be noted,
however, that rheobase predictions result from very long stimulus

pulses, where >95% of the frequency domain signal falls <1 kHz;
it follows that tissue capacitance is only a marginal source of
error in these estimates of EC axon chronaxie. With respect
to resistivity, this exercise is further justified because resistivity
measurements in the region performed by López-Aguado et al.
(2001) show nearly uniform resistivity throughout the molecular
layer of the hippocampus; further, because the current source
in these experiments was placed relatively far from resistive
boundaries, current shunting distortions should be minimized in
our estimations of electric fields in the volume occupied by EC
fibers (Bingham et al., 2018). While future work not limited by
these assumptions will be performed, doing so here falls outside
the scope of the present study.

The study of strength versus duration of stimulus in the
measurement of activation thresholds as performed in this paper
does not provide conclusive data which concretely establishes the
connection between fiber size and excitability for hippocampal
networks. This is due to the realistic elements still missing
from the models used, including non-uniform diameters of
fibers, irregular bouton geometry and volumes, varying bouton
topography, and an electrophysiological study of any differences
in channel density and dynamics between boutoned and non-
boutoned axon regions. Despite these limitations, it seems
important to consider what impact boutons may have on fiber
excitability within the terminal fields of small, highly branched,
and unmyelinated axon fibers. Importantly, these results imply
that action potentials in extracellular anodally stimulated axon
terminal fields are initiated in boutons with lower input resistance
than nearby portions of the fiber and that failing to consider
the impact of boutons on conduction velocity will likely result
in meaningful temporal errors. However, thorough experimental
work is needed to confirm this possibility. It is further valuable to
recognize that for long pulses delivered at more distant locations
uniformly large diameter fibers approximate the vastly more
complex fully boutoned fibers quite well and may provide a viable
approach to reducing the computational demands of models that
include detailed axon terminal arbors.

While much remains to be done, this study represents a
step forward for detailed computational modeling of complex
neuronal systems. Where previous models were either focused on
peripheral axons with less complex arbors or used sophisticated
methods to generate dendritic trees but neglected axons
altogether, the model presented here demonstrates an approach
to constructing functional axonal morphologies that can be
used for diverse applications, including extracellular electrical
stimulation of the cortex. It should be noted that while
ROOTS is itself general, expert knowledge of the tissue system
being virtually recapitulated is required: branching criteria
and synaptic or cellular targets must be provided to the
tool. Critical morphometric parameters include bifurcation
angles, branch extension angle, and internode length; these
must be independently determined by users. Despite these
requirements, ROOTS presents many opportunities to increase
the sophistication of model-based studies of neural tissue system
dynamics and central nervous system neuromodulating devices
such as deep brain stimulation or potential hippocampal memory
prostheses (McIntyre, 2009; Hampson et al., 2018). ROOTS could
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also be used to support models of optical or pharmaceutical
neuromodulation (Foutz et al., 2012; Bouteiller and Berger, 2017).
The model framework could easily be extended to incorporate
high resolution imaging data or combined with more complex
volume conduction (or diffusion, diffraction, etc.) models to
study tissue–electrode interactions at smaller spatial scales (Lujan
et al., 2013). In addition to supporting prosthesis design,
ROOTS facilitates model-based exploration of the effect of
diseases which remodel axons on proper function of hippocampal
tissue (e.g., multiple sclerosis) (Michailidou et al., 2015). More
generally, ROOTS supports efforts to create networks of neuronal
models for the study of biologically plausible spatiotemporal
patterns of activity.

AUTHOR SUMMARY

As computer technology matures, constructing virtual models
of brain parts has become an increasingly valuable approach
to understanding how patterns of activity emerge in different
neuronal structures. Many efforts to model populations of
neurons have emphasized the implementation of biological
realism for cell bodies and dendrites while settling for simplistic
representations of axons. This neglect leads to potentially large
errors in predictions of when and where synaptically driven
activity in a neural circuit might occur. To address this concern,
we have developed a novel algorithm called ROOTS to generate
biologically realistic axon models for use in computer simulations
of the brain. With realistic axons in place, such models can be
used to predict how different regions of the brain respond to
stimulation from implanted electrodes as part of a prosthetic
device. This improvement in the realism of tissue models of the
brain will provide superior support to on-going work to reveal the
mechanisms of brain disorders and to optimize devices or drugs
that are used to treat them.
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FIGURE S1 | Pseudocode of the core algorithm as presented in this study. Other
components such as source point reassignment, and topology simplification
procedures are executed in series with (before or after) the steps outlined here.

FIGURE S2 | Clustering is performed via K-means clustering method. This
regularizes the spatial properties of the mesh which will comprise the volume of
the arbor and reduces computational complexity of subsequent steps.

FIGURE S3 | Delaunay triangulation to construct a surface from spatially clustered
synaptic targets. This yields a network from which ideal paths to potential target
zones can be calculated.

FIGURE S4 | Plotting of each “most likely path” between nodes in the Delaunay
triangulated network of k-means cluster centers. Paths are constructed via
Dijkstra’s algorithm. These paths are provided as inputs to the ROOTS algorithm
to loosely guide branching behavior.

FIGURE S5 | A brief table of biophysical parameters used in simulation of
NEURON models. The only explicitly varying parameter (those not differing due
only to changing compartment areas) was extracellular axial resistance. This
followed the pattern implemented in Johnson and McIntyre (2008) to ensure this
value was sensitive to fiber diameter.

FIGURE S6 | Entorhinal cortical axons may form as many as 17,700 synapses
with granule cells. However, growing axons with this number of nodes is slow and
simulating axons with this complexity is computationally prohibitive when
attempting to simulate in situ scale/density tissue models.

FIGURE S7 | Example graph models (red, LEC; teal, MEC) of entorhinal cortical
axon terminal fields, generated by the TREES toolbox method. These axons were
generated with the addition of a terminal field in CA3/2/1. For very deep folds with
small clefts, the TREES MST method has difficulty suppressing trans-cleft
connections that short the cortical circuit without inappropriate manipulation of the
number and density of targets, further exacerbating the proliferation of
terminal branchlets.

VIDEO S1 | This video shows the spatiotemporal pattern of activity following
stimulation of an axon terminal arbor generated with ROOTS.
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