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Synchronization of neural activity across brain regions is critical to processes
that include perception, learning, and memory. After traumatic brain injury (TBI),
neuronal degeneration is one possible effect and can alter communication between
neural circuits. Consequently, synchronization between neurons may change and
can contribute to both lasting changes in functional brain networks and cognitive
impairment in patients. However, fundamental principles relating exactly how TBI at
the cellular scale affects synchronization of mesoscale circuits are not well understood.
In this work, we use computational networks of Izhikevich integrate-and-fire neurons
to study synchronized, oscillatory activity between clusters of neurons, which also
adapt according to spike-timing-dependent plasticity (STDP). We study how the
connections within and between these neuronal clusters change as unidirectional
connections form between the two neuronal populations. In turn, we examine how
neuronal deletion, intended to mimic the temporary or permanent loss of neurons
in the mesoscale circuit, affects these dynamics. We determine synchronization of
two neuronal circuits requires very modest connectivity between these populations;
approximately 10% of neurons projecting from one circuit to another circuit will result
in high synchronization. In addition, we find that synchronization level inversely affects
the strength of connection between neuronal microcircuits — moderately synchronized
microcircuits develop stronger intercluster connections than do highly synchronized
circuits. Finally, we find that highly synchronized circuits are largely protected against
the effects of neuronal deletion but may display changes in frequency properties across
circuits with targeted neuronal loss. Together, our results suggest that strongly and
weakly connected regions differ in their inherent resilience to damage and may serve
different roles in a larger network.

Keywords: neurodegeneration, microcircuit, network, synchronization, rhythms

INTRODUCTION

Affecting as many as 3.8 million new patients each year (Langlois et al., 2006), traumatic brain injury
(TBI) is a leading cause of disability in the U.S. population (Blennow et al., 2016; Pevzner et al.,
2016). As such, TBI constitutes a substantial financial burden for both caregivers and healthcare
systems (Coronado et al., 2012; Pevzner et al., 2016). Although TBI may occur during high-contact
sports or from exposure to explosive military devices (Blennow et al., 2016), TBI is more frequently
caused by motor vehicle accidents and falls (Blennow et al., 2016). In addition, TBI commonly
affects the elderly, a growing demographic in the United States.
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Due to its diverse array of causes, TBI has broad social impact
across many demographics and continues to pose a challenge to
researchers attempting to develop treatments. Although many
recover completely from mild TBI, other patients suffer long-
term consequences (Masel and DeWitt, 2010; Blennow et al.,
2016; Hiploylee et al., 2017; Wilson et al., 2017), which include
memory deficits, sleep disturbances, or mood disorders (Masel
and DeWitt, 2010; Wilson et al., 2017). Recent work shows
that some of these long-term effects are associated with lasting
changes in brain networks. For instance, increased activation
in the default mode network is linked to sustained attention
deficits after TBI (Bonnelle et al., 2011). Additionally, alterations
in functional brain connectivity are thought to explain motor
impairments after mild TBI (Kasahara et al., 2010), can target
regions involved in cognitive function (Stevens et al., 2012) and
sensory processing (Sours et al., 2015), and can differentially
target areas associated with episodic memory (Yan et al., 2016).
With the well-known heterogeneity of injury patterns and TBI
mechanisms, though, it is difficult to draw direct and consistent
associations between an impact, the resulting network changes,
and the corresponding behavioral impairments. One critically
understudied area is how damage in TBI affects the coordination
of circuits at the mesoscale level, where hundreds to thousands
of neurons coordinate their relative activation pattern with other
areas of the brain, leading to the periodic synchronization of areas
throughout the brain during task execution, recall, and learning.

Coherence is an important concept across scales in neural
communication and brain networks. When the brain is engaged
in a task, anatomical regions exhibiting synchronous activity
are believed to participate in executing that task (Logothetis
and Wandell, 2004; Damoiseaux et al., 2006; Jilka et al.,
2014). Most commonly, temporal correlations in hemodynamic
fluctuations (functional MRI BOLD data) are used to determine
networks of functionally connected brain regions (Fransson,
2006; Greicius et al., 2009). Beyond defining intrinsic brain
networks, synchronization is important at the cellular scale
for facilitating communication, as it temporarily binds neurons
together into functional ensembles (Bastos et al., 2015; Bocchio
et al., 2017). Likewise, learning and memory largely depend
on coherence, which enables long-distance communication
between brain regions (D1 Zel et al., 2010; Wang et al., 2010).
Several human imaging studies demonstrate that TBI disrupts
synchronization (Sharp et al., 2011; Venkatesan et al., 2015;
Wang et al., 2017), leading to the likely increase or decrease in
functional network connectivity that contributes to long-term
cognitive effects.

Synchronization has been studied extensively at the whole
brain scale, but it has also proved important in microscale
neuronal networks (Eytan and Marom, 2006; Penn et al., 2016).
Despite our understanding and visualization of whole brain
activity, little is known about the way in which smaller scale
dynamics give rise to high-level coherence. Although it is
expected that cellular dysfunction at the beginning and over
the course of neurological disorders will impact the coherence
of neural activity throughout the brain, there is remarkably
little known about how the structure of a network at the
cellular scale can lead to coherence changes at the microcircuit

level. Furthermore, macroscale synchronization may obscure
greater dynamic variability at a smaller spatial scale. Few
computational models have emphasized connections between
physically separated neuronal clusters or the flow of information
between them (Vicente et al, 2008), so there are many
unanswered questions regarding how synchronization emerges in
mesoscale circuits and how resilient that behavior is to damage.

In this report, we examine how disrupting an intermediate
level of neural computation informs and affects the interpretation
of large-scale synchrony. We use a computational model of a
neuronal network to make precise manipulations that would
not be possible experimentally, with the goal of uncovering
the principles of mesoscale synchronization that occur when
coupled neuronal networks are traumatically injured. There
are few existing studies that examine coherence at this scale
(Vicente et al., 2008; Gollo et al., 2014), and we are not aware
of any similar efforts to examine the unique intersection between
traumatic injury and coherence at the mesoscale. We find that our
modeled networks synchronize easily despite relatively modest
connections between two microcircuits. Upon simulating the
effects of neuronal inactivation or degeneration, we find the
simplest model of two connected neuronal populations - i.e.
the directed projection of neuronal outputs from one cluster
to another - reveals inherent advantages of two levels of
interconnectivity between microcircuits. Broadly speaking, our
results show that highly interconnected clusters are resilient and
highly reliable and moderately interconnected clusters are less
resilient and more flexible.

MATERIALS AND METHODS

Networks were constructed by assembling and connecting
clusters consisting of 1000 neurons each. Two of these clusters
were then connected. We prescribed the properties of each cluster
independently before connecting the two together.

Properties of a Single Microcircuit

Each individual cluster consisted of 1000 neurons, 80% of which
were excitatory and 20% of which were inhibitory, according
to empirical evaluation of cortical tissue (Soriano et al., 2008).
To create a network, neurons were represented as nodes placed
randomly on the surface of a unit sphere, which eliminated
the potential boundary effects of a planar geometry. Synaptic
connections were represented as directed edges and added at
random according to distributions of excitatory and inhibitory
connections experimentally derived by Soriano et al. (2008).
Neurons averaged 100 outputs and an average of 80 excitatory
and 20 inhibitory inputs.

In networks with spike-timing-dependent plasticity (STDP),
edge weights are known to follow a bimodal distribution with
most connections pushed toward the lowest and highest possible
strengths (Song et al., 2000). Accordingly, the initial synaptic
strength of each connection was assigned from a bimodal
distribution where networks with greater excitatory strength
had a higher proportion of strong, high-weight connections.
This distribution was scaled from a minimum strength of

Frontiers in Computational Neuroscience | www.frontiersin.org

March 2020 | Volume 14 | Article 18


https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

Schumm et al.

Neurodegeneration in Connected Microcircuits

0 to a maximum strength of 4 (peak mV/ms). Inhibitory
neurons instead followed a Gaussian distribution of strength
with 10% variance ranging from —14 to 0 (peak mV/ms).
These ranges were selected such that post-synaptic potentials fell
within the range of voltages observed empirically for cortical
neurons (Ferster and Jagadeesh, 1992). Conduction delays
between neurons were proportional to the distance between two
neurons and ranged from 1-8 milliseconds (ms), as derived from
experimental work by Swadlow (1985).

Connecting Multiple Neuronal
Microcircuits

For more complex simulations, the individual microcircuits
(clusters) were first created and then connections were added
between them (Figures 1A,B). The parameters defining
intercluster connections include the following: (1) the
percentage of excitatory neurons in the upstream cluster
(“Pre”) that project to the downstream cluster (“Post”), (2)
the percentage of excitatory neurons in the downstream
cluster that receive connections from the upstream cluster,
and (3) the number of connections per upstream projecting
neuron (Figure 1A). We randomly selected neurons in the
upstream network to connect to randomly selected neurons
in the downstream cluster. The synaptic weights for these
connections were selected from the weight distribution of
the upstream cluster. Intercluster conduction delays were
chosen from a uniform distribution in the range of 10 £ 2 ms.
This delay corresponds to a separation distance between the
two clusters of 2-3 mm. Finally, we maintained the total
number of inputs on each excitatory neuron by removing
intracluster connections to verify activity-related results are
due to the two-cluster architecture and not to a change in
the number of inputs a neuron receives. This approach of
preserving the number of inputs to a neuron is referred to
as “input-degree control.” In a subset of simulations, we
compared our results in non-degree controlled and output-
degree controlled networks, finding no significant differences
between their baseline synchronization behavior. In order to best
interpret changes in activity and avoid an unrealistic number
of connections, we proceeded with input-degree controlled
simulations. Accordingly, we limited the potential number of
intercluster connections such that the downstream neurons
must receive >50% excitatory inputs from the downstream
population, ensuring the downstream cluster remains distinct
from the upstream.

To characterize the structural changes with more detail, we
identified six subpopulations within the two-cluster topology.
There is a total of four excitatory neuron populations defined
based on cluster membership (Cluster 1 = presynaptic OR Cluster
2 = postsynaptic) and whether the neurons have intercluster
connections. Neurons sending intercluster connections in the
upstream or presynaptic cluster are referred to as the Inter
Pre subpopulation. Neurons with intracluster connections only
in the presynaptic cluster are the Intra Pre subpopulation.
Those receiving intercluster connections in the downstream or
postsynaptic cluster are the Inter Post neurons. Finally, neurons

with intracluster connections only in the downstream cluster are
the Intra Post subgroup. There are also two inhibitory neuron
populations, one per cluster. These are referred to as Inhib
Pre and Inhib Post. We focused our analysis predominantly on
the excitatory subpopulations because these are the neurons
that may have intercluster connections and, thereby, shape
synchronization most directly (see the section “Results”).

Dynamics and Neural Activity
Neuron activity was modeled via a system of differential
equations, which describe the membrane potential and the
recovery potential (Izhikevich, 2003; Izhikevich et al, 2004;
Izhikevich and Edelman, 2008; Wiles et al., 2017; Gabrieli et al.,
2019). The dynamic equations are as follows:

vV =0.040% +5v+140 —u+ 1
u = a(bv — u)

if v>30mV, then ’ v=e
u=u+d

where v is the membrane potential in millivolts and u is the
recovery variable. I is the current and includes both synaptically
driven and noise currents. The parameters g, b, ¢, and d shape
the neuron spiking behavior. These parameters were used to
create regular-spiking excitatory neurons and fast-spiking, low-
threshold inhibitory neurons, according to Izhikevich (2003).

The model also incorporated primary ionic currents through
AMPA and GABA receptors, which drove synaptic-based activity.
As in our previous work (Gabrieli et al., 2019), the networks were
driven with a contribution of 1 Hz noise according to a gamma
distribution (k, 6 = 2, 1/2) (Izhikevich and Edelman, 2008; Wiles
etal., 2017). When neurons fired, the action potential propagated
along synaptic connections with a delay depending on the
distance the signal must travel. Neurons were desensitized to
repeated action potential inputs at 40% attenuation (t = 150 ms).

Our model also featured STDP in connections between
excitatory neurons, according to the following equation:

_ Ipost —tpre
T

Ay (w) exp if tpost — tpre > 0

Aw(w) =

_ Ipost —tpre
T

A_(w)exp if fpost — tpre <0
where w is the weight of the connection between two neurons.
A and A_ set the maximum magnitude of synaptic change. t
is the plasticity time constant and equal to 20 ms. Finally, ty.
and tpos are the timing of pre- and post-synaptic spikes. By
the process of STDP, synapses are strengthened when the post-
synaptic neuron fires closely after receiving an input from the
presynaptic neuron (Song et al., 2000; Effenberger et al., 2015). If,
instead, the post-synaptic neuron fires before receiving a signal
from the presynaptic neuron, the synapse is weakened (Song
et al., 2000; Effenberger et al., 2015). This process is believed to
contribute to learning and memory and to enable entrainment of
information into neuronal networks (Song et al., 2000).
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FIGURE 1 | Overview of modeling microcircuit synchronization. (A) Two microcircuits (Cluster 1, Cluster 2), each composed of 800 excitatory and 200 inhibitory
neurons, were coupled by connecting some outputs of randomly selected neurons in upstream Cluster 1 to randomly selected neurons in downstream Cluster 2.
These projections are termed intercluster connections. All neurons were also connected to other neurons within the same cluster via intracluster connections. The
relative fraction of neurons in Cluster 1 that sent outputs to Cluster 2 varied from 5 to 95% of the excitatory neuron population in Cluster 1. Similarly, a fraction of
excitatory neurons in Cluster 2 was targeted by these outputs (5-95% of excitatory neurons in Cluster 2). The number of intercluster connections from each
projecting neuron in Cluster 1 ranged from 1 to 50 downstream connections. (B) A connectivity matrix of the overall network topology shows intercluster
connections between excitatory neurons in the bottom left quadrant. To mimic in vivo connectivity patterns over long distances, only excitatory neurons projected
outputs from Cluster 1 to excitatory neurons in Cluster 2. (C) Neurons were modeled using the Izhikevich integrate-and-fire formulation. Each simulation achieved a
stable firing pattern before activity was analyzed. Raw neuron activity (raster plot) was summed into an aggregate activity trace (solid, oscillating lines) for each cluster
and smoothed. Synchronization between the two clusters was calculated as a time-based correlation for 5 min of data. In this equation, p is correlation, C1 is Cluster
1, C2is Cluster 2, 1 is the mean, o is the standard deviation, and N is the sample size or number of timesteps.
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Convergence studies were performed by conducting a 24-h
simulation and measuring the aggregate change in connectivity
weights at each minute over the 24 h of simulation time. The
network connectivity reached stable convergence after 90 min.
Therefore, we ran all simulations for 2 h to allow adequate
time for network activity and synaptic weights to stabilize. All
activity and network measures were collected in the final 5 min
of simulation time.

To determine synaptic strength parameters used in
subsequent simulations, we tested all combinations of excitatory
and inhibitory strength available with our model. Given the
range of firing rates observed, we then selected one set of
strength parameters each for approximately 4, 5, and 6 Hz
(Supplementary Figure S1).

Analysis Metrics

Indeed, there are many ways to measure neural synchronization,
ranging from phase locking to different forms of correlation,
depending on the relevant time and spatial scales (Varela et al.,
2001; Narayanan and Laubach, 2009; Cohen and Kohn, 2011).
Here, synchronization of activity between the upstream and
downstream clusters was evaluated as a time-based correlation
because this methodology incorporated both activity timing
and magnitude and was effective for our purposes. That is, we

sought to precisely measure the extent to which the population-
wide spike density of the downstream cluster matched that
of the upstream cluster across minutes of simulated activity.
To do so, spiking activity was summed for all neurons of
each cluster every millisecond and smoothed with a 50 ms
window averaging filter. A filter size of 50 ms was used
because it corresponds to an intermediate temporal range of
neural activity. This yielded an aggregate, smoothed signal for
each cluster (Figure 1C). A time-based correlation was then
computed between these two signals and used as a proxy
for synchronization.

The rhythmic oscillations of network activity were analyzed
with a similar aggregate signal approach. Spike counts were
collected in 1 ms bins for the full network, and the resulting signal
was then smoothed using a moving average filter (10 ms window)
to produce a measure of temporal change in the network spiking
activity. The magnitude (height) of the high activity periods
(peak prominence > 1) was calculated to represent the relative
activation level of the network. The height of each activity peak
was normalized by the number of neurons to yield a fraction,
and these magnitudes were averaged to obtain a single value
for each simulation. In addition, this smoothed, aggregate signal
was analyzed in the frequency domain using Welch’s method
to generate the power spectral density. The power ratio was
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computed as the ratio of power in a high frequency band (10-
17 Hz) over the power in a low frequency band (1-4 Hz). To
identify these bands, we found the highest two peaks in the
frequency spectra for all networks considered and determined
the range for these two dominant peaks across all spectra. (See
Supplementary Figure S2 for more detail and representative
spectra for baseline networks).

We used network control theory to identify potentially
important roles for subgroups of neurons in the network.
Network control theory uses the concept of controllability to
identify control points in a network for driving the network
to alternative activity states. For example, in the brain, this
could mean switching between states of daydreaming and active
learning (Gu et al., 2015). Two mechanisms of control are average
and modal. Nodes with high average controllability are predicted
to be important for driving the network to nearby, easy-to-reach
states (Gu et al, 2015). In contrast, nodes with high modal
controllability are predicted to drive the network to difficult-to-
reach states (Gu et al., 2015). (See Supplementary Figure S3 for
schematics). Since the metric relies on the underlying network
connectivity to theoretically predict functional roles of nodes,
controllability attempts to unite both network structure and
function. Using established methods [see Wiles et al. (2017) for
derivations] (Gu etal., 2015; Wiles et al., 2017), we calculated both
average and modal controllability for each neuron in the network.
The raw controllability values were then rank ordered such that 1
is the neuron with lowest controllability and N is the neuron with
highest controllability.

Injury

To assess the impact of injury on the synchronization of these
two neuronal populations, we selected a generic high correlation
and moderate correlation network for further analysis. These
networks were determined by analyzing the effect of adding
intercluster connections in healthy networks. (See the section
“Results” and Figure 2 for how these correlation levels were
determined). After each network ran for 2 h of simulation time
to achieve stable synchronization levels, neurodegeneration was
simulated by removing neurons and all their connections from
the network. We focused on deleting neurons with a specific
structural subtype (see the section “Materials and Methods” for
detailed definitions), such that neurons were targeted from a
single subtype for each injury simulation. With our interest
in testing whether the controllability of a specific neuron was
important to overall network synchronization, we first deleted
neurons with the highest controllability ranking. For comparison,
we deleted the same number of neurons randomly, again by
subtype, in separate simulations and compared these results to
the targeted deletion approach. After neurons were removed,
we ran the simulation for another 2 h to stabilize connectivity
weights before analyzing neural dynamics in the final 5 min of
the simulation period. This process was repeated for five high
correlation and five moderate correlation networks.

Statistical Analysis
One-way ANOVA was applied to compare the average strength
of structural subtypes. A repeated measures model was used

to differentiate neuron subpopulations based on nodal network
measures. The Tukey-Kramer test was applied post hoc for
multiple comparisons where relevant. To determine the effects
of injuring different neuronal subtypes, we used paired Student’s
t-test to compare to uninjured baseline measures. Bonferroni
corrections were used to determine significance when noted.
To compare different neuron selection methods of injury, we
applied analysis of covariance (ANCOVA) to control for the
injury level covariate.

RESULTS

Unidirectional Connection of Two
Neuronal Clusters

With our interest in studying how two independent neural
circuits synchronize and change after injury, we first studied the
physical connectivity requirements for two neural circuits
to synchronize their activity, We added unidirectional
connections from an upstream Cluster 1 to downstream
Cluster 2 (Figures 1A,B) to understand the impact of intercluster
connections on network dynamics, namely synchronization
(Figure 1C). In general, we observed two phases: (1) a rapidly
increasing linear phase of increasing synchronization at low
levels of intercluster connection and (2) a more gradually
increasing plateau phase at high levels of intercluster connection.
We tested different combinations of basal firing rates in Cluster 1
and Cluster 2 and found that these results held for all conditions
(Figure 2C). Furthermore, we examined a subset of simulations
with 30% inhibitory and 70% excitatory neurons and, again,
found this consistent synchronization behavior (Supplementary
Figure $4). Importantly, the activity correlation was significantly
related to the number of connections between the two clusters.
We normalized this quantity as the proportion of excitatory
inputs to downstream Cluster 2 that originated in upstream
Cluster 1. Using the completely decoupled state of the circuits
as the starting point (proportion of excitatory inputs = 0), we
found the synchronization level below a proportion of inputs
of 0.09 increased rapidly with more intercluster connections
(linear regression, Y = 7.53X + 0.10, R? = 0.78, p < 1079).
Above a physical coupling level of 0.09, the synchronization
levels were also significantly correlated with the proportion of
intercluster inputs, however more gradually (linear regression,
Y = 0.66X + 0.58, R = 0.77, p < 107°). The transition
between these two phases occurred around 9% of inputs
and was found by determining a cutoff that would produce
approximately equal goodness of fit (R?-values) for both phases.
The intersection between the transition point (0.09) and the
gradual phase regression line was used to set a threshold for
identifying high correlation networks (correlation > 0.65). We
also created a designation between moderate and low correlation
networks to facilitate subsequent injury analysis where we
were interested in networks that could display an appreciable
decrease in synchronization. Lastly, we observed relatively
modest coupling was required to cause a significant change in
synchronization, learning that the downstream cluster needed
only 0.3% of inputs from the upstream cluster to significantly
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FIGURE 2 | Two microcircuits synchronize activity with relatively few intercluster connections. (A) Microcircuits were modeled as two distinct populations of neurons.
They were coupled by progressively increasing the proportion of excitatory inputs received by Cluster 2 (C2) from the upstream Cluster 1 (C1). A low proportion of
excitatory inputs was associated with low activity correlation between the microcircuits. A representative raster plot of neural activity in both microcircuits shows that
periods of high and low activity were not coordinated across the two circuits at low correlation (correlation < 0.45). The corresponding frequency spectrum for low
correlation networks has two distinct peaks (PSD = power spectral density). (B) In comparison, periods of high and low activity frequently occurred at the same time
when the circuits were highly correlated (correlation > 0.65). (C) Increasing the proportion of inputs to one microcircuit (C2) from another (C1) led to a rapid increase
in synchronization. We considered three regions of synchrony: low (correlation < 0.45; blue region), moderate (0.45 < correlation < 0.65; purple region), and high
(correlation > 0.65; green region). Legend indicates the average firing rates of neurons in each microcircuit when correlation is computed. The corresponding
frequency spectrum for high correlation networks has two distinct peaks (PSD = power spectral density). (D) While the correlation between the two clusters
increased with more intercluster connections, the two clusters maintained independent firing rates (t-test; p < 10~5). While the correlation between the two
microcircuits increased with more physical connections between them, average firing rates of neurons in each microcircuit were significantly different from each other
(Student’s t-test; p < 10~°). (E) The magnitude (fraction of network participating) of the high activity oscillations continued to increase with more intercluster
connections, showing a strong positive correlation (inear regression, R2 = 0.78, p < 10~°). The dashed line marks the baseline level of the null model, which has no
intercluster connections. The intersection between the baseline and the regression line is marked with a red star.
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change synchronization from baseline (Control networks with
0 intercluster connections: correlation = —0.008 % 0.006 vs.
Networks with 0.3% connection: correlation = 0.025 £ 0.010;
paired Students t-test, p = 0.002). For thoroughness, we
investigated correlated activity within the excitatory populations
of each cluster with similar methodology, finding that Cluster 1
populations (InterPre and IntraPre) are correlated at 0.98 £ 0.01
and Cluster 2 populations (InterPost and IntraPost) are
correlated at 0.86 = 0.09. This result verifies that the two follower
populations in the downstream cluster remain coordinated
with one another despite our removal of some intracluster
connections due to input-degree control.

In addition to synchronization, another important feature
of activity in the neural circuits was the rhythmic oscillations
of high and low activity that would appear under normal
conditions. We converted the signal to the frequency spectrum
(Figures 2A,B) to characterize these rhythms and found
oscillations of 12.6 = 0.5 Hz in our uninjured networks. These
rhythms are also addressed more formally in Supplementary
Figure S2. Unlike synchronization, which plateaued above a
specific proportion of intercluster connections, we observed that
the rhythmic oscillations continued to include more neurons
(higher magnitude) as the coupling of the networks increased
(Figure 2E). Peak magnitude showed a strong positive correlation
with the proportion of excitatory inputs into Cluster 2 that
originate in Cluster 1 (linear regression, Y = 0.051X + 0.075,
R?> = 0.78, p < 107°). We tested whether these changes in
synchronous, rhythmic activity were correlated with altered firing
rates; however, we found no corresponding change in the average
firing rates of the excitatory neurons in the network (Cluster
1: 6.4 + 0.1 Hz vs. Cluster 2: 3.5 + 0.4 Hz; paired Student’s
t-test, p < 1079) (Figure 2D). Therefore, the observed increase
in correlation depended on a temporal shift in activity in Cluster
2, not increased activity.

With this clear change in synchronization that appeared
as the network adapted with STDP, we next asked what sort
of commensurate changes occur in the structural network
to facilitate the observed synchronization. We expected that
developing synchronous activity would necessitate strong
intercluster connections. It is well-known that the STDP model
implemented in our networks will lead to a bimodal synaptic
weight distribution (Song et al., 2000), and we also saw a similar
result in our stabilized networks (Figures 3A,B). From this
distribution, we defined high strength connections as strengths
>50% of the maximum (normalized strength > 0.5) and saw that
a significantly higher fraction of intercluster connections were
high strength than upstream intracluster outputs (intercluster:
0.822 & 0.007 vs. intracluster: 0.521 £ 0.001; paired Student’s
t-test, p < 107°). In addition, the proportion of high strength
intercluster connections increased rapidly and persisted for the
duration of the simulation (Figure 3C). This remained true
whether the network displayed high, moderate, or low levels of
synchronization. Not only was the proportion of high strength
intercluster connections stable, these connections themselves
were highly stable. Among them, only 0.08 £ 0.04% change per
minute was observed in the last 30 min of simulation time. As
more intercluster connections were added (i.e. the proportion

of excitatory inputs to downstream Cluster 2 from upstream
Cluster 1 increased), the proportion of high strength intercluster
connections decreased (linear regression, R* = 0.58, p < 107>)
(Figure 3D). At low synchronization, when there were few
intercluster connections, a larger proportion of those connections
were high strength. As more intercluster connections were added,
synchronization increased (Figure 2C), and the proportion
of high strength intercluster connections decreased (linear
regression, R* = 0.58, p < 107°) (Figure 3D). This suggests
redundancy at maximal levels of coupling since it is unnecessary
for as many connections to have high strength to achieve
high synchronization.

Given the high strength intercluster connections, we
considered whether intercluster projecting neurons (Inter Pre)
are strong overall. To determine whether that was true,
we assessed the average output strength of each excitatory
population. The output strength of each neuron was summed
and normalized by the total number of outputs. Contrary to our
expectation, the Inter Pre population did not have high strength
outputs as a whole, indicating that the outputs of these neurons
to other neurons within the upstream population are rather
weak. Instead, downstream neurons receiving connections from
the upstream cluster (Inter Post) had significantly higher average
output strength than other populations did (one-way ANOVA,
p < 107°) (Figure 3F). Interestingly, upstream neurons with no
downstream projections (Intra Pre) showed significantly lower
average output strength than did the intercluster populations
(one-way ANOVA, p < 1074 (Figure 3F). Notably, the Intra
Pre neurons also had the least variance in strength, which
suggests they respond minimally to the addition of intercluster
connections (Figure 3F). Since the Intra Pre neurons also display
relatively weak outputs, these findings show that Intra Pre
neurons are the most isolated subpopulation and likely function
primarily as drivers of activity in the upstream cluster.

Controllability

At this point, we knew that the network synchronized and
adapted structurally. However, we did not know how this
architecture might be described with higher level network
metrics, and specifically, whether the neuron subtypes we defined
could be identified with these metrics. In network science,
there are many measures that characterize nodal importance
and identify nodes as influential under different circumstances.
One such nodal property, betweenness centrality, describes how
often paths between two nodes in the network must pass
through a given node. High betweenness centrality indicates
that node is an important connector between other nodes.
Commonly called hubs, nodes with high betweenness centrality
are often affected after TBI due to axonal injury (Fagerholm
et al., 2015). A second nodal property, controllability, predicts
the importance of nodes for driving the network to a different
energetic state. We examined two mechanisms of control -
average and modal, which describe the ability to access easy-
to-reach and difficult-to-reach states, respectively. We were
interested in how the network control points identified by average
and modal controllability reflected the known dynamics of the
system, namely synchronization. From all tested combinations
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from Cluster 1 to Cluster 2 predominantly increased in synaptic strength. The proportion of strong intercluster connections is defined as the fraction of intercluster
connections that have strength greater than half the maximum strength (marked by dashed vertical line in histograms). For a moderate correlation network, the
proportion of strong connections was higher at the end time that at the start time. (B) Similarly, for a high correlation network, the proportion of strong connections
increased from the start time to the end time. (C) The proportion of strong intercluster connections (strength > half maximum) increased as the simulation settled,
and this proportion remained stable over time for all connected networks. In this representative example, the final proportion was significantly higher in low and
moderate correlation networks than in high correlation networks (ANOVA with Tukey’s post hoc comparison, p < 0.001). (D) The proportion of strong synaptic
connections between microcircuits depended on the proportion of excitatory inputs. As the number of intercluster connections increased, the proportion of strong
intercluster connections decreased (linear regression, A2 = 0.58, p < 10~%). The null model has 0 intercluster connections and, thereby, O strong intercluster
connections (marked by red star). (E) We define four excitatory neuron subtypes in this architecture based on their participation in intercluster connections and two
inhibitory neuron subtypes. (F) The Inter Post neurons had higher average output strength than the other excitatory subtypes (ANOVA with Tukey’s post hoc
comparison, p < 10~4).

of a 6 Hz Cluster 1 projecting to 4 Hz Cluster 2 (Figure 2C), We found that controllability and betweenness centrality
two representative networks (one each for moderate and reveal distinct phenotypes in this two-cluster architecture
high synchronization) were selected for this analysis, though that mirror the subtypes we know to exist and previously
similar results were found for a more extensive sample of defined (Figure 4). The subtypes with intercluster connections
networks. Low correlation networks were also considered but (Inter Pre and Inter Post) had the highest betweenness
were structurally similar to moderate correlation networks centrality, underscoring their integral position in the network.
in this analysis. Any signal passing from Cluster 1 to Cluster 2 must pass
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through Inter Pre and Inter Post neurons. The betweenness
centrality of these populations decreased as more intercluster
connections were added and the correlation of the network
increased (Figures 4B,C). In contrast to betweenness centrality,
controllability did not show a relationship with correlation
(Figures 4B,C). In general, populations in the downstream
cluster had higher controllability than populations in the
upstream cluster. This result indicates that targeting the
downstream cluster would be a more effective way to change
the network state than targeting the upstream cluster. For the

hypothetical example of attempting to change the network state
by breaking synchronization, exogenous stimulation applied
to the downstream cluster would likely be a more effective
strategy because the upstream cluster is the driver while the
downstream cluster is the follower. Controllability does depend
on the strength of connections, so while this was generally
the case, we did identify a network in which the upstream
cluster had higher controllability (data not shown). Overall,
the subtypes showed minimal overlap in controllability, which
emphasizes the distinct roles neuronal subtypes play in this
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two-cluster topology. Notably, average and modal controllability
show similar trends, suggesting that the same populations would
be important for driving the network to both easy-to-reach
and difficult-to-reach states. Using a repeated measures model
with Tukey-Kramer post hoc test for multiple comparisons,
we found for high correlation networks all comparisons
were significant (repeated measures model with Tukey-Kramer
post hoc, p < 107%) except for Inter Pre vs. Intra Post
(Figure 4C). For moderate correlation networks, all subtypes
were significantly different (repeated measures model with
Tukey-Kramer post hoc, p < 10~*) with the exception of Inhib
Post vs. Inhib Pre (p = 0.075).

Injuring Highly Controllable Neurons by
Subtype

Given the emergence of nodal subtypes, we sought to better
understand their functional roles by implementing a scheme
of targeted neurodegeneration in which we removed neurons
from the network. Neurons were selected from one subtype at
a time to compare the effect of their removal on synchronization
and activity oscillations. Since controllability is believed to link
structure and function, enhancing the likelihood of activity
changes due to damage, we interrogated the functional influence
of removing highly controllable neurons. This is in contrast
to previous work in which highly controllable neurons are
stimulated (Betzel et al., 2016; Muldoon et al., 2016; Gu et al.,
2017; Kim et al.,, 2018). We hypothesized that removing the
most controllable neurons within a given subtype would be more
detrimental to network function than removing random neurons
from that subtype. The distributions of output weights from
removed neurons vs. remaining neurons of the same subtype
remain bimodal; however, for some cases of controllability-
based removal, the removed neurons have many connections
of relatively low output strength (Supplementary Figure S5).
The representative high and moderate correlation networks
used for our controllability analysis were also used in these
studies (N = 5 networks per type). Low correlation networks
were excluded because the baseline synchronization level could
not drop further as a result of injury. We tested three injury
levels (25, 50, and 75% removal) for each excitatory subtype
(Inter Post, Inter Pre, Intra Post, and Intra Pre). While
inhibitory neurons influence local spike timing and may thereby
modulate synchronization indirectly, excitatory neurons directly
affect synchronization and adapt according to STDP in our
model. Thus, we focused our injury on excitatory subtypes.
Finally, we found that the intercluster connection weights
continued to follow the distributions shown in Figures 3A,B with
predominantly strong connections (Supplementary Figure S6).
Therefore, our subsequent analysis emphasizes the effects of
injury on network activity.

We found that synchronization in high correlation networks
was robust. When neurons were targeted according to their
controllability ranking (average or modal), no level of deletion
for any subtype reduced synchronization below the threshold
for high synchronization (0.65 as determined in Figure 2C)
(Figure 5A). We used paired ¢-tests with Bonferroni correction

for multiple comparisons to evaluate each set of damaged
networks compared to baseline uninjured networks. While there
were a few significant decreases in synchronization (75% injury
to Inter Pre neurons differed significantly from baseline for all
targeting methods; p < 0.0014 for all), high correlation networks
remained high correlation networks post-injury, with a single
exception (Figure 5A). The one exception is random targeting
of upstream neurons with intercluster connections (Inter Pre)
at the highest injury level: 75% deletion yielded 0.6 + 0.05
correlation. By applying ANCOVA to control for the injury level
covariate, we also found that networks with damaged Inter Pre
populations differed from one another based on the targeting
strategy. Average and modal controllability targeting methods
both differed from random deletion (ANCOVA with Bonferroni
correction, p < 0.001); however, they did not differ from one
another (p > 0.8). Lastly, we tested correlated activity within
each cluster and found intracluster correlations remain high after
injury (Cluster 1: 0.97 £ 0.04 and Cluster 2: 0.86 £ 0.07).

In contrast, the moderate correlation networks revealed a
marked, dose-dependent vulnerability when the Inter Pre subtype
(upstream neurons that send intercluster projections) was
damaged (Figure 5B). While the changes were more modest than
for Inter Pre, targeting the Inter Post population (downstream
neurons that receive intercluster projections) also produced a
dose-dependent decrease in synchronization. When comparing
the results of Inter Pre deletion across the three methods, average
and modal controllability-based deletion differed significantly
from random (ANCOVA with Bonferroni correction, p < 0.008)
but not from each other (p > 0.8). As for high correlation
networks, intracluster correlated activity remained high (Cluster
1: 0.97 £+ 0.03 and Cluster 2: 0.83 & 0.06). For moderate
correlation networks, we observed both significant decreases and
increases in synchronization compared to baseline depending on
the targeted subtype (paired t-test with Bonferroni correction,
p < 0.0014) (Figure 5B). Notably, when Intra Post neurons
were targeted, the resulting correlation increased. This is likely
because achieving high synchronization is easier when there
are fewer downstream neurons without direct inputs from the
upstream cluster. In total, these results reveal a malleability of
the synchronization of moderate correlation networks. Targeted
injury could drive the network toward a state of either higher or
lower synchrony.

While injury predominantly did not impact the
synchronization of high correlation networks, we observed
that the oscillation pattern of the high activity periods changed
(Figures 6A,B). Therefore, we turned to the frequency spectrum
to evaluate these rhythms. In undamaged networks, we
routinely observed two prominent peaks in the power spectrum,
corresponding to two primary oscillation frequencies that existed
in the network activity (10-17 and 1-4 Hz; see the section
“Materials and Methods,” Figures 2A,B, and Supplementary
Figure S3 for further detail). The baseline power ratio between
these two frequency bands (power in 10-14 Hz over power in
1-4 Hz) in high correlation networks was 2.6 & 0.1 (N = 5). High
correlation networks showed a rapid decline in this power ratio
following selective damage to the Inter Pre population (paired
t-tests with Bonferroni correction, p < 0.0014 for 50 and 75%
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FIGURE 5 | Synchronization protects against damage to microcircuits. (A) Most highly synchronized networks (correlation > 0.65; green line marks threshold for
high correlation) maintained high correlation when neurons from specific populations were deleted from the network. The dashed gray line denotes the baseline
correlation prior to injury. Some injured networks remained high correlation while having significantly lower synchronization compared to baseline (one-sided paired
t-test, Bonferroni corrected, p < 0.0014). (B) In comparison, networks with moderate correlation (0.45 < correlation < 0.65) prior to injury were more likely to
change synchronization level after injury. The most harmful deletion strategy was targeting excitatory neurons from Cluster 1 that send projections to Cluster 2 (the
Inter Pre subtype). The green line marks the threshold between moderate and high correlation networks (0.65). The purple line marks the threshold between low and
moderate correlation networks (0.45) (Figure 2). The gray dashed line marks the baseline correlation prior to injury. Many injury networks had significantly higher or
lower correlation compared to baseline (paired t-test, Bonferroni corrected, p < 0.0014). Damaging Inter Pre neurons decreased synchronization while damaging

Intra Post neurons increased synchronization.

injury for all selection strategies) (Figure 6C). A decrease in
power ratio indicates a reduction in high frequency components
of the activity signal. As we observed for correlation post-injury,
average and modal controllability-based deletion differed from
random deletion of the Inter Pre subtype (ANCOVA with
Bonferroni correction, p < 0.005) but did not differ from one
another (p > 0.8). Of note, this decrease in high frequency signal
occurs across both clusters (Figure 6A) and suggests that the
upstream cluster is unable to generate higher frequencies. Since
the upstream cluster serves as the driver for high correlation
networks, the downstream cluster depends on receiving input
from the upstream cluster. After adapting with STDP, these
networks appear to prioritize synchronization over more varied
frequency information.

The power ratio of moderate correlation networks varied
after targeted neurodegeneration. The baseline power ratio
for moderate correlation networks was 2.1 &+ 0.1 (N = 5).
Removing non-projecting neurons from the upstream cluster
(Intra Pre) significantly reduced the power ratio for all targeting
methods (paired t-tests with Bonferroni correction, p < 0.0014)
(Figure 6D). This effect was more pronounced in response to
controllability-based deletion. In contrast, removing neurons
in the downstream cluster that lacked intercluster connections
(Intra Post) increased the power ratio (significant at the 75%
level with random or modal controllability-based removal; paired

t-tests with Bonferroni correction, p < 0.0014) (Figure 6D). The
power ratio was most resilient to damage in the downstream
population with intercluster input (Inter Post). Of note, the
power ratio increased when the Inter Pre subtype was injured at
the 75% level despite these same networks showing a decrease in
correlation (Figure 5B). Here, the frequency of high oscillation
periods in Cluster 1 decreased while Cluster 2 retained higher
frequency (Figure 6B). Thus, for the aggregate network activity,
frequency was high while correlation was low. In this case, the
results of removing Inter Pre neurons were not significantly
different by targeting method.

DISCUSSION

In this work, we were interested in how the coherence
of two model microcircuits was established by connecting
one population to another. We were also interested in
determining whether specific neuronal subpopulations would
be more influential in changing the dynamics of these coupled
circuits after traumatic injury. We found that the two clusters
synchronized with relatively few intercluster connections. In
addition, intercluster connections became significantly stronger
than did those among neurons within each microcircuit,
indicating that they are high priority connections within the
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FIGURE 6 | Highly synchronized networks are prone to large decreases in power ratio after injury. (A) A raster plot and corresponding frequency spectrum of an
injured network with high correlation and low power ratio. The blue overlays mark the portions of signal that contribute to the power ratio calculation. (B) A raster plot
and corresponding frequency spectrum of an injured network with fow correlation and high power ratio. The blue overlays mark the portions of signal that contribute
to the power ratio calculation. (C) Removing Inter Pre neurons in a high correlation network reduced the power ratio at deletion levels 50% and above for all selection
methods (paired t-test, Bonferroni corrected, p < 0.0014). The dashed gray line marks the baseline power ratio prior to injury. (D) Removing neurons in a moderately
correlated network had variable effects. In most cases, networks had modest, though significant, reductions in the power ratio; however, there were also injured
networks with higher power ratio than they had at baseline (paired t-test, Bonferroni corrected, p < 0.0014). Increased power ratio was typically observed after
damage to Intra Post neurons whereas decreased power ratio was common after damage to other subtypes.

network. Finally, we employed targeted neurodegeneration to
explore the influence of neuron subtypes on overall network
behavior and showed that neuron controllability did not
strongly influence injury response. However, neurons linking
the two microcircuits were critical for maintaining both the
broad power spectrum of activity communicated between
the two networks and the coherence of this communication.
Together, the results of targeted neurodegeneration reveal
that densely connected microcircuits are resilient and highly
reliable, even when injured, but these benefits may come at
the cost of reduced signal flexibility (Figure 7). Conversely,
moderately coupled microcircuits are more flexible than
their densely coupled counterparts. However, because these

networks have fewer intercluster connections, they are less
resilient and may suffer greater effects of isolation after
damage (Figure 7).

There are several assumptions we made throughout these
studies. First, we used generic excitatory and inhibitory neurons
based on the Izhikevich integrate-and-fire neuron model
(Izhikevich, 2003). These model neurons are simplistic but
versatile, well-verified, and adequate for our purposes. Several
past studies employed these models to study polychronous neural
computation (Izhikevich, 2006), autaptic neuronal connections
(Wiles et al., 2017), and dopaminergic modulation of brain
oscillations (Kobayashi et al.,, 2017). Second, we implemented
only AMPA and GABA receptor currents as well as one type
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of plasticity (STDP). Although adding additional receptors or required beginning with a simplified architecture. Moreover,
dynamics could affect the precise timing of neuron activation, this unidirectional architecture does appear in larger, network-
these changes would not likely impact our broad findings, based descriptions of the brain. For example, the hippocampus is
which indicate synchronization is a robust phenomenon in a predominantly unidirectionally connected (Hummos et al., 2014;
unidirectional architecture. These simplifications were also made =~ Wheeler et al., 2015), and other structures like the hypothalamus
deliberately to produce a realistic, yet efficient and tractable, have a combination of bidirectional and unidirectional pathways,
neuronal network model. A third simplification we made was including afferent inputs as part of the sensory circuitry and
connecting the two clusters by unidirectional connections only.  outputs to the brainstem (Lechan and Toni, 2000; Card and
It is often assumed that brain regions are reciprocally connected ~ Swanson, 2013). Given these limitations, however, we plan
in diffusion tractography or functional MRI (Buckner et al., 2009;  to pursue more complex and anatomically accurate network
Bullmore and Sporns, 2009; Damoiseaux and Greicius, 2009;  topologies in future work. In particular, it would be interesting
Nakamura et al., 2009; Cabral et al., 2011; Rubinov and Sporns,  to combine more diverse and specific neuron types with known
2011; Horn et al., 2014; Fagerholm et al., 2015). Our goal was  connectivity features of anatomical regions like the hippocampus.
to build a more principled view of how groups of neurons In healthy brain networks, it is known that synchronization
interact to produce a composite network signal. To do so or coherence between distant brain regions is important for
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functions like attention, learning, and memory (Du Zel et al.,
2010; Clayton et al., 2015; Fries, 2015; Hanslmayr et al., 2016).
Typically, coherence is discussed at the scale of whole brain
imaging, such as fMRI BOLD, which has a temporal resolution
on the order of seconds (Logothetis and Wandell, 2004). With
this resolution, there are nuances of activity patterns which
may not be observed, and synchronization remains important
at intermediate spatial and temporal scales. Nonetheless, due
to experimental constraints, early studies about local networks
and neuron response focused on firing rate (Barlow, 1972;
Newsome et al., 1989). Currently, with improved technology for
measuring activity in multiple neurons or regions simultaneously
(multielectrode arrays, in vivo calcium imaging), there is a
growing emphasis on understanding the correlation of activity
among neurons (Cohen and Kohn, 2011). There is an interest
in what correlation might encode in comparison to firing rate
alone and what it might mean at various timescales (Cohen and
Kohn, 2011). It is valuable to consider how complex patterns
may combine to generate the activity observed at larger spatial
scales and longer time scales. This work aims to examine this
phenomenon at an intermediate scale where subtle topology
changes may impact synchronization.

Our general finding that clusters of neurons synchronize with
a low proportion of intercluster connections finds support in the
literature. For example, thalamic inputs are important drivers
of activity in the primary visual cortex yet account for only 5%
of synapses on cortical simple cells (Wang et al., 2010). The
authors further suggest that spike synchrony may be a critical
mechanism for ensuring reliable, efficient transmission when
inputs comprise a small percentage of overall synaptic input.
Within the context of TBI, it is well-known that diffuse axonal
injury and white matter damage more broadly are associated
with cognitive impairment (Sharp et al, 2011; Johnson et al,,
2013; Fagerholm et al., 2015; Blennow et al., 2016). Our current
work suggests that if two brain areas are connected with a
high density of projections, a significant amount of axonal
injury (disconnection) will be needed to disrupt synchronization
between these areas. Conversely, our work also suggests a
relatively rapid decline in synchronization if two brain areas are
only weakly connected and the linking connections are damaged.
By extension, our work predicts that TBI neurodegeneration
is most problematic when it impacts long-range projections
between brain regions, especially when these regions are not
strongly connected. In addition to synchronization itself, our
supporting result that intercluster connections become strong,
stable connections corroborates evidence in the literature. It has
been observed in dissociated cultures of hippocampal neurons
that “loose synchrony” exists at weak connectivity (Penn et al.,
2016). As connectivity strength increased, the mean phase shift
between oscillations decreased as the network converged to
a common oscillation frequency characterized by synchronous
periodic bursts (Penn et al., 2016). More broadly interpreted,
these changes in synaptic strength reinforce connections among
brain areas and could protect against synchronization deficits that
occur in disease or injury.

Our results studying the influence of neuron controllability
on intercluster dynamics revealed a surprisingly consistent

result — deleting nodes of either high average or high modal
controllability achieved the same change in network dynamics.
Controllability is frequently applied to undirected, symmetric
networks at the full-brain scale (Gu et al., 2015, 2017; Betzel et al.,
2016; Muldoon et al.,, 2016). In general, these past studies show
that nodes with high average controllability drive the network
to easy-to-reach energy states, whereas nodes with high modal
controllability push the network into hard-to-reach states. In the
brain, these types of controllability often pertain to different tasks
and networks. For instance, high modal control is associated
with cognitive control regions, and high average control is
associated with the default mode network (Gu et al., 2015; Tang
et al., 2017). Our results, though, predominantly showed no
differential effect of deleting neurons with either high average
or modal controllability. One possibility is that easy- and hard-
to-reach states are near one another on the energy landscape,
so this deletion process would produce indistinguishable results.
However, our manipulation also fundamentally differs from
previous control studies in macroscale brain networks because
deleting neurons effectively subtracts energy from the system
as evidenced by deficits in both firing rate (Gabrieli et al.,
2019) and frequency power after injury. These changes indicate
a global loss of energy after neurodegeneration. More often,
controllability is used in the context of stimulation or adding
energy to drive the network to a different energetic state (Betzel
et al.,, 2016; Muldoon et al., 2016; Gu et al., 2017; Kim et al.,
2018). Prior to neurodegeneration, our networks already exist
in a stable energy basin, and subtracting energy by removing
nodes does little to drive the network toward a different state.
As such, it suggests that a priori controllability rankings may be
limited in their ability to predict dynamic network changes from
degenerating neurons.

Whereas controllability regulates network dynamics and state
transitions, synchronization appears to operate ideally within
a “sweet spot” regime. With excessive synchronization comes
dysfunction, including seizures. Excessive synchronization also
limits cognitive flexibility, an important component of switching
between different task networks. Using blood flow to detect
coordinated neural activity, fMRI determines which regions of
the brain are functionally connected. Neurological diseases are
known to impact functional connectivity, variably increasing or
decreasing it. In general, hyperconnectivity is associated with
cognitive dysfunction, including decreased cognitive flexibility
(Mayer et al., 2011; Tang et al., 2011; Pang, 2015; Venkatesan
et al., 2015), an attribute that enables the brain to attain and
utilize diverse brain states (Tang et al, 2017). In contrast,
hypoconnectivity is related to cognitive decline due to loss
of neural resources, such as occurs in Alzheimer’s disease
(Sheline and Raichle, 2013; Hillary et al., 2015). A reasonable
expectation is that traumatic injury - either from degenerating
neurons or from disrupted connections between them - will
only decrease functional connectivity in the brain. However,
functional connectivity can both increase and decrease after
TBI (Bullmore and Sporns, 2009; Mayer et al., 2011; Pandit
et al., 2013; Sharp et al, 2014; Venkatesan et al., 2015). Our
work studying the degeneration of specific neurons within
each population raises an intriguing new mechanism at the
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cellular scale that may help explain how TBI can promote
either functional hyper- or hypoconnectivity. In our moderate
networks subjected to neurodegeneration, we observed both
increases and decreases in correlation depending on which
neuron subtype was targeted. If injury affects predominantly
neurons that send connections to other regions, we can
expect coherence with those regions to decline and subsequent
hypoconnectivity. We would expect a similar decrease in
functional connectivity if the projections between two different
brain areas declined, a potential effect of diffuse injury to
the white matter tracts connecting these areas. However,
if neurons with primarily local connections are damaged,
the diversity of information in that region goes down and
correlation increases, leading to hyperconnectivity and reduced
cognitive flexibility. To our knowledge, we are not aware
of previous work showing this bifurcating response within a
single network, making this the first study to demonstrate both
higher and lower synchronization as a result of differentially
targeted injury.

Correlation, as we have defined it, is a robust metric with tight
standard deviations and high consistency among simulations.
Despite this, synchronization alone does not provide a full
picture of network activity. The traditional metric of neuron
firing rate also fails to add much to this picture because it
does not account for the variability in action potential timing.
Both our networks and more complex networks in vitro and
in vivo develop oscillatory patterns with periods of high and
low activity. These rhythms may themselves encode information
or instead facilitate the flow of information (Sejnowski and
Paulsen, 2006). In vivo oscillations contribute to many important
cognitive functions, including the representation, consolidation,
and retrieval processes of memory (Dii Zel et al., 2010; Hanslmayr
et al,, 2016). Oscillations are also believed to coordinate activity
in different brain regions, dynamically shaping brain networks
that have static structural connections (Dii Zel et al., 2010;
Deco and Kringelbach, 2016). The coupling is hypothesized
to occur via different frequencies. Theta-gamma coupling in
the hippocampus is one well-studied example (Dii Zel et al.,
2010; Lisman and Jensen, 2013; Colgin, 2015), in which gamma
frequencies are coupled to phases of the theta signal to enable
CA1 to coordinate with the entorhinal cortex via high frequency
gamma and with CA3 via low frequency gamma (Dii Zel et al,,
20105 Colgin, 2015). Similarly, coherent activity appears between
the hippocampus and prefrontal cortex during certain behaviors
in rodents (Jones and Wilson, 2005; Tamura et al., 2017). Thus,
transmitting spike rate information across different frequency
bands allows a single region to communicate with multiple
regions or even participate in different networks simultaneously.
As an approximation of the signal properties encoded in
the network, we defined a power ratio of the total network
activity. In a more complex topology, different features of the
frequency spectra may synchronize more strongly than others
between two regions. Our results indicate that weakly connected
regions are more vulnerable to changes in synchronization post-
injury while highly connected regions are more vulnerable to
changes in frequency, though they may remain synchronized.
As the brain is comprised of regions coupled by varied

connectivity strength, our results imply that an injured brain
may show altered synchrony or oscillation frequency between
some brain regions and not others, with the difference due to
the connection strength. Moreover, both phenomena may occur
simultaneously for a given region, contributing to the response
heterogeneity observed after TBI. We also note that the high
frequency components were susceptible to neurodegeneration,
showing the largest change when upstream projecting neurons
were targeted in high correlation networks. This finding
corroborates other reports of decreased broadband power in
the CAl region of the hippocampus (Paterno et al, 2016;
Gagnon et al., 2019).

The changes in oscillatory rhythms in our model after damage
lead us to consider ways to restore the original rhythms.
One possibility is stimulation of neurons within each network,
which would also enable us to further explore our insights
about controllability in the framework of injury. At a larger
scale, deep brain stimulation (DBS) has been implemented
to treat neurological conditions including Parkinson’s disease
(de Hemptinne et al., 2015) and chronic pain (Owen et al,
2006) by modulating inappropriate brain activity (Kringelbach
et al., 2007). While it has been used for years, the fundamental
mechanisms of DBS are not well understood. In the context
of TBI, DBS has been previously proposed to restore cognitive
rhythms (Pevzner et al, 2016). At the scale of our network
model, we can examine the principles of restorative stimulation
protocols as a means of reestablishing disrupted rhythms.
With the flexibility of our model, we can compare various
stimulation strategies, including testing different frequencies
and targeting highly controllable neurons, to study both
effectiveness and structural network changes. Past work indicates
the controllability type and rank for a network node will affect
transition states for the network when energy is injected into
this node (Betzel et al, 2016; Muldoon et al, 2016; Kim
et al, 2018). As such, we expect that nodal stimulation will
function differently than nodal deletion and will allow one to
systematically reconstruct activity oscillations and re-establish
information encoding properties across nodes in the network.

In closing, we find that a relatively simple injury, namely
neurodegeneration, can cause complex outcomes that depend
on the baseline coupling of microcircuits and on the function
of damaged neurons (Figure 7). The communication abilities
(synchronization) and information coding capacity (frequency
content) of these networks may be impaired after traumatic
injury. Densely connected microcircuits possess an inherent
resilience to synchronization-related changes after damage
while moderately coupled networks are more malleable.
Our work underscores that upstream neurons sending
downstream projections are highly valuable for maintaining
both synchronization and frequency properties of the aggregate
signal in a multi-regional network. More broadly, this work
raises a new dimension of heterogeneity of TBI where the pattern
of cellular damage may contribute to the specific outcome and
impairment. In future work, this complexity could be explored
with a multiscale approach which integrates local, time-varying
signal information as inputs to oscillator-based models of
macroscale brain connectivity (Vasa et al., 2015; Lee et al., 2017).
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Thus, this work facilitates integrative multiscale efforts for
translating fundamental mechanisms of TBI to macroscale
consequences by establishing principles which may be applied
and tested in a larger scale model of the brain.
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