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Automatic segmentation of Multiple Sclerosis (MS) lesions from Magnetic Resonance

Imaging (MRI) images is essential for clinical assessment and treatment planning of MS.

Recent years have seen an increasing use of Convolutional Neural Networks (CNNs)

for this task. Although these methods provide accurate segmentation, their applicability

in clinical settings remains limited due to a reproducibility issue across different image

domains. MS images can have highly variable characteristics across patients, MRI

scanners and imaging protocols; retraining a supervised model with data from each

new domain is not a feasible solution because it requires manual annotation from

expert radiologists. In this work, we explore an unsupervised solution to the problem

of domain shift. We present a framework, Seg-JDOT, which adapts a deep model so

that samples from a source domain and samples from a target domain sharing similar

representations will be similarly segmented. We evaluated the framework on a multi-site

dataset, MICCAI 2016, and showed that the adaptation toward a target site can bring

remarkable improvements in a model performance over standard training.

Keywords: MS lesion segmentation, deep learning, convolutional neural networks, unsupervised domain

adaptation, optimal transport

1. INTRODUCTION

Multiple Sclerosis (MS) is a chronic inflammatory-demyelinating disease of the central nervous
system. Magnetic Resonance Imaging (MRI) is fundamental to characterize and quantify MS
lesions; the number and volume of lesions are used for MS diagnosis, to track its progression and to
evaluate treatments (Smith and McDonald, 1999). Current MRI protocols in MS consists in Fluid-
Attenuated Inversion Recovery (FLAIR) and T1-weighted (T1-w) images, offering complementary
contrasts that allows to identify different types of lesions. Accurate identification of MS lesions in
MRI images is extremely difficult due to variability in lesion location, size, and shape, in addition
to anatomical variability across patients. Since manual segmentation requires expert knowledge,
it is time consuming and prone to intra- and inter-expert variability, several methods have been
proposed to automatically segment MS lesions (García-Lorenzo et al., 2013; Commowick et al.,
2018; Galassi et al., 2018).
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In recent years, Convolutional Neural Networks (CNNs) have
showed better performances in MS lesion segmentation than
the traditional unsupervised methods (Commowick et al., 2018;
Galassi et al., 2019). Yet, their clinical use remains limited due
to a reproducibility issue across different sites or image domains.
MRI MS imaging data can have high or subtle variations across
individuals, MR scanners, and data acquisition protocols (Galassi
et al., 2019; Kushibar et al., 2019; Onofrey et al., 2019). In
research, the data used to train and test CNN models are
never fully representative of all clinical scenarios, resulting in
supervised models that suffer from poor generalization when
applied to a new target image domain (Commowick et al., 2018).

A few studies have proposed methods to facilitate model
re-training and re-use, such as Transfer Learning strategies
(Kushibar et al., 2019), where the weights of an already trained
network are tuned to adapt to a new target domain, decreasing
the training time and demanding fewer training annotated
samples than full training. Recent studies in computer vision
propose Unsupervised Domain Adaptation strategies that do not
require ground truth segmentation for the target dataset (Kouw
and Loog, 2019). Our work deals with this more challenging and
common scenario.

Unsupervised Domain Adaptation includes adversarial loss
functions and adversarial image generation based methods
(Sankaranarayanan et al., 2017; Tzeng et al., 2017). Generative
adversarial approaches may generate image samples that are
highly different from the actual MRI MS images and therefore
make the network learn useless representations. One of the most
recent works in Unsupervised Domain Adaptation proposes a
solution for a classification task based on Optimal Transport,
which learns a shared embedding for the source and target
domains while preserving the discriminative information used
by the classifier (Damodaran et al., 2018). Our framework is
based on the latter approach. Learning a shared representation
is suitable and relevant to our task where the aim is segmenting
the same objects, MS lesions, within the same structure, the
human brain.

In the sections that follow, we describe the use of Optimal
Transport for Unsupervised Domain Adaptation and our
original proposal, the Seg-JDOT framework. Seg-JDOT performs
domain adaptation in a segmentation task thus alleviating the
issue of low generalization ability in MS lesions segmentation.
We demonstrate the effect of the adaptation on the classifier
performance over standard training when training a model using
data from a single site only and from multiple clinical sites.
We employed the MICCAI 2016 dataset, which includes MRI
MS images acquired with different scanners and protocols, and
comprises patients with variable size and number of lesions.

2. METHODS

2.1. Problem Statement
The problem of generalizing across domains can be formally
defined. Let � ∈ R be an input space of dimension d, C the
set of labels, and P(�) the set of all probability measures over
�. Let X be the instance space and Y the label space. The
differences between domains can be characterized by a change

in the marginal feature distributions P(X) and in the conditional
distributions P(Y|X).

In standard learning for a classification task, one assumes the

existence of a source dataset (Xs, Ys), where Xs = {xsi}
Ns
i=1 is the

instance data and Ys = {ysi}
Ns
i=1 ∈ C is the corresponding class

labels, and a target datasetXt = {xtj}
Nt
j=1 with unknown labels Yt .

To infer the labels on the target dataset, one learns an empirical
estimate of the joint probability distributionP(X,Y) ∈ P(�×C)
from (Xs, Ys) by learning a classifier f , under the assumption that
the source and target data are drawn from the same distribution
µ ∈ P(�). However, if the target set is drawn from a slightly
different distribution, the learned classifier might under-perform
on the target set. If the drift between the two distributions is not
too large, a domain adaptation approach can be used to improve
learned model generalization.

In our work, we deal with a domain adaptation problem
that assumes the existence of two distinct joint probability
distributions, Ps(X,Y) and Pt(X,Y), corresponding respectively
to the source domain and to the target domain, with respective
marginal distributions µs and µt over �. We aim at leveraging
the available information {Xs, Ys, Xt} to learn a classifier f , that

is a labeling function f̂ which approximates fs and is closer to ft

than any other function f̂s. In order to solve this unsupervised
domain adaptation problem, the Optimal Transport theory can
be employed (Courty et al., 2017; Damodaran et al., 2018).

2.1.1. Optimal Transport for Unsupervised Domain

Adaptation
Optimal Transport is a theory that allows to compare and align
probability distributions by seeking for a transport plan between
them (Villani, 2008). Optimal Transport has been adopted in
Unsupervised Domain Adaptation in order to compare the
source and target distributions and bring them closer. Earlier
use of Optimal Transport in Unsupervised Domain Adaptation
involves finding a common latent space between the source and
target domains where to learn a unique classifier, or finding
a transport plan between the marginal feature distributions µ

under the assumption of label regularity, i.e., the conditional
probability remains unchanged (Gopalan et al., 2011; Courty
et al., 2015).

Recently, Courty et al. proposed an approach that handles a
shift in both the marginal and conditional probabilities, the Joint
Distribution Optimal Transport framework (JDOT) (Courty
et al., 2017). Formally, following the formulation of Optimal
Transport given by Kantorovich (1942), their approach seeks for
a transport plan between the two joint distributions Ps and Pt , or
equivalently a probabilistic coupling, γ ∈ 5(Ps, Pt) such that:

γ0 = argmin
γ∈5(Ps,Pt)

∫

�×�

D(xs, ys; xt , yt)dγ (xs, ys; xt , yt), (1)

where D is a joint cost function measuring both the dissimilarity
between samples xs and xt, and the discrepancy between ys

and yt. Because it is an unsupervised problem, the labels yt are
unknown and replaced by a proxy f (xt). Hence, they devised
an efficient algorithm that aligns jointly the feature space and
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label-conditional distributions, by optimizing simultaneously for
a coupling γ between Ps and Pt and a predictive function f
embedded in the cost function. The classifier f on a target domain
is learned according to the following optimization problem:

min
f ,γ∈5

∑

ij

D(xsi , y
s
i; x

t
j , f (x

t
j ))γij, (2)

where

D(xsi , y
s
i; x

t
j , f (x

t
j )) = αc(xsi , x

t
j )+ βL(ysi , f (x

t
j )) (3)

is a weighted combination of the distances in the feature space
and the loss L in the label space, for the i-th source and the j-th
target sample.

Two limitations can be identified in the JDOT framework: (i)
the cost c is computed in the image space which can be poorly
informative of the dissimilarity between samples, and (ii) the
problem becomes intractable for large datasets since the coupling
γ scales quadratically with the number of samples.

Subsequently, Damodaran et al. proposed a deep learning
strategy to solve these two drawbacks (Damodaran et al., 2018).
Their Deep-JDOT framework (i) minimizes the cost c in a
deep layer of a Convolutional Neural Network, which is more
informative than the original image space, and (ii) solves the
problem with a stochastic approximation via mini-batches from
the source and target domains. The Deep-JDOT model is thus
composed of an embedding function g : x → z which maps the
input space into a latent space, i.e., the output of a deep layer in
the CNN, and a classifier f : z → y which maps the latent space
into the output space. The optimization problem in Equation (2)
therefore becomes:

min
γ∈5,f ,g

∑

ij

D(g(xsi), y
s
i; g(x

t
j ), f (g(x

t
j )))γij, (4)

where

D(g(xsi), y
s
i; g(x

t
j ), f (g(x

t
j )) = α||g(xsi)− g(xtj )||

2

+βLt(y
s
i , f (g(x

t
j ))). (5)

The first term in Equation (5) compares the embeddings for the
source and the target domain, the second term considers the
classification loss in the target domain and its regularity with
respect to the labels in the source domain.

Equation (5) optimizes jointly the embedding function and
the classifier to provide a model that performs well on a target
domain. However, because Equation (5) takes into account
the classifier learned in the target domain only, f (g(xt)), a
performance degradation in the source domain might happen.
To avoid such a degradation, they reintroduce the loss function
Ls evaluating the classifier learned on the source domain, f (g(xs)),
yielding the following optimization problem:

min
γ ,f ,g

1

ns

∑

i

Ls(y
s
i , f (g(x

s
i))) +

∑

i,j

γij(α||g(x
s
i)− g(xtj )||

2

+βLt(y
s
i , f (g(x

t
j )). (6)

With this formulation, the framework learns a common latent
space that conveys information for both the source and target
domain. The final objective of Deep-JDOT is then to find an
embedding function g (which is equivalent to finding a latent
space z), a classifier f and a transportation matrix such that
inputs from the source and target domains that are similar in
the latent space z are similarly classified. Importantly, solving the
optimization problem with a stochastic approximation yields a
computationally feasible solution which can be easily integrated
into a deep learning framework. This approach is the starting
point of our work and it will be further recalled and detailed in
the next sections.

2.2. The Seg-JDOT Framework
We designed the Seg-JDOT framework to perform
simultaneously a segmentation and an adaptation task. An
overview of the framework is illustrated in Figure 1.

We employed a state-of-the-art deep learning architecture
for brain lesion segmentation, a 3D-Unet (Isensee et al., 2018).
The architecture was presented at the MICCAI BRATS 2018
segmentation challenge as an optimization of the original 3D-
Unet proposed by Ronneberger et al. (2015).

The downward context pathway is a succession of context
modules, with each module comprising two convolutional
layers. The upward localization pathway combines the deepest
representation with spatial information, brought by skip
connections. This is achieved by first up-sampling the low
dimensional representation and then combining it with the
features from the corresponding output of the context pathway.
To obtain the final segmentation maps, three different feature
maps are combined through element-wise summation. Hence,
from a compact representation with a low spatial dimension,
a segmentation map with the same dimension as the input
is obtained.

The model is composed of an embedding function g: x → z,
which maps the input x into the bottleneck representation z,
and a segmenter f : z → y, which maps the latent space z into
the segmentation space y. Seg-JDOT optimizes jointly the latent
space and the segmenter to provide a model that performs well
on a target domain. In the sections that follow we provide a
thorough description of the framework and the solution to the
optimization problem.

2.2.1. Defining the Probability Distributions and the

Representation Space
As described in the previous section, Optimal Transport allows to
align the probability distribution in the source domain, µs, and
the probability distribution in the target domain, µt . Defining
the two probability distributions and the space where to compute
their coupling γ is not trivial and needs attention.

In a statistical context, we hardly have access to the true
distribution µ; instead, we work with an empirical distribution
µ̂n. The number of samples n needed for µ̂n to be a reasonable
proxy of µ grows with the number of dimensions d of the space
in which the distribution lies, a limit known as the curse of
dimensionality (Bellman, 1961). The Wasserstein distance can
be used to quantify the convergence of µ̂n to µ. Dudley (1969)
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FIGURE 1 | The Seg-JDOT framework. g(·) is the embedding function, f (·) is the segmenter and, in between them, the bottleneck representation is the latent space z

where we perform the adaptation. We report the terms of the Equation (8) at the levels where they are applied. We represent the output source images with a blue

square and the output target images with a red square.

showed thatµ absolutely continuous with respect to the Lebesgue
measure on R

d satisfies

E[W1(µ, µ̂n)] . n−1/d (7)

when d > 2. Equation (7) indicates that the expectation of the
Wasserstein distance between µ̂n andµ grows exponentially with
the number of dimensions d, a critical aspect in defining the
probability distributions to be aligned.

In our work, we compute the Optimal Transport coupling in
a deep layer of the CNN where the representation is compact and
rich, which is the bottleneck layer of the 3D-Unet. The use of a
compact latent space z allows to greatly reduce the original input
dimensions. Moreover, solving the problem using mini-batches
acts as a regularizer, which is important when working in high
dimension (Genevay et al., 2019).

In order to define the probability distributions, we employ
image patch samples rather than image samples as in Damodaran
et al. (2018). The use of image patches enables an higher number
of samples and, therefore, a more precise estimation of the true
distribution µ. Indeed, five image samples per domain would
be insufficient to adequately represent a distribution in z. It is
important to notice that aligning patches rather than images
is more reasonable for our task: two patches having similar
lesions do not necessarily share the same location within the
brain anatomy.

2.2.2. Defining the Global Loss Function
Damodaran et al. designed the Deep-JDOT framework to solve
a classification and adaptation task simultaneously (Damodaran
et al., 2018), so that samples from the source and target domain
having similar representations in the latent space will be similarly
classified by the network. The assumption is that if two images
share the same label then they should have similar, if not equal,
activation maps at some depth in the network. In their work,
the loss functions Ls and Lt in Equation (6), respectively the loss
in the label space in the source and in the target domain, were
chosen to be the same i.e., the cross-entropy.

In our segmentation task, however, the correspondence
between two similar activation maps and two similar
segmentation maps is harder to establish. The variety of
segmentation maps is generally much higher than the number
of classes in a classification task. We cannot expect exact
correspondence both in the latent space and in the segmentation
space. While we chose the Dice Score as loss Ls, the choice of the
loss Lt was not trivial.

In order to define Lt , we conducted experiments involving
the use of the Dice Score and the Squared Euclidean
Distance. Results indicated an improved network performance in
completing the task when using the Squared Euclidean Distance.
Results involving the use of the Dice score can be found in
Supplementary Material. This behavior might be explained by
the fact that if two patches comprise a lesion of similar size and
shape but different location within the patch, the Dice Score
computed in the output space might be low because sensitive
to a lesion location. On the contrary, the distance ||g(xsi) −

g(xtj )||
2 computed at the bottleneck layer of the network, where

there is no spatial information, might indicate that the two
representations are similar. Yet, for the framework to perform
correctly the segmentation and adaptation task simultaneously,
there must be an agreement between the distance in the latent
space, c, and the loss in the output space, Lt . The Squared
Euclidean distance is less sensitive to a lesion location than the
Dice Score and therefore more appropriate for our task. On
the basis of such considerations, we formulated the global loss
function as:

min
γ ,f ,g

1

ns

∑

i

Ls(y
s
i , f (g(x

s
i))) +

∑

i,j

γij(α||g(x
s
i)− g(xtj )||

2

+β||ysi − f (g(xtj ))||
2). (8)

2.2.3. Learning With Seg-JDOT
In Equation (8) two groups of variables need to be optimized: the
optimal transport matrix γ and the functions g and f induced
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by the network. As suggested by Courty et al., the problem can
be addressed by alternatively solving Equation (8) for γ , with
fixed g and f , and computing g and f , with fixed γ (Courty et al.,

2017). When fixing ĝ and f̂ , solving Equation (8) is equivalent
to solving a classic Optimal Transport problem with cost matrix

Cij = α||ĝ(xsi) − ĝ(xtj )||
2 + β||ysi − f̂ (ĝ(xtj ))||

2; similarly, when

fixing γ̂ , solving for g and f is a standard deep learning problem.
Damodoran et al. proposed to solve this optimization problem

with a stochastic approximation using mini-batches from the
source and target domains, so to ease the computation of the
Optimal Transport (Damodaran et al., 2018). Using a mini-batch
of sizem leads to the following optimization problem:

min
f ,g

E





1

m

m
∑

i=1

Ls(y
s
i , f (g(x

s
i)))+ min

γ∈Ŵ(µs ,µt)

m
∑

i,j=1

γij
(

α||g(xsi)

−g(xtj )||
2 + β||ysi − f (g(xtj ))||

2
)]

, (9)

with E the expected value with respect to the mini-batches from
the source and target domains. We summarize this approach
in Algorithm 1.

Algorithm 1: Seg-JDOT stochastic optimization

Require: xs: source domain images, xt : target domain images, ys:
source domain segmentation maps
for each source batch (xs

b
, ys

b
) and target batch (xs

b
) do

fix ĝ and f̂ , find γ for the given batch

fix γ̂ , and use gradient descent to update f̂ and ĝ
end for

In order to implement Algorithm 1, we separated the global
loss function in Equation (9) into two loss functions that are
computed at two different levels of the network.

We name the first loss function representation alignment loss
function and compute it at the output of the bottleneck layer:

m
∑

i,j=1

γijα||g(x
s
i)− g(xtj )||

2. (10)

TABLE 1 | The MICCAI 2016 MS lesion segmentation challenge dataset contains

MR images of MS patients from four different MRI scanners.

Site MRI scanner Modality Train subjects Test subjects

01 GE Discovery 3T 3D FLAIR 3D T1 5 10

03 Philips Ingenia 3T 3D FLAIR 3D T1 0 8

07 Siemens Aera 1.5T 3D FLAIR 3D T1 5 10

08 Siemens Verio 3T 3D FLAIR 3D T1 5 10

Total 15 38

Sites 01, 07, and 08 include 5 train images and 10 test images; site 03 contains 8

test images.

The representation alignment loss function ensures that a source
sample and a target sample that are heavily connected (high γ

value) have representations not far in the Euclidean distance
sense. By back-propagating through all the shallower layers, we
ensure a domain independent representation.

We name the second loss function segmentation
alignment loss function and compute it at the final
output layer:

FIGURE 2 | Intensity profiles in the brain area of the FLAIR images in the

MICCAI 2016 train set. The blue dashed line represents the intensity

distribution of each image, the red solid line represents the mean intensity

distribution of the site images. (A) Site 01. (B) Site 07. (C) Site 08.
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FIGURE 3 | Variability in MS lesion volume and number. Lesion load per patient per site (Left) and Number of lesions per patient per site (Right).

1

m

m
∑

i=1

Ls(y
s
i , f (g(x

s
i)))+

m
∑

i,j=1

γijβ||y
s
i − f (g(xtj ))||

2. (11)

The first term of the segmentation alignment loss function allows
to avoid a degradation of the performances in the source domain;
the second term ensures that a source sample connected to
a target sample has an output which is not too far from
the true segmentation of the target sample in the Euclidean
distance sense.

3. EXPERIMENTS AND RESULTS

3.1. Dataset
Proper selection of the dataset for the unsupervised domain
adaptation experiments is crucial because the domain difference
should be present to confirm the framework’s robustness. In
this work, we employ a well-known dataset, the MICCAI
2016 MS lesion segmentation challenge dataset (Commowick
et al., 2018). It contains 53 MRI images of patients suffering
from MS, split into 15 train and 38 test images. For each
patient, high quality segmentationmaps are provided—they were
computed from seven independent manual segmentations and
using LOPSTAPLE (Akhondi-Asl et al., 2014) so to minimize
inter-expert variability.

Images were acquired in four different clinical sites,
corresponding to four different MRI scanner models (Table 1).
Each clinical site includes 5 train and 10 test patients (sites 01,
07, 08), except one site that contains 8 test patients only (site 03).
In our experiments, we used the test images for testing purpose
only and we never included them in the training or validation or
adaptation process.

All MRI imaging protocols included 3D FLAIR and 3D T1-
w anatomical images. Image size and resolution were different
across the four MRI scanners (more details on the imaging
protocol are available on the challenge website1). As illustrated
in Figure 2, the intensity profiles in the brain area vary across
the MRI scanners. Sites 01 and 07 follow a similar profile with
a maximum intensity ≈ 200, while they vary drastically from

1https://portal.fli-iam.irisa.fr/msseg-challenge/data

site 08, where the intensity reaches up to ≈ 2,000 (a similar
distribution was observed for site 03, test images). This behavior
in intensity distribution was observed for both the imaging
modalities, train and test patients.

Moreover, patients show a variability inMS lesion volume and
number of lesions (Figure 3). The median lesion load in the train
(test) dataset is for site 01≈ 30(≈ 16) cm3, for site 03≈ (5) cm3,
for site 07 ≈ 5(6) cm3, and for site 08 ≈ 10(12) cm3. A similar
variation across sites was observed in the number of lesions.

Considering these variations across the four clinical sites,
the MICCAI 2016 dataset does fit the challenge of the domain
shift problem.

3.2. Implementation Details
3.2.1. Image Pre-processing
Before extracting the patch samples from the image volumes to
train the network, we performed a few standard pre-processing
steps on the raw MRI images. For each patient, (i) MRI images
were denoised (Coupe et al., 2008), (ii) rigidly registered toward
the FLAIR modality (Commowick et al., 2012), (iii) skull-
stripped (Manjón and Coupé, 2016), and (iv) bias corrected
(Tustison et al., 2010). These steps involved the use of Anima, an
openly available toolkit for medical image processing developed
by the Empenn research team, Inria Rennes2.

In order to preserve the challenge of the domain shift, we did
not standardize intensities across sites. However, as the drastic
variation in the intensity profiles wouldmake the training process
unnecessarily hard, we adjusted the intensities of each patient
image to have zero mean and unit variance.

3.2.2. CNN Training
Images were resampled to the same size 128 × 128 × 128; 3D
patches of size 16 × 16 × 16 were extracted. We employed
a patch overlap of 50%, resulting in 4,096 patches per image.
Although overlapping 3D patches contain more surrounding
information for a voxel, it is memory demanding; training on
patches containing lesions allowed to reduce training time while
reducing class imbalance.

2https://github.com/Inria-Visages/Anima-Public
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CNN training was performed in batches containing 256
source and 256 target samples, with a total batch size of 512—
the maximum size that the employed GPU can handle. Since
the quality of approximation of the true optimal transport
coupling depends on the number of samples, we chose to use the
maximum batch size possible.

3.2.3. Technical Details
The Seg-JDOT framework was implemented in Python using the
Keras library and the POT library (Flamary and Courty, 2017)
which contains helpful functions for the Optimal Transport

solver. Experiments were conducted on the GPU NVIDIA
Quadro P6000, 24 GB.

3.3. Results on the MICCAI 2016 Dataset
We evaluated the segmentation performance when training both
on a single site and on multiple clinical sites. The first experiment
represents the worst case scenario, with training data acquired
on a unique MR scanner; the second experiment reflects a more
recurrent situation in the real practice, with training data coming
from more than one MR scanner and a model that shall be more
robust to variability.

FIGURE 4 | Continued
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FIGURE 4 | (A–F) Performance of Seg-JDOT with single-site source and single-site target domain adaptation. Each row corresponds to a combination of source and

target. Dice score (left column) and F1 score (right column) are computed with no adaptation (00) and with Seg-JDOT, where the direction of the domain adaptation is

indicated (07, 08, or 01). For each combination of source and target, performances are given for all the four testing sites. Each point is a patient of a given site;

performances of a patient with and without Seg-JDOT are tracked. For each site, the p-value of the paired Wilcoxon test is reported.

3.3.1. Single-Site Training
First, we evaluated the segmentation performance when training
on a single site only. Hence, we applied the Seg-JDOT
framework with one site as the source domain and any
other site as the target domain. We did not perform
adaptation toward the site 03 because it does not contain a
train dataset.

The segmentation performance was assessed in terms of Dice
score and F1 score. The Dice score is a measure of spatial

overlap between the output and the ground truth; the F1 score
is a weighted average of the lesion sensitivity and the positive
predictive value, hence a metric that is independent of the lesion
contour quality.

For each combination source/target, we compared the scores
as obtained with the standard training (source only) with
the scores as obtained with the adapted model. While the
main focus of our study is the variation in performance on
the target domain, we also evaluated the scores achieved by

Frontiers in Computational Neuroscience | www.frontiersin.org 8 March 2020 | Volume 14 | Article 19

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Ackaouy et al. Multi-Site Segmentation of Multiple Sclerosis Lesions

the adapted classifier on the other clinical sites. This allowed
us to assess a possible degradation in the source domain
performance and the overall effect of the adaptation on themodel
generalization ability.

Boxplots of the Dice and F1 scores (Figure 4) illustrate the
effect of the domain adaptation. For each site, we assessed the
significance between pair-wise comparisons of the performances
of the two learned classifiers. The Shapiro-Wilk’s test of normality
indicated a non-normal distribution of the samples and thus
a paired Wilcoxon test was used (Rey and Neuhäuser, 2011).
Reported p-values were computed using the pairedWilcoxon test
and indicate whether the variations are statistically significant: if
the p-value is lower than the significance level of 0.05, then we
can state that the scores as computed with the two approaches
are significantly different.

In Figure 5, we report the overall percentage of variation in
performance on the target site. A positive variation indicates an
improvement in the score. More detailed information can be
found in Supplementary Material.

Results indicate that target site performances generally
improve when applying the Seg-JDOT framework. The domain
adaptation toward the site 07 yields the most significant
improvement in target performance (Figures 4B,D), while
the adaptation toward the site 08 yields minor variations
only (Figures 4A,F).

The highest improvement is registered for the combination
source site 08 and target site 07 (Figure 5), with a variation in
the Dice score and F1 score of about 338 and 295%, respectively.

It indicates that the adaptation reduces the effect of the high
variability in intensity and lesion load/number that we observed
across the two sites. When considering the adaptation in the
other direction, i.e., the combination source site 07 and target
site 08, we observe that the variability across the two sites did
not affect that much the model performance, with a variation in
the Dice score and F1 score of about 10 and 51%, respectively.
In other words, the model learned on the site 07 appears to be
more robust and to generalize better to other sites. This might be
due to the fact that the samples within the site 07 are the most
challenging and representative among all the sites.

Adapting toward a target domain appears beneficial, or
otherwise not detrimental, for the overall generalization ability
of a model. For instance, for the combination source site
08 and target site 01 we note a significant improvement in
segmentation outcome also on the test site 07 (Figure 4C). For
the combination source site 01 and target site 08, the adaptation
does not yield a significant improvement in performance on the
target site (Figure 4A); yet, a minor improvement in the Dice
score is registered on the test site 07. This suggests that the
adaptation toward a target domain allows to learn a classifier
that is less specific to the source domain and thus capable to
generalize better.

The adaptation can be beneficial for the source site as well.
We observe an improvement in the F1 score on the source site
for the combination source site 07 and target site 01 (Figure 4E)
or target site 08 (Figure 4F), and for the combination source site
01 and target site 07 (Figure 4B). This might be explained by the

FIGURE 5 | Variation in performance on the target site between the model as learned on the source only and adapted on the target domain. Dice score on the left, F1

score on the right. On the x-axis is the source center, on the y-axis is the target center.

FIGURE 6 | A qualitative result for the combination source site 08 and target site 07. The results are shown in the coronal views of the FLAIR image. From the left: a

segmentation result on site 07 when training on the site 08, segmentation result after adaptation, ground truth.
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fact that the network is trained to minimize the Dice Score rather
than the F1 Score and, therefore, the adaptation may move the
network away from the optimal Dice Score solution and closer to
the optimal F1 Score solution.

A qualitative result on a patient from the site 07 for the
combination source site 08 and target site 07 is shown in Figure 6.
We observe that the adaptation toward the site 07 yields a better

segmentation output than training on the source site only. The
number of false positives appears greatly reduced.

3.3.2. Multi-Site Training
We evaluated the segmentation performance when training on
multiple clinical sites. Hence, the source domain comprised
multiple sites (two) and the target domain was the remaining one.

FIGURE 7 | (A–C) Performance of Seg-JDOT with multi-site source and single-site target domain adaptation. Each row corresponds to a combination of source and

target. Dice score (left column) and F1 score (right column) are computed with no adaptation (00) and with Seg-JDOT, where the direction of the domain adaptation is

indicated (07, 08, or 01). For each combination of source and target, performances are given for all the four testing sites. Each point is a patient of a given site;

performances of a patient with and without Seg-JDOT are tracked. For each site, the p-value of the paired Wilcoxon test is reported.

Frontiers in Computational Neuroscience | www.frontiersin.org 10 March 2020 | Volume 14 | Article 19

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Ackaouy et al. Multi-Site Segmentation of Multiple Sclerosis Lesions

FIGURE 8 | Variation in performance on the target site between the model as learned on the source only and adapted on the target domain. On the x-axis is the

source center, on the y-axis is the target center.

The site 03 was used for testing purpose only since it does not
include a train dataset.

As for single-site training, the classifier performance
was assessed in terms of Dice score and F1 score. For
each combination source/target, we tested the classifier as
adapted with Seg-JDOT on the target site as well as on the
other test sites, so to assess the impact of the adaptation
on the source performance and on the overall model
generalization ability.

Boxplots of the Dice and F1 scores illustrate the effect of the
domain adaptation on a clinical site (Figure 7). P-values were
computed using the paired Wilcoxon-test.

In Figure 8, we report the overall percentage of variation in
performance on a target site. A positive variation indicates an
improvement in the score. More detailed information can be
found in Supplementary Material.

Results indicate that Seg-JDOT generally improves the
performances on the target site. As for single-site training, the
most significant improvement is achieved on the target site 07
when the site 08 is a source domain (Figure 7A), with an overall
variation in the Dice score of about 429% and in the F1 score of
about 337% (Figure 8), while the least significant improvement
is achieved on the target sites 08 (Figure 7B) and 01 (Figure 7C).
This suggests that the less a model generalizes to a site, the more
likely the adaptation will improve its performance on the latter,
and vice-versa.

The adaptation can be beneficial for a source domain as
well. We observe an improvement in the scores on the source
site 01 for the combination source sites 01 and 08, and target
site 07 (Figure 7A). Similarly, the source site 07 benefits from
an adaptation toward the target site 01 (Figure 7C). For these
combinations, the adaptation has thus a regularizing effect that
yields an improvement in performance also on the source site.

In order to fully appreciate the effectiveness of the adaptation,
we compared Seg-JDOT with training on standardized images.
The intensities were standardized using the method of
Nyul et al. (2000). Detailed results can be found in the
Supplementary Material. A significant improvement was still
achieved on the target site 07, with an overall variation in the
Dice score of about 181% and in the F1 score of about 204%.

4. DISCUSSION AND CONCLUSION

In this paper, we presented the Seg-JDOT framework for
Unsupervised Domain Adaptation based on Optimal Transport.
The framework aims at adapting a model so that samples from
a source and a target domain sharing similar representations
will yield similar predictions. The framework was designed to
perform an MS lesion segmentation task while addressing the
recurrent situation of deploying a model on a clinical target site
that was not included in the training process. Importantly, the
adaptation does not require any manually annotated image in the
target domain.

We tested the framework on the MICCAI 2016 MS lesion
segmentation challenge dataset which includes four clinical
sites presenting variations in intensity profile and lesion load
or number. Our results with single-source and multi-source
training indicate that the adaptation toward a target site can
yield significant improvement in the model performance over
standard training. The improvement appears to be the most
significant for models having otherwise a low generalization
ability. Adaptation toward a target site can bring improvements
in the overall generalization ability of the model toward any
domains. Also, the source performance is either not affected by
the adaptation or an increase in the scores is observed.

A comparison of Seg-JDOT performances with training on

standardized images indicates that the domain shift problem

is still there after image standardization. This suggests that

Seg-JDOT implicitly performs a normalization by adapting
the weights to better interpret the features extracted by

the network.

Although the approach was shown to be effective to deal with

the domain adaptation problem, our dataset included clinical

sites comprising five training subjects only. Future work will

consider the evaluation of this approach with different data splits,

other MS dataset and more subjects. Also, other measures of

variability across sites and patients might be taken into account,
such MS lesion types or patient age.

Seg-JDOT can easily be adapted to other neural network
architectures or tasks. In this work, we have employed a variation
of a 3D-Unet architecture recently proposed for a brain lesion
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segmentation task. However, the use of image-wise segmentation
outputs, rather than voxel-wise, may limit the performance of
the framework because the output predictions in the target
domain can only approximately fit the target lesion. Future work
will consider the evaluation of the framework with other CNN
architectures, such as the voxel-wise CNN network proposed by
Valverde et al. (2017).
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