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We propose that correlations among neurons are generically strong enough to organize
neural activity patterns into a discrete set of clusters, which can each be viewed as
a population codeword. Our reasoning starts with the analysis of retinal ganglion cell
data using maximum entropy models, showing that the population is robustly in a
frustrated, marginally sub-critical, or glassy, state. This leads to an argument that neural
populations in many other brain areas might share this structure. Next, we use latent
variable models to show that this glassy state possesses well-defined clusters of neural
activity. Clusters have three appealing properties: (i) clusters exhibit error correction,
i.e., they are reproducibly elicited by the same stimulus despite variability at the level of
constituent neurons; (ii) clusters encode qualitatively different visual features than their
constituent neurons; and (iii) clusters can be learned by downstream neural circuits in
an unsupervised fashion. We hypothesize that these properties give rise to a “learnable”
neural code which the cortical hierarchy uses to extract increasingly complex features
without supervision or reinforcement.

Keywords: population coding, maximum entropy, information theory, correlations, clusters, error correction,
unsupervised learning, criticality

INTRODUCTION

Throughout the central brain, information about the external world, internal body states, and
movement plans is represented by large populations of neurons. The code employed by such neural
populations has been the subject of extensive and ongoing study. Because nearby neurons typically
exhibit significant correlation in their activity, their population code is necessarily combinatorial,
in the sense that the message conveyed by the activity of one neuron is modified by the activity
of nearby, correlated neighbors. Although the pairwise correlations between neurons typically
are weak, these correlations can have a strong effect on the probability of population activity
patterns (Schneidman et al., 2005, 2006). This implies that the principles that operate at the
level of population codes may be significantly different from those that are evident for small
groups of neurons.

A number of such population coding principles have been identified. First, correlated
population codes can have a fidelity that is very different from matched, independent codes
(Panzeri et al., 1999; Wilke and Eurich, 2002; Shamir and Sompolinsky, 2006; da Silveira and
Berry, 2014; Kohn et al., 2016). In particular, positive noise correlations that have been observed
experimentally can substantially reduce and limit discrimination performance (Zohary et al., 1994;
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Sompolinsky et al., 2001). In other cases, neurons can have
patterns of correlation that can increase their mutual information
about stimuli (Tkačik et al., 2010; Franke et al., 2016; Zylberberg
et al., 2016). In general, mutual information is decreased when
signal and noise correlations have the same sign (Oram et al.,
1998; Schneidman et al., 2003a; Josic et al., 2009; Moreno-Bote
et al., 2014), and this pattern seems most commonly observed
experimentally (Cohen and Kohn, 2011).

Second, population codes can simultaneously represent not
just an estimate of a sensory or motor variable, but also
the entire probability distribution over the occurrence of that
variable (Zemel et al., 1998; Pouget et al., 2000; Orban et al.,
2016; Aitchison and Lengyel, 2017). Representation of entire
probability distributions is favorable for carrying out Bayesian
inference (Ma et al., 2006; Beck et al., 2008). Finally, we also
note that individual neurons can multiplex different kinds of
information into different spike train variables (Victor and
Purpura, 1998; Meister and Berry, 1999; Lundstrom and Fairhall,
2006). For instance, individual spikes can convey a local estimate
of the stimulus while the time interval between spikes can
represent the contrast of the stimulus ensemble (Lundstrom and
Fairhall, 2006). Evidence for temporal multiplexing also exists at
the population level (Lankarany et al., 2019).

Another broad coding principle is the idea that neural
codes should be sparse. This principle has been used to
explain the organization of receptive fields in the primary
visual cortex (Olshausen and Field, 1996) and other sensory
pathways (Lewicki, 2002; Hyvärinen et al., 2009; Blattler and
Hahnloser, 2011). This coding principle is consistent with
experimental results from many brain areas, in which the
activity of most projection neurons (such as pyramidal cells
in the neocortex) tends to have a low probability of spiking
in a small timebin as well as a skewed distribution of spike
rates with a long tail (Baddeley et al., 1997; Buzsaki and
Mizuseki, 2014). Sparse coding is also linked to statistically
optimal linear encoding (“independent component analysis”
or ICA) of natural stimuli with a sparse generating structure
(Bell and Sejnowski, 1995). While sparseness as a coding
principle is associated with a reduction in redundancy among
neurons, it need not achieve full statistical independence to be
a useful coding principle. Furthermore, sparseness connects to
ideas about energy efficiency, as action potentials and synaptic
currents account for a large fraction of the brain’s energy
balance (Attwell and Laughlin, 2001; Lennie, 2003). As we
shall see below, sparseness is consistent with our proposed
design principle.

Sparseness is closely related to one of the most popular design
principles: efficient coding. We can distinguish three kinds of
efficient coding principles. Historically, the first such principle
was redundancy reduction, proposed to explain the center-
surround organization of retinal receptive fields (Attneave,
1954) – an idea that was generalized to central brain circuits
(Barlow, 1961; Dan et al., 1996). A second, more general version
of redundancy reduction is the principle that the population code
should be as close as possible to the channel capacity (Atick, 1992;
Atick and Redlich, 1992), an organizing principle closely related
to “infomax” (Linsker, 1988). A third principle is predictive

coding, an implementation of redundancy reduction which
assumes that neural codes use regularities in the environment
to emphasize surprising sensory information and hence improve
coding efficiency. This idea was first proposed for the retina
(Srinivasan et al., 1982) and later generalized to the cortical
hierarchy (Mumford, 1992; Rao and Ballard, 1999; Bastos et al.,
2012). Fourth, and related to predictive coding, is the idea that
local circuits carry out computations that selectively or optimally
encode predictive information (Bialek et al., 2001; Palmer et al.,
2015), which can be interpreted as a more general optimization
principle that entails redundancy reduction in a low noise limit
(Chalk et al., 2018).

A major challenge to efficient coding is the fact that real
population codes have high redundancy (Barlow, 2001; Diamond
et al., 2003; Narayanan et al., 2005; Puchalla et al., 2005). Related
is the fact that the activity of one neuron can often be accurately
predicted from the activity of its neighbors (Tkačik et al.,
2014). Therefore, the classic version of redundancy reduction
can be ruled out empirically. While redundancy can optimize
the encoded information in a high noise limit (Tkačik et al.,
2010), retinal redundancy appears to be considerably higher. For
instance, one study found that a mosaic of ganglion cells with
∼10% redundancy optimally encoded information (Borghuis
et al., 2008), while the entire population has a redundancy of
∼11-fold (Puchalla et al., 2005). Regardless, most neuroscientists
share the intuition that population codes are likely to be “well
designed.” These considerations suggest that there are other
benefits to redundancy, beyond mere noise suppression; in
this paper, for example, we put forward the hypothesis that
“learnability” is one such benefit. Perhaps population codes may
someday be appreciated to be optimal or nearly optimal, once a
larger and more realistic set of constraints on their structure have
been considered.

Overview
In this paper, we review evidence for a new design principle –
namely, that population neural activity is robustly organized into
clusters. This evidence primarily comes from retinal ganglion
cells, but also lends itself to an argument that this property
extends to many, if not most, neural populations in the central
brain. We lay out the basic logic of our argument as follows (with
the details contained in subsequent sections). First, we analyze
the retinal ganglion cell population using maximum entropy
models to closely approximate their probability landscape. By
exploiting analogies between the maximum entropy model and
the Boltzmann distribution in statistical physics, we show that
the population is in a marginally sub-critical state, with frustrated
interactions between constituent neurons. We call this a glassy
state. We find that the glassy state is robustly present for a
wide variety of stimulus ensembles, both artificial and natural,
as well as across adaptation states. Because the properties of the
maximum entropy model depend only on low-order statistics
of neural activity, like firing rates and pairwise correlations, any
neural population with similar low-order statistics will be in
the same glassy state. We show that the retinal ganglion cell
population has pairwise correlations that are strong enough to
robustly realize such a state. This leads to the implication that
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many neural populations in the brain are likely to share this
common structure.

The fact that a neural population is in a glassy state is
a statement about the qualitative structure of its probability
landscape. Specifically, this result suggests that there might be
many local peaks in that landscape. Following this intuition, we
analyze the population using latent variable models, which also
match neural activity statistics very well. In these models, each
latent state corresponds to a cluster of neural activity, which
then defines a mapping from any neural activity pattern onto
a unique cluster. We show that clusters are well-separated and
reliably activated by the same visual stimulus, thus exhibiting a
form of error correction. We also show that the receptive fields of
clusters are, in general, qualitatively different from the receptive
fields of individual neurons. Then, we explore the geometry of the
probability landscape of neural activity patterns by moving locally
on that landscape; this analysis reveals that clusters typically have
the geometry of a ridge, not a local peak. On a global scale, we find
that the entire probability landscape resembles a mountain with

the all-silent state at the summit and ridges radiating downwards
in different directions (Figures 1A,B).

The set of neural activity patterns that map onto the same
cluster typically have a simple structure. There is an “active set”
that is a small subset of all of the neurons. Within the active
set, a threshold number of neurons must have a spike. All of the
other neurons are in the “silent set” and thus must be silent. This
structure closely resembles Hebb’s idea of cell assemblies (Hebb,
1949). In addition, this simple structure allows for clusters to
be learned in an unsupervised fashion. We show that a winner-
take-all (WTA) circuit with Hebbian plasticity in its feedforward
synapses can learn clusters in the retinal ganglion cell population.
The computational ingredients of this WTA circuit are quite
generic in the brain, thus implying that many local circuits
have the ability to make use of the clustered structure of neural
population codes.

The organization of the population code into clusters suggests
a powerful design principle which we call “learnability.” A good
population code might not be information-efficient, but instead

FIGURE 1 | Population neural activity is organized into discrete clusters. (A) Schematic illustration of the global organization of population neural activity; the
probability landscape resembles a mountain with a set of ridges descending from the summit. (B) Top view of the same probability landscape; each ridge can be
viewed as a cluster of neural activity (demarcated by dashed green lines). (C) Proposal for hierarchical feature learning. Clusters are learned in layer 4 of the
neocortical microcircuit, allowing layer 4 neurons to represent new sensory features with reduced correlation. Layer 2/3 generates nonlinear recombinations of layer
4 neural activity, thus creating a new population code with stronger correlation and new clusters of neural activity. These signals propagate up the cortical hierarchy,
and the next layer 4 can again learn clusters in its input population, which are different than the lower-level clusters. This alternating process of cluster learning
followed by recombination to form new clusters can repeat going up the cortical hierarchy, generating selectivity to increasingly complex sensory features.
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it could have statistical properties that allow downstream neural
circuits to learn such a code in a manner that is unsupervised
and sample efficient. If we take the perspective of a downstream
neural circuit, its input is, of course, a stream of population neural
activity. If those activity patterns are organized into clusters, then
the obvious (perhaps even inevitable) computation for that neural
circuit to carry out is to learn those clusters. And because clusters
represent qualitatively different visual features, this unsupervised
learning automatically teaches the downstream circuit about
useful distinctions in the stimulus. What is more, ascending
pathways in the neocortex lend themselves to a hierarchical
version of cluster formation (Figure 1C) – an idea that we
return to below.

Neural Coding: Encoding Models Versus
Activity Models
Neural activity is noisy, in that the same synaptic inputs will result
in different trial-to-trial spiking outputs. As a result, the neural
code is necessarily probabilistic. Sets of sensory or motor events,
denoted by S, are thus related to population neural activity,
denoted by R, through the joint probability distribution, P(R,S).
Full knowledge of this distribution would constitute a solution
to the neural code. However, in practice, this is rarely achievable.
One approach is to focus on the conditional probability, P(R|s),
where s is a single stimulus. For individual neurons, this is
typically known as a tuning curve for a small set of {s} or receptive
field model for larger sets of {s}. This approach, which we denote
the encoding model, is common and quite intuitive: one presents
a set of stimuli to neurons, records their responses, and then uses
a variety of quantitative methods to construct general models
linking the two. To the extent that such models accurately capture
the responses of many neurons over a broad set of stimuli, then
this version also constitutes a solution to the neural code. While
there are notable examples of cell types and stimulus sets for
which such models are highly successful, it is unclear how well
this approach will work for the full set of behaviorally relevant
stimuli and whether it correctly captures the correlation structure
present in the neural population (Rodieck, 1965; van Hateren
et al., 2002; Pillow et al., 2008; Chen et al., 2013; McIntosh et al.,
2016; Buckley and Toyoizumi, 2018).

But regardless of the success of encoding models, this
approach is not well matched to the way that the brain works.
The reason is that in this approach, neuroscientists must select
a set of stimuli that are entirely known. Neural circuits in the
brain do not have access to “ground truth” stimuli and never
perfectly know the states of the external world – that is the
job the entire sensory system to estimate. Next, neuroscientists
endeavor to measure as comprehensively as possible the response
of a neural population. Experimental limitations often result
in approximations, such as attempting to predict the firing
rate of individual neurons. However, in the brain, downstream
neural circuits always get the complete, simultaneous neural
activity patterns – by definition – and never their trial-averages.
Finally, the goal of model construction is to predict the neural
response as accurately as possible. But again, the brain never
needs to make such predictions, because downstream circuits

automatically receive the true population activity. Instead, the
brain uses many samples of population neural activity to make
increasingly accurate estimations of behaviorally-relevant stimuli
or their latent causes. Having some form of implicit knowledge of
receptive field functions of input neurons might be useful in this
task, but it is not required.

With these ideas in mind, we have taken a different
approach, that we denote the activity model. In this approach,
we focus instead on the properties of the probability
distribution accumulated over an entire stimulus ensemble,

P (R) =
stimuli∑

s
P (R|s) P (s). The goal is to understand the

structure of this distribution. One obvious benefit of this
approach is that it more closely matches the actual task that the
brain must solve. In addition, there is no requirement to have
successful receptive field models. Instead, one simply measures
the true population activity. Furthermore, one need not define
cell types or subsets in the neural population, as all that matters
is the joint statistics of neural activity. One drawback of this
approach is that the answer one gets depends fundamentally
on the stimulus ensemble. However, the success of encoding
models can also depend on the stimulus ensemble. For instance,
the classic linear-nonlinear (LN) model developed by Rodieck
works for objects moving smoothly on the retina (Rodieck,
1965), but when objects reverse direction an LN-LN cascade
with gain control is needed (Chen et al., 2014). Similarly, when
there is wide-field object motion, a new form of inhibition from
wide-field amacrine cells comes into play (Olveczky et al., 2003).
This dependence is less direct and clear for encoding models
than for activity models, but is still present nonetheless.

Retinal Origins of the Design Principle
This paper focuses on neural data and analysis from the retina.
Most readers will find our perspective on the population code
of retinal ganglion cells to be unfamiliar and perhaps counter-
intuitive. The better-established framework for understanding
visual coding in the retina is the parallel channels view (Werblin
et al., 2001; Masland, 2012). This view emphasizes the role
of different types of retinal ganglion cells. Each cell type has
dendrites, and hence spatial receptive fields, that efficiently
cover, or tile, the area of the retina, and hence visual space.
Each ganglion cell type receives specific inputs from different
types of retinal interneurons that together constitute distinct
microcircuits that give rise to specific feature selectivity in that
ganglion cell type. Ganglion cell types are often given evocative
names – such as ON-OFF direction selective (Barlow et al.,
1964), object-motion selective (Olveczky et al., 2003), or local
edge detector (van Wyk et al., 2006) – that give a qualitative
description of the visual features that best trigger them. In
this view, the primary project for future retinal research is
to define and delineate the different cell types (interneurons
as well as ganglion cells), determine the synaptic contacts in
their different microcircuits, and fill out the entire set of visual
feature selectivity.

While this research program is clearly valuable, it fails to
address a crucial topic: How do the ganglion cells encode
information as an entire population? In the parallel channels
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view, each ganglion cell type communicates to the brain an
entire “image” of visual space, filtered by its receptive field
function. However, there is no principle or unifying idea that
describes how these different images interact. One possibility is
that different ganglion cell types project to different brain centers,
each carrying out a specific and understandable function. Clearly,
this is true for some ganglion cell types, such as ON direction
selective cells that project to the accessory optic system and
provide retinal slip information for the vestibular-ocular reflex
(VOR) or the M1 melanopsin-containing cells that project to the
suprachiasmatic nucleus to indicate the overall light intensity of
the world (Dhande et al., 2015). However, the dominant targets
in the central brain – the superior colliculus and the thalamus –
receive inputs from many ganglion cell types. For instance, in the
rabbit, 97% of all ganglion cells project to the superior colliculus
(Vaney et al., 1981). In the macaque monkey, at least 13 cell types
project to the LGN (Dacey et al., 2003). Thus, there is an extensive
population code in the dominant visual pathways.

Another related question is: Why are there so many retinal
ganglion cell types? The actual number of cell types has not yet
been finalized. In fact, the number reported in the literature has
grown over time. The most current estimate is 32–36 in the
mouse (Baden et al., 2016), and connectomics data suggest that
the number might be 40 (Bae et al., 2018). Current theories or
design principles typically do not predict this great diversity of
ganglion cell types. The efficient coding hypothesis, as proposed
by Barlow (1961) and developed by Atick (Atick, 1992; Atick and
Redlich, 1992) only describes how the receptive fields of a single
cell type should be organized. Recent extensions have managed
to predict the emergence of more than one type, but are still
far from accounting for the observed diversity (Gjorgjieva et al.,
2014; Sharpee, 2017; Ocko et al., 2018).

We can address these questions using activity models, as
we will see below. But first, one key issue that we must
address in this approach is to determine the size of population
coding unit and then measure the activity of such coding
units. Fundamentally, this population size is set by the scale of
correlations between neurons. If two cells possess correlation,
then the message encoded by the spike of one cell depends
on whether the second cell is spiking or silent. Thus, there
exists a combinatorial population code among correlated
neurons. In the retina, neighboring ganglion cells of the same
type typically exhibit significant correlation (DeVries, 1999;
Shlens et al., 2009). While the subject is not often reported,
ganglion cells of different functional types with overlapping
receptive fields also share significant correlation (Segev et al.,
2006). The spatial scale of correlation between ganglion cells
extends out to distances of ∼400 µm (Puchalla et al., 2005),
which corresponds to ∼2 receptive field diameters (Segev
et al., 2006). The number of ganglion cells in a circle of
this size is 200–300 cells. Thus, the population coding unit
of the retina is 200 or more ganglion cells. This number
corresponds to another simple calculation. If we assume nearest
neighbor correlation and a mosaic arrangement of spatial
receptive fields, then each cell type contributes 7 cells to the
population coding unit; multiplying by 30+ cells types results in
200+ neurons.

What this means is that any location in visual space is
encoded by roughly this many ganglion cells. This encoding is
convolutional, in the sense that a slightly displaced location will
be encoded by many of the same cells and some new ones.
The shift in perspective that activity models bring relative to
encoding models is the focus on the emergent, qualitatively new
properties of these population coding units that are not apparent
in smaller groups of cells. The key questions are thus not about
the mechanisms by which individual cells of various types get
their stimulus tuning properties, but rather on what correlated
and coordinated behavior these mixed population coding units
exhibit. As we will see below, we propose that the large number
of retinal ganglion cell types is needed to put the population code
into the glassy state.

Maximum Entropy Models and the
Glassy State
Understanding the structure of probability distribution over
∼200 neurons is a daunting task. This is because identifying
landscape features such as peaks and ridges in a high-dimensional
discrete space is a hard problem, irrespective of whether the
parameters of the probability landscape can be tractably learned
from data. Even if we focus only on whether each neuron has
a spike or silence in a small timebin, there are 2N possible
neural activity patterns. This number is literally astronomical:
for N = 200, we get ∼1060 possible activity patterns. Such large
numbers have important implications. First, we cannot sample
all of these patterns experimentally. Furthermore, this is not a
limitation of our neuroscience experiments – it also applies to
behaving animals. So whatever approximations neuroscientists
make might be reasonable for the brain, too. Second, most
individual patterns occur rarely. Even in a human who lives to
the age of 100 years, most of these patterns will never occur,
and a substantial portion will have occurred only once in a
lifetime. Clearly, the brain cannot associate individual meanings
with single patterns of ganglion cell activity; some kind of coarse-
graining is required.

Our approach has been to seek a good approximation to the
full probability distribution, P(R), that is tractable. Specifically, we
have used the maximum entropy principle to measure statistics
of neural activity that can be well-sampled, such as the average
firing rate and pairwise correlations of all neurons, and find
the probability distribution with maximum entropy subject to
these constraints. This probability distribution includes as few
“assumptions” as possible beyond the explicit constraints, and
thus is as smooth as possible given the constraints. There exist
excellent reviews of the technique and its motivation (Pressé et al.,
2013; Nguyen et al., 2017), so we will not retread that ground. We
will denote the pairwise maximum entropy (MaxEnt) model as
P(2)

MaxEnt (R). If we then discretize spike trains in 20 ms timebins,
truncating more than 1 spike per bin, R = {ri} with ri = [0, 1],
we get:

P(2)
MaxEnt (R) =

1
Z

exp


cells∑

i

hiri +

pairs∑
j>i

Jijrirj

 , (1)
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where the parameters, {hi, Jij} are Lagrange multipliers that
must be numerically optimized for the model to match
experimental data (Schneidman et al., 2006; Shlens et al.,
2006; Tkačik et al., 2006; Maoz and Schneidman, 2017). This
numerical optimization procedure is computationally intensive,
but tractable for populations of over 100 neurons (Shlens et al.,
2009; Ganmor et al., 2011; Tkačik et al., 2014).

Empirically, this pairwise model has proven to provide an
excellent approximation to the sampled statistics of ganglion
cell activity for population sizes up to N ∼ 40 cells of all types
with overlapping receptive fields (Schneidman et al., 2006; Tkačik
et al., 2006) and N ∼ 100 cells of the same functional type
(Shlens et al., 2009). For larger populations of all cell types,
higher-order interactions start to become important. But the
maximum entropy principle is flexible, so adding a sparse set
of additional constraints results again in very good fits to data
(Ganmor et al., 2011; Tkačik et al., 2014). Neural populations in
the cortex can also be closely approximated using the maximum
entropy principle, although higher-order interactions may be
more significant (Ohiorhenuan et al., 2010; Koster et al., 2014;
Maoz et al., 2018). The overall intuition is that the pairwise
approximation is improved by sparse neural activity, but that
analyzing larger populations amplifies the importance of higher-
order interactions (Schneidman et al., 2003b), especially those
that directly affect the distribution of synchronous spiking
activity (Tkačik et al., 2014; Mora et al., 2015; Okun et al., 2015;
Shimazaki et al., 2015; Humplik and Tkačik, 2017).

In addition to providing a good approximation to the entire
probability landscape of a neural population code, the maximum
entropy model also gives rise to a hypothesis about the overall
structure of this landscape. This hypothesis arises from the
fact that the mathematical form of the probability distribution
closely resembles the Boltzmann distribution in statistical physics
(Tkačik et al., 2015). In particular, if we identify the argument of
the exponential in Eq. 1 as defining an energy-like quantity, then
the maximum entropy model is isomorphic1 to the Boltzmann
distribution for T = 1:

P(2)
MaxEnt (R;T) =

1
Z(T)

exp
{
−

E (R)

T

}

with E (R) ≡ −

cells∑
i

hiri −

pairs∑
j>i

Jijrirj (2)

The form of the energy function in the pairwise MaxEnt model is
the same as found in variants of the Ising model. In particular, the
interaction parameters, {Jij}, that give the best fit to neural data
have both positive and negative values, giving rise to “frustration”
(Schneidman et al., 2006). Since their distribution for N > 100
resembles a Gaussian with zero mean (Tkačik et al., 2014), one
could expect that MaxEnt models for neurons behave similarly
to the Sherrington-Kirkpatrick model for spin glasses (Mezard

1Despite their similarity to the Boltzmann distribution, maximum entropy models
do not automatically imply that the system being described is a physical system in
thermodynamic equilibrium; applied and interpreted carefully, maximum entropy
models can describe driven, out-of-equilibrium systems in stationary state (like in
the case of neural networks) (Tkačik et al., 2015).

et al., 1987), although several fundamental differences exist
(Tkačik et al., 2006; Catellana and Bialek, 2014). Ising-like models
have been studied in physics for decades, which opens up the
possibility that we can gain new neuroscience insight from an
analogy to the statistical physics of spin glasses. More specifically,
these models all describe various kinds of phase transition. So,
an important question is: What kind of “phase” is the real neural
population in?

We can explore the statistical physics of this wider class
of MaxEnt models with an effective temperature variable, T.
Of course, none of these models correspond to real neural
populations, except at T = 1. But by varying the effective
temperature, we can see if the population exhibits signatures of
a phase transition at some value of T = T∗. The goal of this
analysis will be to gain insight into what phase the real neural
population is in.

In statistical physics, phase transitions occur formally only for
systems of infinite size (in the “thermodynamic limit”) where
there is a divergence in a susceptibility, like the specific heat
(Humplik and Tkačik, 2017). For real, finite systems, a signature
of an incipient transition is a peak in the same susceptibility
quantity that grows larger as the size of the system is increased.
Thus, we calculate the specific heat of the neural population as a
function of the effective temperature,

C (T) ≡
∂〈E〉
∂T
=
〈(δE)2

〉

T2 = 〈
(
δlog(P)

)2
〉

where 〈E〉 ≡
states∑

R

E (R) P (R) (3)

From inspection of Eq. 3, we can see that the heat capacity
measures how wide a distribution of energies (or log-
probabilities) are present in P(R). Thus, the heat capacity is large
for a neural population with a long-tailed probability landscape,
and is small for a population with an approximately normal
distribution. Once the parameters, {hi, Jij}, have been optimized
to describe neural data, then the formulas in Eq. 3 can be
evaluated. [Although for N > 20 cells, Monte Carlo sampling
of P(R) is still necessary due the large number of neural activity
patterns (Tkačik et al., 2006, 2014)].

We can gain insight by exploring how the heat capacity
depends on the number of neurons that we analyze. The reason is
that because pairwise correlations are typically weak, their impact
in shaping the population code is minimal for small N but can
become more significant at larger N (Schneidman et al., 2006).
Because the heat capacity increases with the number of neurons,
N, we plot the specific heat, C(T)/N, to isolate non-trivial trends
related to how correlations structure the population code. We see
that as we increase the number of neurons analyzed together, the
peak in the specific heat grows as a function of N neurons and
shifts to lower effective temperatures (Figure 2A). This implies
that the real state of large neural populations (T = 1 and N∼ 200)
shares properties with the state of a physical system poised near a
phase transition.

Initially, we were struck by the fact that the peak in the
heat capacity moved closer to T = 1 as we analyzed larger
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neural populations. This led us to speculate that the real system
might be poised right at the peak, perhaps in a critical state
(Mora and Bialek, 2011; Tkačik et al., 2015). However, there are
several problems with this interpretation. First, a critical state
exhibits long-range correlation, while measurements show that
correlation between ganglion cells dies out at large enough spatial
separation (DeVries, 1999; Puchalla et al., 2005; Segev et al.,
2006; Pitkow and Meister, 2012). Second, the critical state is only
truly defined in the thermodynamic limit of N →∞, while the
population coding unit for retinal ganglion cells is N ∼ 200.

These factors led us to develop a different interpretation:
because the peak in the heat capacity was always above T = 1,
any finite-sized neural population is instead in a marginally sub-
critical state. Furthermore, the interaction parameters {Jij} that
describe real neural data have a distribution with roughly equal
numbers of positive and negative values (Tkačik et al., 2014),
which results in frustration (Mezard et al., 1987; Schneidman
et al., 2006). We call this frustrated, marginally sub-critical state
the glassy state.

We want to emphasize that this terminology is not referring
to the formal existence of a spin glass phase that could arise in
specific statistical physics models in a thermodynamic limit – not
the SK model (Mezard et al., 1987), nor the Hopfield network
(Amit et al., 1985). The issue of whether such a phase could
in principle be found in inverse statistical physics models is
complicated (Catellana and Bialek, 2014). We also want to make
clear that our model describes the static properties of the neural
probability landscape and does not refer to any notion of slow
dynamics. Specifically, the retina is a largely feedforward system,
in which the state of ganglion cell population activity is driven
by external stimuli. As such, the sequence of neural activity
patterns that unfold across time are determined by the external
stimulus. This sequence of activity thus, a priori, has nothing to
do with the dynamics of a system moving on the energy landscape
that we describe.

But what might this mean for the neural code? Because
of the similarity of the solution for the optimal parameters
of the MaxEnt model and the interaction parameters of spin
glass models in physics, in particular, the frustration in the
energy landscape (Tkačik et al., 2014), the distribution P(R)
is expected to have many local maxima (energy minima). Far
above the critical temperature, these local maxima of probability
would be washed out, but once the system transitions below the
critical temperature, as we observe, these peaks will become well-
separated (Figure 2B). Our hypothesis is that all of the activity
states within a single peak constitute a “cluster” of neural activity,
which represents a single class of visual stimuli (Figure 2C). If we
repeatedly present the same stimulus, the detailed activity pattern
will vary, but we might find that those patterns reproducibly
map onto the same cluster. Thus, these clusters would constitute
population codewords that embody a representation of visual
stimuli that is robust to neural noise.

However, we find that the system is not deep in the low
temperature limit, but is instead poised near to, but below, the
critical point. What is special about this operating point? If the
neural population were too deep in the low temperature state,
then the probability would be concentrated in just a few peaks,

making the capacity of the cluster code low (Figure 2B, left). In
this limit, a neural code that represented information based on
the identity of the active cluster would have lower information
capacity. We illustrate this point by showing a schematic of
how the probability distribution over clusters, α, changes as a
function of our temperature variable, T. We start with real data
(Figure 2D) (Prentice et al., 2016). At T 6= 1, we transformed this
distribution according to PT (α) ∼ PT=1 (α)(1/T). As seen for a
significantly lower temperature, most of the probability weight
shifted to the most common cluster (Figure 2E). As a result, the
entropy of the cluster probability distribution dropped sharply in
limit of sufficiently low temperature (Figure 2F).

The deep low temperature regime would also be inconsistent
with experimental observations, since such putative sharp peaks
would have to be smeared due to neural noise. In addition,
the state of the retinal population changes smoothly in time,
due to temporal integration of visual stimuli on a timescale
∼100 ms (Segev et al., 2006) that is larger than a single timebin
in our analysis of the population code. This implies that as the
population transitions between clusters, there will likely be one
or more timebins in which the state is a mixture of those two
clusters. Such smooth transitions will serve to blur the sharpness
of each cluster. Thus, a cluster code that has high capacity and
is consistent with data can be achieved as long as the system
is in a low temperature state that is poised near to the critical
point. Notice that this logic does not require that the neural
population be tuned exactly to the critical state. Thus, we propose
that the system should be designed to be poised near to the critical
state in order to robustly constitute a high-capacity cluster code
(Figure 2B, middle).

In this vein, we asked how the MaxEnt model fit to the data
behaves if we scale up or down the neuron-neuron interactions
(the Jij terms in Eq. 2) while making sure that the neurons always
spike with rates actually observed in the data (Tkačik et al., 2015).
This manipulation results in independent neurons when the Jij
terms go to zero. By scanning the strength of the neuron-neuron
interactions, we varied the strength of correlations away from the
experimental values and observed three important effects. First,
the neural population exhibited a peak in heat capacity close to
the strength of the interactions (and hence correlations) present
in real data, strengthening the evidence that the system is poised
near to the critical point. Second, in the regime of correlations
much stronger than in the data, we saw the emergence of a
small number of strong clusters of spiking activity by simply
looking at the rasters generated from the model. Third, the
entropy remained roughly constant for correlations up to the
observed values, but then decreased for stronger correlations.
Together, these results are consistent with a probability landscape
at lower temperatures that is disadvantageous for cluster coding
(Figures 2B, left, E).

Robustness of the Glassy State
If robustness is an important property of the population
code, then it should be unaffected by natural variations in
the functional state of the retina. The retina’s input-output
function constantly changes during the day due to multiple
mechanisms of adaptation. To explore the impact of these
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FIGURE 2 | Thermodynamics of neural populations. (A) Specific heat (heat capacity per neuron, C/N) versus temperature (T ) for neural populations of different sizes,
N. (B) Schematic representation of the qualitative structure of probability distributions in different temperature regimes. (C) Schematic diagram of how stimulus
space is divided into discrete classes by the mapping of population activity onto collective modes. (D) Probability distribution over clusters (shown in rank order)
taken from real data (Prentice et al., 2016). (E) Schematic probability distribution over clusters at a lower temperature. (F) Schematic of the entropy of the cluster
probability distribution as a function of temperature, T.

FIGURE 3 | Robustness of the glassy state. (A) Specific heat versus temperature for the same neural population in the light (light blue) or dark (dark blue) stimulus
conditions. (B) Specific heat versus temperature for the same neural population in two different natural movie ensembles. (C) Specific heat at T = 1 versus
correlation strength (circles) with sigmoidal curve fit (pink) and critical correlation strength, γ∗ (star; vertical dashed line), defined as the midpoint of the sigmoidal fit.

adaptive changes, we designed an experiment in which the
same natural movie clip was shown at regular daylight
conditions (light) or 1000-fold dimmer (dark). This is a
rigorous test of robustness, because over this range of light
intensities the retinal circuit switches between cone-dominated
(photopic) and rod-dominated (scotopic) function (Ioffe and
Berry, 2017). In fact, this change caused the average firing
rates and pairwise correlations in the neural population to
change significantly, indicating that the detailed population
code differed across these two light levels (Ioffe and Berry,
2017). However, the heat capacity of the population was nearly
identical (Figure 3A).

An essential consideration in using activity models is that the
probability distribution will depend implicitly on the choice of
stimulus ensemble. This is because even if there is no change in
retinal function, different stimulus statistics will result in different
firing rates and correlations among neurons. Furthermore,
changes in statistics across different stimulus ensembles, such as
contrast and spatial scale, can themselves trigger mechanisms of
adaptation (Smirnakis et al., 1997; Hosoya et al., 2005). Thus,
we wanted to test if the glassy state was robust across different
choices of stimulus ensemble. To this end, we stimulated the
retina with different natural movie clips (one of leaves blowing
in the breeze, another of water in a river), again finding nearly
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FIGURE 4 | Defining clusters with a latent variable model. (A) Firing rate of 115 ganglion cells (color scale) versus time during a natural movie clip. (B) Probability of
each mode occurring (color scale) versus time for the same movie as in panel (A). (C,D) Most likely cluster across repeated presentations of (checkerboard flicker,
natural movie) stimuli; different colors indicate different clusters. (E) Joint activity patterns across repeated presentations of a natural movie clip, presented for two
different times in the movie (left, right); spikes shown in black. (F) Distribution of projections of activity states along a single direction in activity space defined by local
discriminant analysis (LDA) for two clusters (red, black); these clusters are adjacent in response space. (G) Minimum separation (d′) between clusters for real data
(pink) and a shuffle test (green) versus the average spike count in that cluster; each point is for a different cluster. In the shuffle test, we rearranged the firing rates
within each cluster and re-optimized the rest of the model’s parameters. (H) Distribution of separation values (d′) for all cluster pairs for data (pink) and shuffle test
(green).

identical heat capacities (Figure 3B). We also tested artificial
stimulus ensembles, like flickering checkboards or spatially
uniform flicker (Tkačik et al., 2014; Ioffe and Berry, 2017), and
found that in all cases, the neural population was in a low
temperature state poised close to criticality. These results have
been reproduced in other labs, as well (Yu et al., 2013; Mora et al.,
2015; Huang and Toyoizumi, 2016; Hahn et al., 2017).

To gain more insight into this robustness, we asked: by how
much would we have to change the measured statistics of neural
activity to transition out of the glassy state? Specifically, we
formed model neural populations with all firing rates the same
as our data and all pairwise correlations reduced by a common
factor, Cij → γ Cij. In the limit of γ → 0, we will have an
independent neural population, which is in the high temperature
state. For each value of γ, we optimized the parameters of the
pairwise MaxEnt model and recomputed the heat capacity. We
found that correlations needed to be scaled down by γ∗ ∼ 0.35 to
transition to the high temperature regime (Figure 3C). In other
words, the observed retinal correlations were roughly threefold
stronger than needed to put the system in the glassy state.

This result gives rise to a powerful argument for the generality
of the glassy state for neural populations outside of the retina.
The properties of the MaxEnt model are entirely determined by
the statistics of neural activity used as constraints, such as the
firing rates and pairwise correlations. In other words, there is
nothing in either the structure of the model or in the detailed
activity statistics that applies only to the retina. Therefore, any
neural population with equivalent statistics would also be in
the glassy state. What counts as “equivalent statistics” is still
under investigation (Catellana and Bialek, 2014), but clearly
the average pairwise correlation strength and the population
size are key aspects. This argument suggests that other neural

populations with larger pairwise correlations than the retina or
larger population coding units with similar correlation strength
may also be in the glassy state.

Latent Variable Models and Neural
Activity Clusters
Our analyses of neural populations with the maximum entropy
model imply that the retinal population exists in a state that
is similar to a spin glass (Figure 2). This analogy suggests that
the probability landscape is organized into a set of well-defined
local peaks. If so, then another good model of P(R) would
be a summation over functions that each represent one peak.2

Following on this intuition, we developed a hidden Markov
model (HMM) as an alternative to the MaxEnt model, which
is technically more favorable in terms of being able to fit the
model’s parameters to data. The numerical tractability of this
model allowed us to apply it to groups of over 200 ganglion
cells as well as to incorporate temporal correlations. In this latent
variable model, the probability distribution is modeled as a sum
of individual terms labeled by α, where each term is an emission
distribution or “mode”:

PHMM (R) =

modes∑
α

wαQα (R) ,

where Qα (R) = Pα (r1)

edges∏
〈i,j〉

Pα

(
ri|rj

)
(4)

2Interestingly, in the low-temperature limit, statistical physics of spin-glasses
uses a mathematically identical decomposition of the probability distribution
into a weighted sum of modes (referred to as “pure states”), as in Eq. 4
(Mezard et al., 1987).
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FIGURE 5 | Visual features represented by clusters. (A–C) Left: Spatial profile of the cluster-triggered stimulus average during the checkerboard stimulus; (red, blue)
is light intensity that is (above, below) the mean. Right: 1-standard deviation contour of a 2D Gaussian curve fit to the spatial profile for clusters (black) and individual
cells (red = ON cells; blue = OFF cells; color saturation shows the firing rate of the cell within a given cluster). All scale bars are 340 µm. Example clusters show: (A) a
smaller receptive field than its constituent neurons, (B) a larger receptive field than its constituent neurons, (C) ON and OFF subfields defining a preferred orientation.

Each emission distribution, Qα, includes correlations between
cells with a “tree” structure. This means that when we view
the correlation structure as a graph, where each directed link
is a conditional probability between the response of cells i
and j, the links are not allowed to form loops (i.e., the graph
is “acyclic”). This makes the model more tractable than the
maximum entropy model, which does allow loops (Bethe, 1935;
Baum, 1970). The intuition is that each distribution, α, captures
one of the prominent peaks, or clusters, in the probability
distribution P(R). In order to avoid overfitting, we determined
the parameters of this model using cross-validation: iteratively
solving for the parameters using two thirds of our data and
testing performance on the remaining third. A key parameter
of this model is the number of modes, M. We varied this
parameter and selected the value with the highest cross-validated
likelihood. Finally, we included temporal correlation with a
simple Markov model form: P(αt+1| αt). Such models were
able to reproduce the experimentally sampled values of P(R) to
within roughly the sampling noise for up to ∼200 ganglion cells
(Prentice et al., 2016).

Within this model, we can calculate the likelihood of a
mode αt given a particular activity pattern in the ganglion
cell population Rt and the previous mode αt−1. Although the
activity of individual cells exhibited a considerable range of firing
rates distributed across time (Figure 4A), the likelihood of the
activation of modes, P(αt| Rt , αt − 1), was nearly binary in its
values and exhibited sharp transitions between zero and one
(Figure 4B). We mapped a given neural activity pattern, R∗,
onto a unique cluster by finding the mode with the highest
weighted probability, α∗ (Notice that clusters and modes use the
same index; however, a cluster is a subset of all possible activity
patterns, while a mode is a probability distribution defined
over all R).

α∗ ≡ max
α

[
wαQα

(
R∗
)]

(5)

This operation can also be seen as a Bayesian maximum-
a-posteriori (MAP) decoding of the underlying mode from
the noisy neural response, R∗; interestingly, here one infers
the latent state of the population much as one would
have inferred the stimulus from the response via the more
traditional application of Bayes decoding to an encoding model
(Quian Quiroga and Panzeri, 2009).

Due to the clear activation of individual modes across time,
when we repeated the same natural movie clip many times, we
found that the most likely cluster was essentially identical across
stimulus repeats (Figure 4D). Interestingly, the activation of
clusters was not as sharp and repeatable during stimulation with
white noise (Figure 4C). This robustness of cluster activation
is non-trivial, because noise caused the detailed activity pattern
activated by the natural stimulus in a single time bin to vary
greatly across trials (Figure 4E), yet all of these different activity
patterns mapped onto the same cluster. This implies that the
activation of clusters by a complex stimulus represents a robust
coding variable for the neural population. In this sense, we say
that clusters exhibit error correction.

We then proceeded to characterize the separation between
different clusters: Are they really distinct peaks in the probability
landscape, or are they just one possible partition of the responses
without any clearly identifiable boundaries? We used linear
discriminant analysis (LDA) to define a single direction in activity
space that best separated the activity patterns mapped onto
two different clusters. Then, we projected each activity pattern
along the LDA dimension to yield a single number for each
occurrence of a cluster. Even adjacent clusters were well separated
(Figure 4F). We quantified this separation using d′, which is the
difference in the mean of the two LDA projection distributions
divided by the sum of their standard deviations; d′ > 1 is typically
interpreted as “good separation.” Repeating this analysis, we
found that all clusters had good separation (Figures 4G,H). This
analysis provides direct evidence that the probability landscape of
retinal population activity breaks up into well-separated clusters,
as predicted for a system resembling a spin glass.

Once we were able to map every activity pattern in the
neural population onto a cluster, we could explore what were
the set of visual stimuli represented by each cluster. To this
end, we computed the cluster-triggered stimulus average during
stimulation with random flicker. We found several qualitatively
interesting cases. Some clusters were “intersections” that had a
smaller spatial receptive field than any of the individual cells,
allowing for greater spatial acuity than individual ganglion cells
(Figure 5A); this result is an extension of previous findings
for three cells (Schnitzer and Meister, 2003). However, other
clusters were a “union” of individual ganglion cell receptive fields
(Figure 5B). These clusters could be thought of as a position-
invariant generalization of the trigger features of individual cells;
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such a process of spatial generalization occurs at many stages
of the visual pathway (Riesenhuber and Poggio, 1999). Finally,
some clusters had an “oriented dipole” spatial profile (Figure 5C).
This result is especially intriguing, as orientation selectivity is
not present among individual ganglion cells, yet it emerges in
neurons in the primary visual cortex (V1). Perhaps neurons in the
next stage of the visual pathway develop their tuning properties
by “reading out” the identity of clusters?

The Geometry of Clusters
While our analysis of clusters via a HMM is a powerful method
to define population codewords and explore their properties,
it still results in a somewhat abstract picture. To this end, we
investigated the geometry of the probability landscape (Loback
et al., 2017). This study led to a simple picture with which
to visualize the entire probability landscape (Figure 6A): this
landscape resembles a “mountain,” where the summit is the all-
silent pattern (because neural activity is sparse). Descending from
the summit in multiple directions in the space of neural activity
patterns are different ridgelines. These ridges are the clusters.

To reach these conclusions, we first realized that clusters did
not have the shape of a local peak in the probability landscape,
at least not for the case of broad stimulus ensembles (Loback
et al., 2017). This was discovered when we used a stochastic search
procedure, where we randomly selected one neuron, changed its
activity if that change increased the probability, and then iterated.
This ascent procedure almost always mapped neural activity
patterns to the all-silent pattern, as any point on the landscape
ascends along a ridgeline to the summit (Figure 6A). Instead,
we hypothesized that local peaks existed within the subspace
of activity having the same spike count, K. To this end, we
performed a search where we changed the activity pattern while
keeping K fixed (Figure 6B); this procedure found many robust
local peaks, which we called soft local maxima (Loback et al.,
2017) (Here, “robust” means that we got the same answer over
different stochastic search paths).

Next, we explored the organization of soft local maxima across
different spike counts, K. To this end, we started in a soft max at
K, changed one silent neuron to spiking, and then searched in the
space of activity patterns with K + 1 spikes for the nearest soft
local maxima (Figure 6C). In most cases, we identified a robust
chain of connected soft local maxima, in which one spiking
neuron was added at each increment of K (Figure 6D). This chain
formed a ridgeline in the probability landscape. In other cases,
a ridgeline terminated at Kmax, or split into two ridges. Finally,
when we mapped soft local maxima onto the clusters defined by
our HMM, we found that they corresponded to the same cluster
(Figure 6D, colors). These analyses revealed that clusters have the
geometry of a ridge – a highly non-Gaussian shape that would be
difficult to discover with many clustering algorithms.

The nested structure of the set of soft local maxima forming
a single ridge gave rise to a simple definition of which neural
activity patterns map onto the same cluster. There is an “active
set,” consisting of a subset of all neurons in the population
(typically∼15 out of 150 neurons). For the neural activity pattern
to be in a given cluster, there can be a range of these neurons
spiking, Kmin

≤ K ≤ Kmax (typical values, Kmin = 4, Kmax = 15).

On the other hand, all the other neurons are part of a “silent
set,” and every one of these neurons must be silent. Thus, silence
of specific neurons makes the primary contribution to defining
a cluster, while at the same time, the great tolerance for the
number of spiking neurons helps give rise to error correction.
This result generalizes earlier work showing that silence can
significantly affect the meaning of a population activity pattern
(Schneidman et al., 2011).

We also realized that the active set constitutes a neuronal
community, a notion from graph theory. In addition, neuronal
communities have most of the properties of cell assemblies, as
defined by Donald Hebb. Thus, we realized that many different
concepts about codewords in neural populations all refer to the
same structure:

Cluster ≈ Latent State of an HMM ≈ Ridge

≈ Neuronal Community ≈ Cell Assembly

The confluence of these varied concepts about population
codewords suggests that these different ideas are identifying
different manifestations of a clear and conserved structure in the
population code.

We should also note that in the case where the stimulus
ensemble consists of many repeats of several different stimuli,
the probability landscape instead is comprised of a local
peak in probability corresponding to each discrete stimulus
(Loback et al., 2017). This occurs because there is an average
neural response that has relatively high probability with noise-
corrupted versions at lower probability nearby. This dependence
of the stimulus ensemble raises the interesting issue of
how environmental context, perhaps mediated by feedback
signals in the cortical hierarchy, might alter the processing of
population codes.

Learning and Reading Out Neural
Activity Clusters
Central to the hypothesis that neural populations use a cluster
code is the requirement that real, downstream neural circuits
should be able to readout cluster identity from their input
population – namely, that such a neural code is easily “learnable.”
In formulating our picture of clusters as comprised of neuronal
communities, we realized that there exists an exceptionally simple
decoding rule that can identify communities, and hence clusters
(Figure 7A) (Loback et al., 2017). Each neuron in the active set
should make an excitatory synapse onto the readout unit. Then
if at least Kmin such neurons fire, the readout cell could spike. In
addition, each member of the silent set of neurons would drive a
local inhibitory cell, which would feed forward onto the readout
neuron. This inhibitory cell would veto the readout unit if any
of its inputs were active, thus enforcing the requirement that all
members of silent set are silent.

Of course, this decoding mechanism only works with the
proper choice of synaptic weights. Thus, the crucial issue is
whether there exists a biologically plausible neural circuit with
synaptic plasticity rules that can learn the proper weights. To this
end, we formulated a layer of readout neurons, which receive
spikes from the input population via feedforward synapses,

Frontiers in Computational Neuroscience | www.frontiersin.org 11 March 2020 | Volume 14 | Article 20

https://www.frontiersin.org/journals/computational-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-14-00020 March 12, 2020 Time: 17:4 # 12
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FIGURE 6 | Visualizing the geometry of the probability landscape. (A) Schematic of the entire probability landscape. Radial coordinate is the number of spikes, K;
angular coordinate, θ, represents a direction in activity space at constant spike count; z-axis is probability. Two subspaces of activity patterns at constant spike count
are shown as colored lines (blue, green). Soft local maxima are denoted by circles. (B) Schematic illustration of the ascent procedure to find a soft local maximum.
(C) Schematic illustration of how soft local maxima at successive spike counts are connected. Left: Starting with a soft max at K, you add a spike. Right: You then
ascend to the nearest soft max at K + 1. (D) Enumeration of two example ridgelines. Starting with a K = 4 soft max (numbers denote neuron identity), connected soft
local maxima at successively higher K mostly involve adding one spiking cell to the existing active set. Color of circles represents cluster identity.

and which have global inhibition (Figure 7B). The feedforward
synapses have Hebbian plasticity, and there is homeostatic
plasticity in each readout neuron (Loback and Berry, 2018).

When we presented this circuit with measured retinal spike
trains, the readout neurons developed cluster tuning, meaning
that they responded strongly to any population input pattern
within one cluster and weakly to all other activity patterns
(Figure 7C). Cluster tuning developed, in large part, because of
Hebbian synaptic plasticity. However, global inhibition played a
key role by causing different readout neurons to specialize for
different clusters. In fact, if the readout circuit had moderate
redundancy (i.e., two times more readout neurons than input
clusters), then all input clusters could be learned (Figure 7D)
(Loback and Berry, 2018). This learning process unfolded in real
time – i.e., only ∼1% of the dataset was needed to reach the
steady-state of the learning process (Figure 6D, right). Finally,
homeostatic plasticity of excitability helped readout neurons to
encode the probability of occurrence of each cluster.

These basic ingredients are found quite generically throughout
the brain. For instance, these computational elements are present
within every layer of the neocortex, as well as in the hippocampus,
striatum, thalamus, etc. This prevalence suggests that the ability
to readout and process the information encoded in clusters of
population activity is widely present in the brain, making this
population coding principle widely applicable.

As stated earlier (Figure 1), an appealing aspect of this
cluster-reading mechanism is that this operation can be repeated
within the neocortical hierarchy. When clusters are learned in
layer 4, those readout neurons necessarily acquire new feature
selectivity, as is observed within the visual cortex, particularly in
the ventral stream (Ungerleider and Haxby, 1994; Hubel, 1995).
Because clusters are defined by correlation among neurons,
neurons that readout different clusters will necessarily have
low correlation. This property is consistent with the pattern of

correlation versus layer within the primary visual cortex: namely,
pairwise correlations are low in layer 4, but are considerably
larger in all other layers (Hansen et al., 2012). Then, if neural
activity from layer 4 is nonlinearly recombined in layer 2/3, as
has been proposed for the emergence of complex cell receptive
fields (Hubel and Wiesel, 1962), a new and stronger pattern
of correlation would be created among neurons. As long as
the total correlation in layer 2/3 was sufficiently strong to
create a cluster code, then this new pattern of correlation layer
2/3 would result in a new set of clusters. When these signals
ascend to the next stage in the cortical hierarchy, layer 4
can again learn these clusters, and the whole operation would
be iterated. Thus, these alternating computations can create a
system that learns increasingly complex visual features with no
supervision (Figure 1).

DISCUSSION

We have shown that under a wide variety of conditions,
the population activity patterns of retinal ganglion cells are
structured into a discrete set of clusters. This clustering
results from heterogeneous correlations among neurons that
are sufficiently strong. Because pairwise correlations mostly
induce redundancy in the representation of visual information,
clustering can also be interpreted as a consequence of sufficient
redundancy of the population code. This redundancy in turn
allows clusters to have error correcting properties, due to
the fundamental relationship between redundancy and error
correction (McKay, 2003; Mezard and Montanari, 2009). Finally,
this level of redundancy also provides an answer to the question
of why the retina has so many ganglion cell types – namely, this
heterogenous over-representation of the visual world is required
in order to create a cluster code.
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FIGURE 7 | Learning clusters in the input population. (A) Simple model of a readout neuron that has excitatory synapses from neurons in the active set of a given
cluster and disynaptic inhibition from the silent set. (B) Winner-take-all neural (WTA) circuit has a layer of readout neurons with feedforward synapses from the input
population having Hebbian plasticity, along with global inhibition. (C) Example tuning curves for three readout neurons before (top) and after learning (bottom) on
measured retinal population activity. Each panel plots the spiking probability of readout neuron as a function of the neural activity cluster present in the input.
(D) Confusion matrix for the WTA circuit after learning, displaying readout efficacy for all readout neurons and clusters (color scale). Right: Mean absolute synaptic
weight change plotted as a function of time during learning.

Redundancy, of course, reduces the total information encoded
by a population of neurons, at least when compared against a
hypothetical independent population that is matched to have the
same firing rates for each neuron (Schneidman et al., 2003a).
Redundancy in neural codes seems to emerge from the sheer
number of neurons employed by local circuits to represent
information. For instance, the ganglion cell population in the
tiger salamander retina has a spatial coverage factor of ∼60
(Segev et al., 2006) and an estimated population redundancy
of ∼10-fold (Puchalla et al., 2005). On the other hand, if one
analyzes only a single ganglion cell type, such as the parasol cell
in the monkey, then the redundancy of this subpopulation is only
∼1.2 (Shlens et al., 2009). While the population redundancy of
cortical circuits has not been estimated, they use a much larger
number of neurons than subcortical circuits. For instance, the
retina of humans has∼1 million ganglion cells while the primary
visual cortex has ∼1 billion neurons (Barlow, 2001). Thus, the
population redundancy of human V1 is expected to be orders of
magnitude higher than the retina.

This strategy of using so many neurons to represent
information has several consequences. First, it suggests that
the total population can routinely and without any fine-tuning
represent all of the incoming sensory information. In this sense,
the intuition that a redundant population has “less” information
than an efficient, independent population is somewhat off the

mark, because a highly redundant local circuit actually represents
all of the incoming information, anyhow. A second related
point is that the goal of achieving a population code with
statistically independent information is probably not realistic.
To see this, let’s imagine a thought experiment in which a local
neural circuit starts with fewer neurons than its input fibers and
then begins to add more neurons. As more and more neurons
are added, it will become increasingly difficult to create new
neurons whose activity is statistically independent of all the other
neurons. And as the number of neurons grows even larger and
reaches the number found in real local circuits, this goal may
become mathematically impossible. In this sense, the intuition
that population codes should strive for independent activity is
also off the mark. Third, a population code with high enough
over-representation is clearly not efficient, at least in terms of
representing Shannon information using few neurons or low
energy cost. Thus, the “guarantee” of representing all incoming
information without needing any circuit-level adjustments is
perhaps more valuable than an efficient code that fails in
practice to represent some incoming information. Fourth, high
over-representation also suggests that these codes must have
evolutionary value, as mutations that create local circuits with
fewer neurons should be relatively easy to arise.

At the same time, coding information using only the cluster
index will reduce the entropy of the population code substantially
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and hence will also tend to reduce the mutual information. In fact,
we estimated that the cluster index alone represented only∼25%
of the information encoded by populations of retinal ganglion
cells (Prentice et al., 2016). Another way of viewing this property
is to observe that there are very many population activity patterns
that fall into the same cluster, giving rise to high entropy within
a single cluster (roughly 10 bits for clusters with high spike
count (Prentice et al., 2016)). Given this high entropy, it is likely
that additional information can be represented by the pattern
of activity within a given cluster. More specifically, the set of
all activity patterns within the same cluster vary considerably in
their overall spike count, K. This spike count variable thus has
the potential to represent a different kind of information than
the cluster index. For instance, the cluster index could represent
one of many possible sensory features, while the spike count
could represent the contrast of that feature. Alternatively, higher
spike count could represent higher certainty of that sensory
feature being present. While these possibilities have not yet been
investigated, such hypotheses do point to a way in which the
principle of cluster coding could be unified with ideas about
probabilistic population codes.

Our notion of a cluster code is similar to the idea
of a “thesaurus” of population codewords that are grouped
together according to how similar are the stimuli that they
encode (Ganmor et al., 2015). We view these two ideas as
complementary. In our case, we group activity patterns together
according to their statistics and find that clusters encode unique
stimuli, while in this other approach, activity patterns that encode
similar stimuli are found to be local and compact in response
space. The fact that similar structure emerges using two different
approaches strengthens the evidence for its validity. We note
that one advantage of the present formalism is that these clusters
can be learned and read out by downstream neural circuits as
the animal explores its environment. In contrast, the thesaurus
formalism requires many exact repeats of the stimulus in order to
calculate its distance metric, making it is less clear how an animal
can implement this clustering approach in real time.

Additional evidence for the organization of neural activity
patterns into a discrete set of clusters comes from an alternative
analysis that introduced a perturbation to the energy landscape
around one reference activity pattern (Huang and Toyoizumi,
2016). The authors found a sharp transition in the Hamming
distance between activity patterns as a function of the strength
of the perturbation. This implies that there are regions of neural
activity space with a high density of patterns separated by regions
with a low density. Furthermore, the silent state played a special
role as a “hub” that was connected by high state density to most
activity patterns, consistent with our picture of the silent state
at the peak of a probability mountain with ridgelines radiating
down in different directions. This analysis was carried out on a
retinal dataset with many repeats of a short movie clip; it will be
interesting to see how it generalizes to the case of a broad stimulus
ensemble without repeats.

Cluster Coding and Sparseness
In our experiments with retinal ganglion cell populations,
we observed that population activity was highly sparse

(Berry et al., 2019). One consequence of this sparseness was
the overall geometry of the probability landscape – specifically,
the fact that the most common activity pattern was the all-silent
state. If the population code were not sparse, then this would not
necessarily be true. Furthermore, the ridge-like shape of clusters
might also require a sufficiently sparse code. In particular, if we
consider the limit where the stimulus ensemble consists of a
small number of highly repeated stimuli that drive neurons, then
population code will tend to be dense (Schwartz et al., 2012). In
this case, the probability landscape breaks into a discrete set of
local peaks corresponding to each stimulus (Loback et al., 2017),
and these clusters look more like Gaussian distributions than
ridges. Furthermore, the most common activity pattern would
be related to which stimuli were most common. However even
in the limit of stimulus ensembles with a dense population code,
the clustered limit will still be present, if the correlations among
neurons are strong enough.

As mentioned before, the high redundancy of most population
codes makes them not efficient, at least in terms of encoding
maximal mutual information per unit of coding cost (such as
entropy, energy, or number of neurons). However, it is still
possible that population codes are efficient given a more extensive
set of requirements or constraints. Here, we have proposed that
one of those requirements might be for the code to be learnable,
that is, to have well-defined clusters. In our thermodynamic
language, this means that the population code must have a peak
in the heat capacity that is equal to or greater than unity (the
“temperature” of the real neural population), T∗ ≥ 1. Because
this requirement is an inequality, there will be a large set of
such possible population codes. But here we have suggested an
optimization principle for cluster codes – namely, that such
codes achieve maximal information encoded by the cluster index,
while maintaining well-defined clusters. Intuitively, we expect
that clusters codes with maximal cluster information will tend to
have a critical temperature, T∗ ∼ 1. Thus, this efficiency principle
is quite similar, in practice, to the proposal that population
codes exist precisely at the critical point. However, this notion
of efficient cluster codes does not require the same precise fine-
tuning that the notion of criticality typically entails.

Cluster Coding and Criticality
What is the relationship between an efficient cluster code
and the critical state? The theory of critical phenomena was
developed in statistical physics to relate well-known microscopic
interactions (such as the electrostatic force or Coulomb’s Law)
to macroscopic properties of materials. Because macroscopic
samples of materials have a very large number of atoms (roughly
Avogadro’s number, NA ∼ 6·1023), it has been natural to make
the approximation that N→∞, known as the “thermodynamic
limit.” Strictly speaking, the critical state only exists in this
limit. Consequently, the critical state has extreme and precise
mathematical properties, such as a divergence in the susceptibility
of the system to perturbation (such as the heat capacity) and
long-range correlations that decay as a power-law rather than
exponential function of distance.

There are two main challenges in relating ideas about
statistical criticality to population neural codes. First, the retina
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is not a physical system at equilibrium, but is instead an
energy-dissipating system driven by an external stimulus. With
due care in interpretation, it is possible to use the maximum
entropy framework and formalisms of statistical mechanics
when the retina is stationary (Tkačik et al., 2015). The non-
equilibrium nature of the system can, however, also introduce
behaviors that are surprising, for example Zipf ’s Law – a power-
law distribution over microscopic states (Schwab et al., 2014;
Tkačik et al., 2015; Humplik and Tkačik, 2017). Second, we
need to understand what properties are expected for a finite-
sized neural population. Because the population coding unit has
hundreds to thousands of neurons, the thermodynamic limit
might not be a good approximation. Finite-size effects convert
the susceptibility’s divergence into a peak; that is why we direct
attention to the peak in the heat capacity of the neural population
(Figure 2). Finite size will also cause deviations from Zipf ’s
Law and possibly reduce the range of correlations, but both of
these effects have been less well studied and predictions from
theory are unclear. Nevertheless, physicists have productively
explored phase-transition-like behavior in systems far from the
thermodynamic limit before, such as in proteins that consist of
chains only hundreds of amino-acids long, yet nevertheless show
clear transitions between definable states (Schnabel et al., 2011).

To investigate the role of finite-size effects, we varied the size
of retinal ganglion cell populations that were analyzed together.
We found that the peak in the specific heat (the heat capacity
per neuron) increased and moved closer to T = 1 as we analyzed
larger populations. One could interpret this as evidence that
the entire ganglion cell population might be in the critical state
and therefore endeavor to extrapolate the trends in the specific
heat to larger population size. However, one difficulty with this
extrapolation is that larger populations would have ganglion
cells spaced farther apart, which would have systematically lower
pairwise correlations (Nonnenmacher et al., 2017). Thus, a naïve
extrapolation is not valid, and instead experiments that measure
much larger populations are needed.

Most importantly, it is unclear what would be the relevance
of this kind of extrapolation for understanding the neural code.
This is because the entire population of ganglion cells never
converges onto a single neuron or group of neurons downstream.
Instead, there is a spatial map, where local groups of ganglion
cells synapse densely onto local regions of downstream circuits,
in a convolutional fashion. Thus, it seems more relevant to ask
what are the properties of these local groups of ganglion cells,
which is what we define as the population coding unit. The
population coding unit has a size of ∼200 ganglion cells, which
we can already measure and analyze. This analysis reveals that
the peak in the heat capacity is slightly above the state of the
real system, T∗ > 1, such that the population is in a subcritical
state. This view is buttressed by the fact that we already know that
pairwise correlations between ganglion cells are not long-range –
namely, they decay substantially outside of the population coding
unit (Segev et al., 2006; Pitkow and Meister, 2012). Thus, our
interpretation is that the population code of retinal ganglion cells
is in a subcritical state, that we refer to as the glassy state.

There are several open questions concerning the relationship
between criticality and the cluster code, among which we

briefly highlight two. First, we do not know how to fully
identify the regimes of measurable statistics of neuronal activity
(such as mean firing rates, distribution of pairwise correlations,
neuronal population size, etc.) where the high-capacity close-to-
critical cluster code would appear. Second, we have presented a
qualitative argument whereby frustration generates a ridge-like
probability landscape and closeness to criticality assures high-
capacity use of the resulting clusters; what we lack, however,
is a cleaner mathematical understanding of how these two
ingredients combine to the capacity of the resulting neural code.

Regularization of Population Activity
An important parameter of all our analyses is the choice of a
timebin for discretizing spike trains. There are three fundamental
criteria that influence this choice. First, there is the temporal
precision of spike trains. If one selects a timebin much smaller
than the temporal precision, then the additional detail revealed is
mostly noise, making this choice impractical. Retinal and LGN
spike trains have a temporal precision of ∼10–20 ms under
most visual conditions (Berry et al., 1997; Kara et al., 2000;
Uzzell and Chichilnisky, 2004; Butts et al., 2007). A second factor
is the time scale of noise correlation, as one prefers for the
timebin to capture most of this correlation between neurons, so
that the combinatorial nature of the code is properly accounted
for. For the retina and LGN, the most common form of noise
correlation is an excess of spikes between two neurons within
a timescale of ∼10 ms (Mastronarde, 1989; Brivanlou et al.,
1998; DeVries, 1999). The third, and perhaps most important,
factor is the timescale with which downstream neurons will
process incoming spike trains. On a biophysical level, the cell
membrane imposes low pass temporal filtering, which is typically
in the range of∼10–20 ms. Furthermore, synaptic input currents
have their own timescale, typically dominated by the dynamics
of ligands binding to receptors or to the dynamics of second
messenger cascades. The fastest synaptic currents are found
for neurotransmitters, like glutamate and GABA, which have
timescales of ∼5–10 ms. Taken together, we can see that all of
these factors point to a single “correct” choice for the timebin,
namely ∼10–20 ms. Varying the time bin within this range does
not cause qualitative differences in the results of our analysis,
and so we have settled on a 20 ms timebin (This choice provides
slightly more information per bin but less information per unit
time). Given this choice of timebin, our analysis of the population
code should be considered as a version of a “temporal code”
(Rieke et al., 1996).

We have also chosen to binarize spike trains within a single
timebin, meaning that we treat one or more spikes as the
same coding symbol. This choice is strongly driven by technical
tractability, because MaxEnt models become far more unwieldy if
a single neuron can have 3+ coding symbols in a single timebin.
But because we discretize with a small timebin, it is relatively rare
to witness more than one spike in a bin. More specifically, we
have found that ignoring multiple spikes in a bin has a fairly small
effect on both the information encoded by neurons and the ability
to discriminate among stimuli (Schwartz et al., 2012).

Another important issue is the fact that there are correlations
in spike trains across multiple timebins. One of the best
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ways to capture this form of correlation is to discretize into
spike “words,” which are formed by concatenating multiple
timebins (Strong et al., 1998; Puchalla et al., 2005). For the
retina and LGN, temporal correlations typically extend out to
∼100 ms, which is also the timescale of the temporal kernel
of individual neurons. This implies forming spike words with
∼5 binary digits might reveal some additional structure in
the population code. In a previous study using HMMs, we
found that temporal transition matrix was dominated by self-
transitions, meaning that the same cluster tended to persist for
∼3–5 consecutive timebins (Prentice et al., 2016). This result
implies that temporal correlation had a fairly minor overall
effect on the population code. On the other hand, another
study that analyzed the thermodynamics of retinal populations
found that simply including correlation in the overall spike
count, K, out to 4 timebins substantially increased the peak in
the heat capacity and shifted it closer to T = 1 (Mora et al.,
2015). This result implies that the retinal population might be
significantly closer to the critical state, if temporal correlations
were taken into account.

Retina Versus Cortex
Several of the arguments that imply that the retinal population
code is in a sub-critical state do not necessarily apply to
the cortex. First, the population coding unit is larger in the
cortex. If we similarly define the population coding unit as
the number of neurons that project onto any single readout
neuron in the cortex (Buzsaki, 2010), then we get a unit
size of ∼1000 neurons. Populations of this size may be
substantially closer to the thermodynamic limit than retinal
ganglion cell populations. Second, pairwise correlation between
cortical neurons extends over much larger distances (Smith
and Kohn, 2008) and even exists between neurons in different
cortical areas (Pesaran, 2010; Raichle, 2015). This pattern of
correlation is much longer range than in the retina, even
if the specific function of distance is not precisely a power
law. This extensive pattern of cortical correlation also relates
to the notion of dynamic criticality: namely, the idea that
the critical state may help to propagate information across
the entire size of the system without requiring axons to
reach this far (Traub et al., 1996; Shew and Plenz, 2013).
For these reasons, the assumption that cortical populations
exist in the critical state might effectively be a very good
approximation. This is an important empirical question for
future studies to address, as are analogous questions for
other brain regions.

At the same time, it appears likely that cortical populations
have well-defined clusters. First, larger population coding units
in the cortex contribute to clustering, as we have found that
analyzing larger populations leads to a sharper peak in the heat
capacity (Figure 2) as well as more clusters identified by the
HMM (Prentice et al., 2016). Second, despite some controversy
(Ecker et al., 2010), pairwise correlations in the cortex appear to
be of roughly similar strength as those found in the retina (rsc
∼0.05 in 20 ms timebins; Smith and Kohn, 2008; Hansen et al.,
2012), at least in the superficial layers. In fact, we found in an
initial study that the HMM could identify well-defined clusters in

populations of neurons recorded from layer 2/3 of the primary
visual cortex (Li et al., 2019).

Cluster Coding for Motor Systems
Most of the focus of this article has been on sensory systems.
However, our analysis suggests that neural populations in all areas
of the cortex may have sufficient correlation to be structured into
a cluster code. How does this idea apply to motor areas of cortex?

The actual range of movement employed by animals is
typically low-dimensional in the space of all possible joint and
limb degrees of freedom, which represents a form of redundancy
of movement patterns compared to total movement capacity.
This restricted dimensionality implies that neural populations in
motor systems will also be redundant (Gao and Ganguli, 2015), as
has been directly observed in the motor cortex (Narayanan et al.,
2005; So et al., 2012). Having a cluster code in motor systems
has potential benefits. First, clusters can emphasize particular
movements that have been useful in the past, so that a wide
range of motor planning activity can activate that movement.
Second, clusters can enforce a form of motor “grammar,” in
which certain combinations of movement are not allowed, by
keeping such dysfunctional combinations in separate clusters. Of
course, movements can be made with a continuum of speeds
and exact trajectories. But recall that the high entropy of neural
activity patterns within a cluster has the potential to jointly
encode continuous variables. Thus, there is no essential mismatch
between a discrete set of clusters of neural activity and the
continuous range of possible movement.

In any case, direct demonstration that neural activity is
structured into a cluster code is lacking in most brain areas,
and as such this empirical question represents a major future
direction of study.
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Tkačik, G., Mora, T., Marre, O., Amodei, D., Palmer, S. E., Berry, M. J. II, et al.
(2015). Thermodynamics and signatures of criticality in a network of neurons.
Proc. Natl. Acad. Sci. U.S.A. 112, 11508–11513. doi: 10.1073/pnas.1514188112
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