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Objective: In brain machine interfaces (BMIs), the functional mapping between neural

activities and kinematic parameters varied over time owing to changes in neural recording

conditions. The variability in neural recording conditionsmight result in unstable long-term

decoding performance. Relevant studies trained decoders with several days of training

data to make them inherently robust to changes in neural recording conditions. However,

these decoders might not be robust to changes in neural recording conditions when

only a few days of training data are available. In time-series prediction and feedback

control system, an error feedback was commonly adopted to reduce the effects of model

uncertainty. This motivated us to introduce an error feedback to a neural decoder for

dealing with the variability in neural recording conditions.

Approach: We proposed an evolutionary constructive and pruning neural network

with error feedback (ECPNN-EF) as a neural decoder. The ECPNN-EF with partially

connected topology decoded the instantaneous firing rates of each sorted unit into

forelimbmovement of a rat. Furthermore, an error feedback was adopted as an additional

input to provide kinematic information and thus compensate for changes in functional

mapping. The proposed neural decoder was trained on data collected from a water

reward-related lever-pressing task for a rat. The first 2 days of data were used to train

the decoder, and the subsequent 10 days of data were used to test the decoder.

Main Results: The ECPNN-EF under different settings was evaluated to better

understand the impact of the error feedback and partially connected topology. The

experimental results demonstrated that the ECPNN-EF achieved significantly higher daily
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decoding performance with smaller daily variability when using the error feedback and

partially connected topology.

Significance: These results suggested that the ECPNN-EF with partially connected

topology could cope with both within- and across-day changes in neural recording

conditions. The error feedback in the ECPNN-EF compensated for decreases in

decoding performance when neural recording conditions changed. This mechanism

made the ECPNN-EF robust against changes in functional mappings and thus improved

the long-term decoding stability when only a few days of training data were available.

Keywords: brain machine interfaces, neural decoding, error feedback, evolutionary algorithm, recurrent neural

network

INTRODUCTION

Brain machine interface (BMI) technology converts the brain’s
neural activity into kinematic parameters of limb movements.
This allows controlling a computer cursor or prosthetic devices
(Kao et al., 2014; Slutzky, 2018), which can greatly improve
the quality of life. Intracortical BMIs have used microelectrodes
implanted in the cortex to decode neural signals. These signals
have then been converted into motor commands to control
an anthropomorphic prosthetic limb, thereby restoring natural
function (Collinger et al., 2013; Roelfsema et al., 2018).

The decoder was the most crucial component of a BMI; it
modeled the functional mapping between neural activities and
kinematic parameters (e.g., movement velocity or position), and
assumed that this functional mapping was time-invariant (i.e.,
a stationary statistical assumption) (Kim et al., 2006). However,
under real neural recording conditions, there existed a high
degree of within- and across-day variability (Simeral et al., 2011;
Perge et al., 2013, 2014; Wodlinger et al., 2014; Downey et al.,
2018) that prevented satisfaction of the stationary statistical
assumption. This variability consisted of the relative position of
the recording electrodes—and surrounding neurons, electrode
properties, tissue reaction to electrodes, and neural plasticity—
andmight affect the functional mapping between neural activities
and kinematic parameters (Jackson et al., 2006; Barrese et al.,
2013; Fernández et al., 2014; Salatino et al., 2017; Michelson et al.,
2018; Hong and Lieber, 2019). The variability in neural recording
conditions resulted in unstable long-term decoding performance
and led to frequent decoder retraining (Jarosiewicz et al., 2013,
2015).

Conventional decoder retraining required the subject to
periodically perform a well-defined task to collect new training
data for preventing model staleness (Jarosiewicz et al., 2015).

Abbreviations: MI, brain machine interface; ECPNN-EF, evolutionary
constructive and pruning neural network with error feedback; NN, neural
network; RNN, recurrent neural network; ESN, echo-state network; TDNN,
time-delay neural network; EA, evolutionary algorithm; ECPA, evolutionary
constructive and pruning algorithm; CBP, cluster-based pruning; ABSS, age-
based survival selection; BPTT, backpropagation through time; ECPNN-EFWC,
ECPNN-EF only with CBP; ECPNN-EFWA, ECPNN-EF only with ABSS; RNN-
EF, fully-connected RNN with error feedback; ECPNN, ECPNN-EF without
error-correction learning; PCNN, partially connected NN; FCNN, fully connected
neural network.

This manner may lead to additional training time before the
BMI can be used. Traditional linear neural decoders did not
need frequent retraining but possessed limited computational
complexity to deal with neural recording condition changes
owning to linear properties (Collinger et al., 2013). It is known
that the newly encountered neural recording conditions in
chronic BMI systems have some commonality with past neural
recording conditions (Chestek et al., 2011; Perge et al., 2013;
Bishop et al., 2014; Nuyujukian et al., 2014; Orsborn et al.,
2014). Therefore, computationally powerful non-linear decoders
were proposed to learn a diverse set of neural-to-kinematic
mappings corresponding to various neural recording conditions
collected over many days before BMI use (Sussillo et al., 2016).
This approach avoided BMI interruption by keeping model
parameters fixed during BMI use and made BMI inherently
robust to changes in neural recording conditions by exploiting
the similarities between newly encountered and past neural
recording conditions. Therefore, the BMIs were trained with
several days of data in order to learn various neural recording
conditions and achieve stable long-term decoding. However, they
heavily relied on the huge training data where a large training
set may not be available for both non-human primates and
rodent models.

The limited training data have become an issue for BMI
application in long-term performance. A chronic inflammatory
reaction results in neural signal loss and decrease in quality over
time (Chen et al., 2009). Also, the number of implanted electrodes
is limited by the size of the neural nuclei in the rodent brain.
Therefore, limited neurons and limited recording times lead to
limited training data.

Rodent models with small numbers of implanted electrodes
have been widely used to investigate state-of-the-art neural
prostheses. Previous studies have demonstrated the decoding
performances of various methods at the motor cortex (Zhou
et al., 2010; Yang et al., 2016), somatosensory cortex (Pais-
Vieira et al., 2013), and hippocampus (Tampuu et al., 2019)
in rodent models. The results indicated that good decoding
methods should be considerably more robust to small sample
sizes caused by limited neurons or limited recording times. In
general, a limited amount of training data made traditional
decoding methods inaccurate, because they usually required
a large number of neurons to achieve desirable levels of
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performance. Furthermore, small amounts of data have made
modern decoding methods unreliable, because their increasing
model complexities required a large amount of training data
(Glaser et al., 2017). Whether the BMIs could deal with the
scenario in which only a few days of training data were available
is unknown. This motivated us to develop a neural decoder that
could learn from limited training data based on rodent models.

In time-series prediction applications, neural networks (NNs)
usually employed prediction error as an additional input of the
networks. This has been proven to yield superior performance
compared with that without error feedback (Connor et al.,
1994; Mahmud and Meesad, 2016; Waheeb et al., 2016). The
error feedback determined the difference between the network
output and the target value. This information could provide
the network with information concerning previous prediction
performance and might thereby guide the network to accurate
prediction. In a feedback control system, the output signal was
fed back to form an error signal, which was the difference
between the target and actual output, in order to drive the
system. Using feedback could reduce the effects of model
uncertainty (Løvaas et al., 2008). Furthermore, feedback control
could cope with trial-to-trial variability caused by complex
dynamics or noise in motor behavior (Todorov and Jordan,
2002). Based on the contemporary physiological studies in
the human cortex (Miyamoto et al., 1988), a feedback motor
command has been used as an error signal for training an NN
(Kawato, 1990). One study hypothesized that the user intended
to directly move toward the target when using BMI. This study
fitted the neural decoder by estimating user’s intended velocity
which was determined from target position, cursor position,
and decoded velocity (Gilja et al., 2012). A recent study took
into account how the user modified the neural modulation to
deal with the movement errors caused by neural variability
in the feedback loop (Willett et al., 2019). Their framework
simulated online/closed-loop dynamics of an intracortical BMI
and calibrated its decoder by an encoded control signal, which
was the difference between target position and cursor position.
The encoded control signal using target position was first
transformed into neural features which were then mapped to a
decoded control vector for updating decoder output, i.e., cursor
velocity. This motivated us to introduce an error feedback into a
neural decoder for dealing with the variability in neural recording
conditions because the error feedback might compensate for
the changes in neural recording conditions. Then, the neural
decoder did not need retraining and was expected to be robust to
various neural recording conditions when only using a few days
of training data.

Several characteristics make NNs computationally powerful
decoders in BMIs. First, an NN with a sufficient number
of hidden neurons can approximate any continuous function
(Hornik et al., 1989). This makes an NN well-suited to learn
the functional mapping between neural activity and kinematic
parameters. Second, several types of NNs can successfully control
motor movement in BMIs. These include recurrent NN (RNN)
(Haykin, 1994; Shah et al., 2019), echo-state network (ESN)
(Jaeger and Haas, 2004), and time-delay NN (TDNN) (Waibel
et al., 1989). RNNs have feedback connections that are capable

of processing neural signal sequences. Their feedback loop is
applicable to system dynamics modeling and time-dependent
functional mapping between neural activity and kinematic
parameters (Haykin, 1994). ESN was developed as an RNN that
only trains connections between the hidden neurons and the
output neurons for a simple learning process (Jaeger and Haas,
2004). TDNNs are feedforward NNs with delayed versions of
inputs that implement a short-termmemory mechanism (Waibel
et al., 1989). Of these NNs, RNNs are highly accurate in BMI
applications (Sanchez et al., 2004, 2005; Sussillo et al., 2012;
Kifouche et al., 2014; Shah et al., 2019). Therefore, the present
work designed an RNNwith error feedback as the neural decoder.

Because the performance of an NN relied heavily on its
network structure, structure selection is a crucial concern.
An NN with an excessively large architecture may overfit the
training data and yield poor generalization. Furthermore, it often
exhibited rigid timing constraints. By contrast, an NN with an
excessively small architecture may underfit the data and fail to
approximate the underlying function. The four most frequently
used algorithms to determine a network’s architecture are
constructive, pruning, constructive-pruning, and evolutionary
algorithms (EAs). Constructive algorithms (Kwok and Yeung,
1997) began with a simple NN and then increased the number
of hidden neurons or connections to that network in each
iteration. However, an oversized networkmay be constructed due
to inappropriate stopping criterion. In other words, the matter
of when to stop constructing networks lacked consensus. The
pruning algorithm (Reed, 1993) began with an oversized NN
and then removed insignificant hidden neurons or connections
iteratively. However, it was difficult to initially determine an
oversized network architecture for a given problem (Kwok and
Yeung, 1997). The constructive-pruning algorithm (Islam et al.,
2009; Yang and Chen, 2012) combined both a constructive
algorithm and pruning algorithm to build an NN. Starting with
the simplest possible structures, the NN was first constructed
using a constructive algorithm and then removed trivial hidden
neurons or connections by using a pruning algorithm to achieve
optimal network architecture. Several works have designed NNs
using EAs (Huang and Du, 2008; Kaylani et al., 2009; Masutti
and de Castro, 2009). EAs were developed as a biologically
plausible strategy to adapt various parameters of NNs, such
as weights and architectures (Angeline et al., 1994). However,
encoding an NN into a chromosome depended on the maximum
structure of the network, which is problem-dependent and must
be defined by user. This property limited the flexibility of problem
representation and the efficiency of EAs. One study (Yang
and Chen, 2012) proposed an evolutionary constructive and
pruning algorithm (ECPA) without predefining the maximum
structure of the network, which made the evolution of the
network structure more efficient. Because the NNs used in BMIs
were designed in a subject-dependent manner, the automatic
optimization of the NN for a specific task is a desired feature.
This study adopted the ECPA (Yang and Chen, 2012) to develop
an NN with an appropriate structure as a neural decoder for each
subject in BMI applications.

This work proposed an evolutionary constructive and pruning
neural network with error feedback (ECPNN-EF) to decode
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neural activity into the forelimb movement of a rat by
using only a few days of data to train the neural decoder.
A lever-pressing task for the rat was designed to evaluate
the effectiveness of the proposed neural decoder. The error
feedback providing the difference between the decoded and
actual kinematics might compensate for decreases in decoding
performance when the neural recording conditions change.
Thus, the ECPNN-EF might achieve stable and accurate long-
term decoding performance. The rest of this paper is organized
as follows. First, we describe the experimental setup and
the proposed decoder. Second, we demonstrate the influence
of several parameters, namely the probabilities of crossover
and mutation. Furthermore, the effects of evolution progress,
cluster-based pruning (CBP) and age-based survival selection
(ABSS) on the performance of the proposed decoder are
also shown and discussed. Finally, we describe how partially
connected topology and error feedback improve the long-term
decoding performance.

MATERIALS AND METHODS

Animals
Four male adult Wistar rats were aged 8 weeks old, weighed
between 250 and 350 g, and were kept in the animal facility with
well-controlled laboratory conditions (12: 12 light/dark cycle
with light at 7 AM; 20◦ ± 3◦C) and fed on ad libitum. The care
and experimental manipulation of the animals were reviewed and
approved by the Institutional Animal Care andUse Committee of
the National Yang Ming University.

Surgery for Neural Implantation
Animals were anesthetized with 40 mg/kg Zolazepam and
Tiletamine (Zoletil 50, Virbac., Corros, France) and 8
µg/kg dexmedetomidine hydrochloride (Dexdomitor R©,
Pfizer Inc., New York, NY, USA) through intramuscular
injections. Rats were positioned in a stereotaxic frame
(Stoelting Co. Ltd., Wood Dale, IL, USA) and secured
with the ear bars and tooth bar. An incision was made
between the ears. The skin of the scalp was pulled back
to expose the surface of the skull from the bregma to the
lambdoid suture. Small burr holes were drilled into the skull
for the microwire electrode array implanted and for the
positioning of screws (Shoukin Industry Co., Ltd., New Taipei
City, Taiwan).

For each rat, an 8-channel laboratory-made stainless
microwire electrode array (product # M177390, diameter of
0.002 ft., California Fine Wire Co., Grover Beach, CA, USA;
the electrodes were spaced 500µm apart) was vertically
implanted into the layer V of the forelimb territory of
the primary motor (M1) cortex (anterior-posterior [AP]:
+2.0mm to −1.0mm, medial-lateral [ML]: +2.7mm,
dorsal-ventral [DV]: 1.5mm. For determining the location
of the forelimb representation of M1 for the electrode
implantation, the intracortical microstimulation was applied
to confirm via forelimb muscle twitches observed (Yang
et al., 2016). Following a 1-week post-surgery recovery

period, the animals received the water reward-related
lever-pressing training.

Behavioral Training
The rats were trained to press a lever with their right forelimb
to obtain a water reward. Before reward training, the rats were
single-housed and deprived of water for at least 8 h. During
reward training, the rats were placed in a 30 × 30 × 60 cm3

laboratory-designed Plexiglas testing box, and a 14 × 14 × 37.5
cm3 barrier was placed to construct an L-shaped path for the
behavioral task. A lever (height of 15 cm from bottom) was set
at one end of the path, and an automatic feeder with a water
tube that provided water on a plate was set at the other end of
the path. The rats could obtain 0.25-ml water drop as a reward
on the plate after pressing the lever. Thirsty rats were trained to
press a lever in order to receive water reward without any cues
because they learned to make an operant response for positive
reinforcement (water reward). Rats were trained to press a lever
on the left side of the box then freely move along the U-shaped
path to the right side of the box. This had to be completed within
3 s to receive a reward. The experimental time course included the
behavioral training and data collection phases. In the behavioral
training phase, implanted rats learned the lever pressing and
water reward association within 3–5 d without neural recordings.
To meet criteria for successful learning of the behavioral task,
the rats had to complete continuous repetition of five successive
trials of associated lever pressing and water reward without
missing any trial between successive trials (Lin et al., 2016). Once
reaching the criteria, animals entered the data collection phase.
During this 12-d phase, forelimb movement trajectories were
simultaneously acquired with corresponding electrophysiological
recordings of neural spikes as they performed the water
reward task.

Data Recording
In this study, forelimb kinematics and neuronal activity were
simultaneously recorded while the animal performed the water
reward-related lever pressing as shown in Figure 1. During
the behavioral task, a blue-colored marker made of nylon was
mounted on the right wrist of the rat to track forelimb trajectory.
The trajectory of the rat’s forelimb movement was captured by
a charge-coupled device camera (DFK21F04, Imaging Source,
Bremen, Germany) that provided a 640 × 480 RGB image at
30Hz and then analyzed by a video tracking system (CinePlex,
Plexon Inc., Dallas, TX, USA). When the lever was pressed, it
triggered the micro-switch of the pull position to generate a
transistor–transistor logic pulse to the multichannel acquisition
processor (Plexon Inc., Dallas, TX, USA) which allowed the
neuronal data to be accurately synchronized to the lever pressing
event and then water reward was delivered through a computer-
controlled solenoid valve connected to the laboratory-designed
pressurized water supply.

Neuronal spiking activity of the rat was sampled at 40 kHz and
analog filtered from 300 to 5,000Hz. A spike-sorting algorithm
was used to determine single-unit activity. First, an amplitude
threshold with four standard deviations of filtered neuronal
signals was set to identify spikes from the filtered neuronal
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FIGURE 1 | System architecture and experimental setting of the water-reward lever-pressing task. While the rat was pressing the lever to obtain the water reward, the

neural recording system recorded and preprocessed the neuronal spiking activity from the electrode array implanted in the rat’s cortex. The trajectory-tracking system

acquired the corresponding forelimb trajectory from the camera.

signals. Then, spikes were sorted by a trained technician through
principal component analysis using a commercial spike-sorting
software (Sort Client, Plexon Inc., Dallas, TX, USA).

Neural Decoder: ECPNN-EF
The firing rates of each sorted unit from M1 cortex of rat
were decoded into the instantaneous velocity of the forelimb
trajectory. Both horizontal and vertical velocities were estimated
from the position of the blue-colored marker by a two-
point digital differentiation. The firing rates of each sorted
neuron was determined by counting spikes in a given time
bin whose length was 33ms and was equal to the temporal
resolution of the video tracking system. Figure 2 showed an
example of the rat forelimb movement while pressing the
lever and corresponding neural spike trains. A time-lag was
known to exist between neuronal firing and the associated
forelimb state because of their causal relationship (Paninski
et al., 2004; Wu et al., 2004; Yang et al., 2016). Furthermore,
the decoding accuracy was improved when the optimal time-
lag is considered. Here, the water-restricted rats easily learn
a lever pressing behavior within a few training sessions,
allowing for recording neuronal activity during acquisition of
a motor sequence as shown in Figures 2A,B showed some
M1 neurons displayed increased activity for sequential motor
behavior prior to the lever-pressing event, which presented
the maximum firing rate at the third time-bin (with 99ms
lag). Therefore, we empirically choose 363ms of spike train
over 11 time-bins (8 bins before and 2 bins after the 3rd
time-bin prior to the lever pressing) to predict a series of
movement velocities.

The spike train was discretized in 11 time-bins for each trial,
corresponding to each entire trajectory of forelimb movements
during the lever reaching task. With total k neurons sorted
from all channels, we defined N (t) = {ni (t)}

k
i=1 as a

set of neuronal features, where t denoted time step which
was time bin in this study, ni (t) represented as spike count
of sorted neuron in current bin, and i denoted index of
sorted neuron from 1 to k. In this study, we used both
concurrent and preceding bin as neuronal features, which is
N (t) and N

(

tpre
)

, to predict current velocity v̂(t), where t
and tpre represented current time bin and preceding time
bin, respectively. The step of data processing was shown in
Figure 3.

The ECPNN-EF is an RNN-based neural decoder
designed using the ECPA as proposed in Yang and Chen
(2012). The input–output function of the ECPNN-EF was
denoted by:

v̂(t) = fW
(

N (t) ,N
(

tpre
)

, verror
)

(1)

where v̂(t) represented the predicted velocity andW represented
the weights of the ECPNN-EF. The prediction error verror was
adopted as the error feedback which was the absolute value of
difference between the actual velocity and predicted velocity, and
was calculated by verror =

∣

∣v(tpre)− v̂
(

tpre
)∣

∣ where tpre denoted
as preceding time bin.

The structure of ECPNN-EF was showed in Figure 4. Note
that there was only one output neuron representing the predicted
velocity in the neural decoder. The vertical and horizontal
velocities were predicted in two separate neural decoders.

Mean squared error was adopted as loss function due
to its wide use in regression application and was defined
as follows:

L =
∑

t

(

vt − fW
(

N (t) ,N
(

tpre
)

, verror
))2

(2)
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FIGURE 2 | Simultaneous forelimb movement trajectory and spike train recordings during the water-reward-related lever-pressing task. (A) Stop-motion animation

representing forelimb movement from the video-tracked time-series data (see Supplemental Video). Six consecutive photographs showed a rat in the test cage

successfully reaching and pressing the lever (marked with green) while the forelimb movement trajectories and neural activity were simultaneously recorded. (B)

Neuronal activities recorded from eight neurons during one movement displayed as spike trains and the neuronal activity histogram (a bin size of 33ms). The red line

indicates the moment when the rat pressed down the lever with its right forelimb.

The optimal weights of the ECPNN-EF were obtained by
minimizing the loss as follows:

W∗ = argmin
W

L (3)

This study applied backpropagation through time (BPTT) to find
the optimal weights of the ECPNN-EF by iteratively determining
the gradient of the loss with respect to the weights as follows:

W ←W − η∇WL (4)

where η is learning rate. Details of the BPTT (Werbos, 1988)
are described in the Supplementary Note 1. The details of
designing structure of the ECPNN-EF are described in the
Supplementary Note 2.

The ECPNN-EF adopted a hyperbolic tangent sigmoid
transfer function for all hidden neurons and the output neuron.
Skip connections existed between discontinuous layers, such

as from the input layer to the output layer. Furthermore, the
hidden layer possessed self-recurrent connections. After both
the structure and weights of the ECPNN-EF had been trained,
the fixed model was adopted to predict the velocity of the rat’s
forelimb without the additional cost of training.

The pseudo code of ECPNN-EF training algorithm appears
in Algorithm 1. The initial population started with a set of
initial NNs, each NN of which had a single hidden neuron.
A single connection was generated from one non-error-related
input neuron to the hidden neuron. A skip connection was
generated from one non-error-related input neuron to the output
neuron. A single connection was generated from one error-
related input neuron to the hidden neuron or to the output
neuron. The detail description of population initialization was
in the Supplementary Note 3. Furthermore, a self-recurrent
connection was constructed in the hidden neuron with a
probability of 0.5. Here, the error-related input neuron received
the prediction error, as indicated in Figure 4, whereas non-
error-related input neurons received the instantaneous firing
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FIGURE 3 | The data structure of input for the ECPNN-EF decoder. The input of the decoder was consisted of (t), N
(

tpre
)

and verror , whose length was 2k + 1,

including 2k spike counts of both concurrent and preceding bin, and an error feedback calculated by
∣

∣v(tpre)− v̂
(

tpre
)
∣

∣. To predict a whole forelimb movement in a trial,

11 bins were used and decoded to v̂(t) in the time series.

rate of each unit. This mechanism of separately generating
connections of error-related input neuron and non-error-related
input neurons ensures that the initial NNs can immediately
process error feedback. As a result, a set of initial NNs with
partially connected topology was generated.

The purpose of the network crossover operator was to explore
the structural search space and thus improve the processing
capabilities of the ECPNN-EF. The network crossover operation

randomly selected two parent NNs through tournament selection
and then combined their structures to generate an offspring
NN with a crossover probability, pc (see Supplementary Note 4).
The network mutation operator exploited the structural search
space to achieve a small perturbation of structure by randomly
generating a new connection from the input to the hidden
neuron. Furthermore, the network mutation operation randomly
constructed a self-recurrent connection of a hidden neuron or a
new skip connection from the output or the hidden neuron to its
previous consecutive or non-consecutive layer with a mutation
probability, pm (see Supplementary Note 5).

CBP mainly pruned insignificant hidden neurons to avoid
an excessively complex ECPNN-EF with poor generalization
performance owing to the use of network crossover operation. It
first clustered the hidden neurons into two groups (i.e., better
and worse groups, depending on their significance in the NN)

and then removed the hidden neurons in the worse group in a
stochastic manner. The detailed description of CBP was in the
Supplementary Note 6.

ABSS prevented the ECPNN-EF from achieving a fully
connected structure. It selected NNs for the next generation
according to age, which indicated how many generations
the NN had survived. Older NNs tended to have a fully
connected structure because of the use of network mutation
operation. ABSS replaced old age NNs with initial NNs
(see Supplementary Note 3) in a stochastic manner and thus
prevented the population from achieving a fully connected
structure. ABSS mainly removed fully connected networks and
made the rest of the NNs survive to the next generation through
a stochastic mechanism. The detailed description of ABSS was
in the Supplementary Note 7. The evolution process terminated
when a generalization loss (GL) met an early stopping criterion
or the maximum number of generations was reached. The early
stopping criterion motivated from Islam et al. (2009) evaluated
the evolution progress using training and validation errors in
order to avoid overfitting. It first defined the GL at the τ th
generation as:

GL (τ ) =
Eva(τ )

Elow(τ )
− 1 (5)
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where Eva(τ ) is a validation error of the NN with the best fitness
at the τ th generation and Elow(τ ) is the lowest Eva(τ ) up to the
τ th generation. The difference between the average training error
and the minimum training error at the τ th generation of a strip k
was defined as:

Pk (τ ) =

∑τ
ω=τ−k+1 Etr(ω)

k×minτ
ω=τ−k+1 Etr(ω)

− 1 (6)

where Etr(ω) is the training error of the NN with the best fitness
at the ωth generation and k is the strip length. k was set to 5 in
this work. Note that GL (τ ) and Pk (τ ) were determined using
the validation and training sets, respectively. Eva(τ ) and Etr(ω)
were calculated by the loss function provided in (2). The ECPNN-
EF training algorithm terminated when GL (τ ) > Pk (τ ). The
optimal NN with a partially connected topology was selected as
the neural decoder.

In summary, network crossover andmutation evolved NNs in a
constructive manner to improve their processing ability, whereas
CBP and ABSS evolved NNs in a destructive way that enhanced
their generalization capabilities and reduced hardware costs
(Yang and Chen, 2012). An early stopping criterion was adopted
to terminate the evolution process by observing both training
and validation errors to avoid overfitting during training phase,
which reduced the training time and retained generalization
capability (Islam et al., 2009). The ECPNN-EF was implemented
and trained in MATLAB (MathWorks, Natick, MA, USA).

Data Sets and Optimizing the Structure of
Neural Networks
Data collected in a recording session were divided into a training
set for developing the neural decoder, a validation set for avoiding
overfitting during training phase, and a testing set for evaluating
the generalization ability of the neural decoder. For each rat, the
experimental trials of the first 2 days were used as training and
validation sets, and the remaining 10 days were used as testing
set. The number of trials used for each rat was shown in Table 1.

The present study evaluated the prediction accuracy
(decoding performance) of the proposed neural decoder
using Pearson’s correlation coefficient (r), which measured

TABLE 1 | Experimental data characteristics.

Animal no. Number of trials

for training in

day 1 and day 2

Number of trials

for testing per day

Number of neurons

used per trial

Rat #11 70 24 8

Rat #14 80 33 12

Rat #16 140 41 8

Rat #17 95 36 8

Experimental data recorded from four rats were used in this study. The decoder of each

rat was trained and tested only by its own experimental trials. The experimental data of

the first 2 days and subsequent 10 days were used for training and testing, respectively.

The criteria for selecting neurons into neural decoder as the input were described in the

Supplementary Note 8.

FIGURE 4 | Structure of ECPNN-EF. Network included input, hidden, and output layer. ECPNN-EF took the neuronal feature from combination of concurrent bin N (t),

preceding bin N
(

tpre
)

and prediction error (error feedback) verror to predict velocity v̂(t).
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the strength of a linear relationship between the observed
and predicted forelimb trajectories (Manohar et al., 2012;
Shimoda et al., 2012). When evolving ECPNN-EF with good
generalization ability and compact structure, a 5-fold cross
validation was adopted to determine the optimal pc, pm and
terminated generation. For each given pair of pc and pm, the
experimental trials of the first 2 days were randomly partitioned
into five equal-sized disjoint sets where four sets were used as
the training set to evolve ECPNN-EF and one set was used as
the validation set to evaluate the decoding performance of the
evolved ECPNN-EF during training phase. Once the ECPNN-EF
was evolved through the optimal pc and pm, the validation set
also was used to determine the best terminated generation of the
evolved ECPNN-EF.

To investigate the effects of CBP and ABSS on the ECPNN-EF
evolution, two variants of ECPNN-EF that only adopted either
CBP or ABSS were implemented. One variant of ECPNN-EF
only with CBP was referred to as ECPNN-EFWC, and the other
variant of ECPNN-EF only with ABSS was referred to as ECPNN-
EFWA. The decoding performances of ECPNN-EF, ECPNN-
EFWC, and ECPNN-EFWA were compared using the validation
set in terms of r, number of hidden neurons (Nh), number
of connections (Nc), connection ratio (Rc), and termination
generation (GT). The Rc was defined as follows:

Rc =
Nc

Nf
(7)

where Nf is the number of connections in a network with a fully
connected topology. The network had fully connected topology
when Rc = 1; however, the network had partially connected
topology when Rc < 1.

Statistical Analysis
In this study, we investigated the decoding performance
dependency on the parameters of pc and pmby employing
the statistical method, two-way analysis of variance (ANOVA)
followed by Tukey’s post-hoc test and adjusted the P-value
by multiple comparison using Bonferroni correction, on the
validation set. We set pc at 7 levels (0.6, 0.65, 0.7, 0.75, 0.8, 0.85,
and 0.9). In addition, 7 levels of pm (0.6, 0.65, 0.7, 0.75, 0.8,
0.85, and 0.9) were employed for each pc to determine whether
the algorithm found the near-optimum solution. This evaluated
whether there were any significant differences in decoding
performance according to the parameters used. Additionally,
we analyzed the effects of CBP and ABSS on the ECPNN-EF
reconfiguration, and then assessed the decoding performance
comparison of ECPNN-EF, ECPNN-EFWC, and ECPNN-EFWA
on the validation set by one-way ANOVA with post-hoc Tukey’s
HSD test.

In order to investigate the decoding performance and stability
of ECPNN-EF as well as impact of the prediction error feedback
on enhancing the prediction accuracy of ECPNN-EF without
error-correction learning (ECPNN), a mixed model ANOVA
with three decoders [ECPNN-EF, a fully connected RNN with
error feedback (RNN-EF), and ECPNN] as fixed factors and
the repeated measure of daily testing set over 10 testing days

followed by Tukey’s post-hoc test and then adjusted the P-value
by Bonferroni multiple comparison correction. The decoding
performances of the four rats were presented as means ±
standard deviation (SD). The data analysis was performed in
SPSS version 20.0 (SPSS Inc., Chicago, IL, USA).

RESULTS

On the Decoding Performance of Different
Crossover and Mutation Probabilities
The decoding performances of the ECPNN-EF evolved under
different pc and pm values were evaluated by the validation set
as shown in Figure 5. The results demonstrated that the more
increasing in pc and pm and the worse decoding accuracy (r).
A simple main effects analysis which examined the effects of 7
levels of pm at the fixed level of pc = 0.75 and 0.8 was provided
in the Supplementary Note 9. The best decoding performance (r
= 0.912 ± 0.019) was achieved using pc = 0.75 and pm = 0.75
(compared to other combinations of pc and pm, P< 0.05 analyzed
by ANOVA for multiple comparisons).

Evolution Progress of ECPNN-EF
Figure 6 presented the evolution progress of the ECPNN-EF
using the optimal probabilities of crossover and mutation (pc =
0.75 and pm = 0.75) obtained in Figure 5. The results showed
that the GL and the difference between the average training
error and minimum training error (Pk) were almost zero in the
early generations. Afterward, the GL slightly increased but the
Pk varied. Notably, the GL was not consistently larger than the
Pk. Most GLs dramatically increased and were larger than the
Pk after the 33th generation marked by a black vertical dashed
line. This potentially indicated the overfitting problem that

FIGURE 5 | Decoding performance of the ECPNN-EF under various pc and

pm. We performed the post-hoc analysis based on the estimated marginal

means of correlation coefficient (r) and adjusted the P-value by multiple

comparison using Bonferroni correction (see the Table S2 in the

Supplementary Note 8). We found that the highest r was observed when the

pm= 0.75 and the pc = 0.75 (r = 0.912 ± 0.019) and showed significant

differences in r of pc = 0.8 and pm = 0.75. Therefore, the near-optimum

solution of the algorithm was pc= 0.75 and pm = 0.75.
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FIGURE 6 | Evolution progress of the ECPNN-EF. The shaded regions represented SD. The vertical axis on the left represented Pk (blue line). The vertical axis on the

right represented GL (red line). Most GLs met the early stopping criterion in the mean terminated generation (GT = 33.2 ± 1.1) indicated by a black vertical dashed line.

might lead to worse evolutions. Therefore, the ECPNN-EF was
suggested to terminate evolution in this generation according to
an early stopping criterion in order to maintain stable decoding
performance. The mean termination generation was 33 in this
study (GT = 33.2± 1.1).

Effects of CBP and ABSS on Decoding
Performance
Table 2 showed the decoding performance of the ECPNN-
EF, ECPNN-EFWC, and ECPNN-EFWA. ECPNN-EF achieved
significantly higher decoding performance (r = 0.912 ± 0.019)
than did the ECPNN-EFWC (r = 0.602 ± 0.083) and ECPNN-
EFWA (r = 0.708 ± 0.066) (P < 0.05 analyzed by one-
way ANOVA with post-hoc Tukey’s HSD test). The ECPNN-
EF possessed a more compact structure (Nh = 4.2 ± 2.7
and Nc = 20.6 ± 7.2) than both ECPNN-EFWC (Nh = 4.6
± 3.8 and Nc = 23.0 ± 10.1) and ECPNN-EFWA (Nh =

14.4 ± 14.4 and Nc = 57.9 ± 52.1). Moreover, the ECPNN-
EFWA had a greater standard deviation than the other two
methods. All three methods possessed almost the same Rc.
The ECPNN-EF (Rc = 0.12 ± 0.02) and ECPNN-EFWA
(Rc = 0.12 ± 0.01) produced slightly more sparse structures
than ECPNN-EFWC (Rc = 0.13 ± 0.01). All three methods
terminated the evolution before 38th generation. The ECPNN-EF
terminated slightly earlier (GT = 33.2 ± 1.1) than did the other
two decoders.

Decoding Performance Comparison
We applied a mixed model ANOVA with three decoders
(ECPNN-EF, RNN-EF, and ECPNN) as fixed factors and
the repeated measure of time, then adjusted the P-value by
multiple comparison using Bonferroni correction. The three
decoders reconstructed movement trajectories similar to the
actual movement trajectories (Figure 7). However, the ECPNN-
EF decoder showed the best reconstruction and stability and was

significantly better than the ECPNN and RNN-EF decoders over
10 test days.

To investigate the effectiveness of the partially connected
topology of ECPNN-EF, the ECPNN-EF was compared with
RNN-EF using the post-hoc analysis. Here, the number of
hidden neurons of the RNN-EF was the same as that in the
ECPNN-EF for fair comparison [the weights were adjusted by
the BPTT] (Werbos, 1988). Figure 8 statistically showed the
daily r comparison between the decoders of ECPNN-EF and
RNN-EF. The mean r of the decoder of RNN-EF monotonically
decreased with gradually increasing in the variability of r over
10 test days. The result showed that the RNN-EF could not
offer a stable long-term decoding performance. By contrast, the
decoding performance of the ECPNN-EF decreased slightly in
each day and achieved r = 0.740 ± 0.042 at Test Day 10.
Moreover, the variation in neural decoding performance (SD) of
the ECPNN-EF was smaller than that of the RNN-EF in each day.
The decoding performance of the ECPNN-EF was significantly
higher than that of RNN-EF (P < 0.05 analyzed by repeated
measures analysis using mixed model ANOVAwith post-hoc test,
N = 4) in each day.

To investigate the effect of the error-correction learning (error
feedback) in the decoder, the ECPNN-EF was compared with
ECPNN using the post-hoc test. As depicted in Figure 8, the
ECPNN-EF decoder performed higher and more stable accuracy
of predicted trajectories in comparison with those of the ECPNN
decoder over 10 test days. The mean r of the decoder of ECPNN
dropped noticeably and the corresponding variability of r became
huge after Test Day 5. By contrast, the ECPNN-EF’s daily r slowly
decreased, and the daily variability of r did not considerably
change over 10 days. The ECPNN-EF’s r was significantly higher
than that of the ECPNN in each day (P < 0.05 analyzed by
repeated measures analysis using mixed model ANOVA with
post-hoc test, N = 4), and the corresponding variation (SD) in
daily r of the ECPNN-EF was smaller than that of the ECPNN.
The lowest r of the ECPNN-EF (r = 0.740 ± 0.042) and ECPNN
(r = 0.413± 0.158) was observed at Test Day 10.
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TABLE 2 | Evolutionary results of ECPNN-EF, ECPNN-EFWC, and ECPNN-EFWA.

Decoder R Nh Nc Rc GT

ECPNN-EF 0.912 ± 0.019* 4.2 ± 2.7 20.6 ± 7.2 0.12 ± 0.02 33.2 ± 1.1

ECPNN-EFWC 0.602 ± 0.083 4.6 ± 3.8 23.0 ± 10.1 0.13 ± 0.01 37.5 ± 7.9

ECPNN-EFWA 0.708 ± 0.066 14.4 ± 14.4* 57.9 ± 52.1* 0.12 ± 0.01 37.3 ± 3.5

The symbol * indicated statistical significance among the three decoders (P < 0.05 analyzed by one-way ANOVA with post-hoc Tukey’s HSD test).

FIGURE 7 | Data visualization of average predicted trajectories of the ECPNN-EF, ECPNN, and RNN-EF. Representative daily reconstructed trajectories of the test

trials in Rat #16. The average reconstructed trajectories of the ECPNN-EF (red line) were more similar to the actual ones (black line) and exhibited less variance than did

those of the ECPNN (green line) and RNN-EF (blue line) over 10 test days, where shadow regions represented their corresponding SDs of the predicted trajectories.

FIGURE 8 | Comparison of daily r of the ECPNN-EF, ECPNN, and RNN-EF. The decoding performance of ECPNN-EF at the 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th,

and 10th. Test Day was significantly higher than those of ECPNN and RNN-EF (also see the post-hoc analysis of the comparison of decoding performance in the

Table S3 in the Supplementary Note 10), and the corresponding variation of r was smaller than that of the ECPNN and RNN-EF after Test Day 4. The symbols * and
# indicate P < 0.05, as analyzed by the repeated measures analysis using mixed model ANOVA with Bonferroni correction for multiple testing.

DISCUSSION

Best Performance With NN Structure
Determined by Near Optimal Probabilities
of Crossover and Mutation
The pc and pm affected the evolution of the network structure
and thus involved neuronal contributions to forelimbmovement.

Both crossover and mutation operators increased the model
complexity. The crossover provided a chance to add hidden
neurons while the mutation achieved a small perturbation of
model structure by adding connections. Previous paper Schwartz
et al. (1988) has reported that individual neuron in the motor
cortex discharges with movements in its preferred direction. A
high pc led to large network structure which possessed sufficient
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information processing capability but might result in overfitting.
On the contrary, a low pc led to simple network structure which
might result in underfitting. A high pm allowed the hidden
neurons to have more connections from the neuronal inputs
which led to fully connected topology. Increasing pc and pm
may not consistently improve the decoding performance of the
evolved neural decoder. Increasing pc and pm from 0.6 to 0.75
enlarged the computational complexity of the neural decoder so
that relevant neuronal inputs could be accurately decoded into
forelimb movement. However, frequent crossover or mutation
(high pc and pm, respectively) in the 0.8–0.9 range may introduce
redundant connections from irrelevant neurons with firing rates
that did not contribute to the kinematic parameters. Conversely,
a low pm allowed the hidden neurons to have few connections,
resulting in sparse topology. However, some neuronal inputs
had a lower likelihood of being processed. Low pc and pm may
reproduce a topology that is too sparse to build connections
between kinematic parameters and relevant neurons, resulting
in less accurate neural decoding. Our experimental results
showed that pc = 0.75 and pm = 0.75 could achieve the best
decoding performance. The evolved ECPNN-EF possessed not
only sufficient hidden neurons to decode neuronal activities, but
appropriate topology which selected forelimb movement related
inputs to the hidden neurons.

Early Stopping to Counteract Overfitting in
Evolutionary Progress of ECPNN-EF
Most evolutions of the ECPNN-EF terminated around the mean
termination generation because the early stopping criterion
was met. The early stopping criterion employed both training
and validation errors. In the early generations, the GL was
almost zero, which indicated that the validation error was
almost the same with the lowest validation error among the
recent generations. This indicates that the validation error did
not increase. Although the functional mapping between neural
activity and kinematic parameters varied across days due to
variability in the neural recording conditions, the training set
may have similar neural recording conditions as the validation
set. The ECPNN-EF learned the common functional mapping
of the training and validation sets in the early generations,
allowing for its evolved sparse topology to gradually learn to
decode common firing patterns into forelimb movements in
the validation set. Furthermore, the Pk was almost zero, which
indicated that the average training error was not larger than
the minimum training error among the recent generations.
This demonstrated that the training error gradually decreased.
Both the GL and Pk indicated that the evolution improved the
generalization ability of the ECPNN-EF in the early generations.
Before the mean termination generation, the slight increase of
the GL might indicate overfitting, but the GL was not always
higher than the Pk. This implied that the generalization ability
of the ECPNN-EF had a chance to be repaired by the evolution
as illustrated in Prechelt (1998), Sussillo et al. (2016). Most GLs
dramatically increased and were consistently higher than the Pk
after the mean termination generation. This demonstrated that
the validation error increased, indicating overfitting. Previous

work (Kao et al., 2015) has suggested that a neural decoder with
too many parameters may result in overfitting. The evolution
tended to construct a more complex neural decoder with
several weights, potentially contributing to overfitting in the
later generations. Therefore, the evolution terminated to prevent
decreased generalization ability from overfitting the training set
and to save computational time.

Best Performance Based on NN With Good
Generalization Ability and Compact
Structure
The fact that the ECPNN-EF significantly outperformed the
ECPNN-EFWC and ECPNN-EFWA in terms of r suggested that
both CBP and ABSS were essential to evolve the neural decoder
with generalization ability. The CBP pruned insignificant hidden
neurons and led to lower Nh and Nc in ECPNN-EF and ECPNN-
EFWC. This mechanism made the network more compact
and prevented the network from excessively complex structure
caused by the network crossover through many generations.
On the other hand, the ECPNN-EFWC’s Rc was expected to
be considerably larger than those of ECPNN-EF and ECPNN-
EFWA because the ABSS tended to select network with sparsely
connected topology. However, the difference of Rc among
the ECPNN-EF, ECPNN-EFWC, and ECPNN-EFWA was not
significant because of the effect of early stopping. All the
three approaches stopped evolution before 38 generations. The
networks in the population underwent only few crossovers and
mutations, and thus their network structures were less complex.
Nevertheless, the poor r in the ECPNN-EFWC suggested that
although early stopping led to lower Rc, the evolution without
ABSS would evolve a neural decoder with poor generalization
ability. ABSS selected networks without redundant connections
into next generation and thus prevented the network from fully
connected topology caused by the network mutation. Excessively
complex neural decoders may include redundant hidden neurons
that overfit the training set. This can disrupt accurate decoding
of neural activity in the testing set, which may have different
neural recording conditions from the training set. Furthermore,
redundant weights may connect to neurons with preferred
directions that are irrelevant to vertical or horizontal velocities.

The ECPNN-EF terminated and obtained near-optimum
neural decoder earlier than the ECPNN-EFWC and ECPNN-
EFWA. The validation error in these three models increased
after their termination generation. This resulted in overfitting
because their evolved structures were more complex than the
near-optimum neural decoders. Evolution of the ECPNN-EF
was more efficient than the ECPNN-EFWC and ECPNN-
EFWA, indicating that it obtained near-optimum neural decoder
faster than its reduced models. Thus, ECPNN-EF’s termination
generation was earlier than its reduced models. These results
indicate that CBP and ABSS helped evolve a neural decoder with
less complex structure and better generalization ability. Power
efficiency and power management are extremely important
concerns for fully implantable neural decoders in BMIs. Due
to its sparse topology, ECPNN-EF offers a practical approach
to computationally efficient neural decoding by reducing the
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number of hidden neurons and interlayer connections, resulting
in less memory usage and power consumption (Chen et al.,
2015). Less power consumption results in a longer battery
lifetime, which could facilitate brain implantation of neural
decoders (Sarpeshkar et al., 2008).

Best Performance Based on Appropriate
Connected Topology-Based Network
Several studies have shown that a partially connected NN
(PCNN) achieves better performance than does a fully connected
neural network (FCNN) (Elizondo and Fiesler, 1997). The
ECPNN-EF, a type of PCNN, achieved significantly higher
daily mean r than does the RNN-EF, which is a type of
FCNN; this suggests that an FCNN might consist of a large
amount of redundant connections and lead to overfitting with
poor generalization when compared to a PCNN (Elizondo
and Fiesler, 1997; Wong et al., 2010; Guo et al., 2012). Some
information, which was irrelevant to the forelimb movement and
was processed by the redundant connections, may hamper the
performance of the neural decoder and increase the likelihood
of NNs being stuck in local minima. Furthermore, the variation
in decoding performance of the RNN-EF from Test Day 3
to Test Day 10 was larger than that for Test Day 1 and
Test Day 2, whereas the variation in decoding performance of
the ECPNN-EF did not change dramatically. This suggested
that the redundant weights in the RNN-EF could not deal
with the variation of the neural recording conditions and
thus led to unstable decoding performance. The ECPNN-EF
outperformed the RNN-EF due to the use of the partially
connected topology. The trends observed in the present study
followed the suggestion that the number of connections is not
the key aspect of an NN but rather of an appropriate connected
topology (Yang and Chen, 2012).

Comparing Linear Neural Decoder-Based
Error-Correction Learning
Our prior work demonstrated a linear decoding model of the
relationship between neural firing and kinematic parameters
(Yang et al., 2016). A sliced inverse regression (SIR) with error-
feedback learning (SIR-EF) was implemented based on an SIR
linear neural decoder to fairly compare to the ECPNN-EF
algorithm (see Supplementary Note 11). Because the ECPNN-
EF had to process changing neural recording conditions over
time, it possessed more processing capabilities than the linear
model. The SIR-EF could not deal with long-term variability
in neural recording conditions because of linear properties and
limited computational complexity. The SIR-EF assigned weights
to the slices with neurons that had a similar contribution to
the lever-pressing forelimb movement. However, variations in
neural recording conditions due to the tissue’s reaction to neural
implants or micromotion of the electrodes across days resulted
in firing pattern variations (Barrese et al., 2013; Sussillo et al.,
2016). Thus, the decoding performance decreased because the
weights calculated using the training data over the first 2 days
could not predict velocity in the subsequent testing days with
different neural conditions.

NN-Based Error-Correction Learning to
Improve Long-Term Decoding Stability
It has been revealed that the functional mapping between
instantaneous firing rate and kinematic parameters might vary
in chronic recording due to the changes of neural recording
conditions (Sussillo et al., 2016). A relative increase in ECPNN’s
mean r at Test Day 3 and Test Day 5 might exhibit that
the recording conditions probably had some commonality with
those in the training phase. Therefore, the non-linear model of
ECPNN, which learned the time-dependent functional mapping
from the training set, could accurately decode the instantaneous
firing rate into kinematic parameters. The error feedback played
a subsidiary role of the neural decoding in this situation. A
considerable decrease in ECPNN’s mean r after Test Day 5 might
indicate that the neural recording conditions were different from
those in the training phase. The learned functional mapping
between instantaneous firing rate and kinematic parameters
was of no use for making ECPNN’s long-term decoding
performance stable.

In contrast, when the neural recording conditions changed
after Test Day 5, ECPNN-EF′ error feedback provided immediate
kinematic information and thus compensated for across-day
changes in functional mapping between instantaneous firing rate
and kinematic parameters. The ECPNN-EF could achieve not
only more robust within-day decoding (smaller SD) but also
more robust across-day decoding (smaller fluctuations in daily
mean r) than those of the ECPNN. This demonstrated that
employing error feedback in the ECPNN-EF improved the long-
term decoding stability when only a few days of training data
were available.
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