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Our aim is to propose an efficient algorithm for enhancing the contrast of dark images

based on the principle of stochastic resonance in a global feedback spiking network of

integrate-and-fire neurons. By linear approximation and direct simulation, we disclose the

dependence of the peak signal-to-noise ratio on the spiking threshold and the feedback

coupling strength. Based on this theoretical analysis, we then develop a dynamical

system algorithm for enhancing dark images. In the new algorithm, an explicit formula

is given on how to choose a suitable spiking threshold for the images to be enhanced,

and a more effective quantifying index, the variance of image, is used to replace the

commonly used measure. Numerical tests verify the efficiency of the new algorithm. The

investigation provides a good example for the application of stochastic resonance, and

it might be useful for explaining the biophysical mechanism behind visual perception.

Keywords: stochastic resonance, spiking networks, visual perception, variance of image, contrast enhancement

INTRODUCTION

The phenomenon of stochastic resonance, discovered by Benzi et al. (1981), is a type of cooperative
effect of noise and weak signal under a certain non-linear circumstance, in which the weak signal
can be amplified and detected by a suitable amount of noise (Nakamura and Tateno, 2019). Distinct
biological and engineering experiments using crayfish (Douglass et al., 1993; Pei et al., 1996),
crickets (Levin and Miller, 1996), rats (Collins et al., 1996), humans (Cordo et al., 1996; Simonotto
et al., 1997; Borel and Ribot-Ciscar, 2016; Itzcovich et al., 2017; van der Groen et al., 2018), or optical
material (Dylov and Fleischer, 2010) suggested that noise might be helpful for stimuli detection and
visual perception.

As the visual perception of images of low contrast can find significance in many fields such
as medical diagnosis, flight security, and cosmic exploration, theoretical research on stochastic
resonance-based contrast enhancement has become an interesting but challenging topic (Yang,
1998; Ditzinger et al., 2000; Sasaki et al., 2008; Patel and Kosko, 2011; Chouhan et al., 2013; Liu
et al., 2019; Zhang et al., 2019). Simonotto et al. (1997) used the noisy static threshold model
to recover the picture of Big Ben, Patel et al. proposed a watermark decoding algorithm using
discrete cosine transform and maximum-likelihood detection (Patel and Kosko, 2011), Chouhan
et al. explored contrast enhancement based on dynamic stochastic resonance in the discrete wavelet
transform domain (Chouhan et al., 2013), and Liu et al. (2019) applied an optimal adaptive bistable
array to reduce noise from the contaminated images. It is more and more evident today that
stochastic resonance can be utilized as a visual processing mechanism in nervous systems and
neural engineering applications, although many theoretical and technical problems remain to
be solved.
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There exist at least three issues to be clarified. The first
issue is about model selection. In the existing literatures, the
neuron model commonly used for image enhancing is the static
thresholdmodel. Since the threshold neuron is too oversimplified
to contain the evolution of themembrane voltage, amore realistic
biological neuron model should be considered. The second
issue is that one cannot find enough details from the existing
algorithms. For example, in those algorithms, there is nearly no
explanation of the choice of the critical threshold, across which
the pixel value of a black–white image will switch. Note that a
suitable threshold is vital for image enhancement, so the second
question we have to face is what a critical threshold should be.
The last issue is about the adoption of the quantifying index,
which helps one to pick out an optimally detected image. A
typical assumption is that one knows a clear or clean reference
picture, but in most practical applications, how can one get such
reference pictures especially when taking photos in darkness?

To answer the above questions, we consider an integrate-
and-fire neuron network with global feedback in this paper.
Our work can be divided into two parts. The first part is
model preparation, where we theoretically observe stochastic
resonance based on linear approximation. In the second part, by
integrating all the physiological and biophysical aspects of visual
perception, we propose an algorithm for boosting the contrast
of an image photographed in darkness. We give a criterion
for determining the critical threshold and adopt the variance
of image to quantify the quality of the enhanced image. Our
numerical tests demonstrate that the new algorithm is effective
and robust.

STOCHASTIC RESONANCE IN AN
INTEGRATE-AND-FIRE NEURONAL
NETWORK

Consider a global feedback biological network of N integrate-
and-fire neurons (Lindner and Schimansky-Geier, 2001;
Sutherland et al., 2009). The subthreshold membrane potential
of each consisting neuron is governed by

C
dVi

dt
= −gL(Vi − VL)+ Ii(t)+ Cf (t)+ Cs( t), 1 ≤ i ≤ N (1)

where Vi is the membrane potential, C is the capacitance, gL is
the leaky conductance, VL is the leaky voltage, and the external
synaptic input is

dIi(t) = C
∑p

k=1
akdExcn,k(t)− C

∑q

l=1
bldInhn,l(t) (2)

with the excitatory synaptic current Excn,k(t) of rate λE,k and the
inhibitory synaptic current Inhn,l(t) of rate λI,l, both modeled
as i.i.d. homogenous Poisson processes, with ak(1 ≤ k ≤
p) and bl(1 ≤ l ≤ q) denoting the efficacies for excitatory
and inhibitory synapses, respectively. Assume that each neuron
receives a subthreshold cosine signal, s(t) = ε cos(�t), from the
external environment. By “subthreshold,” it means that, in the

absence of the synaptic current input (2), themembrane potential
cannot cross the given spiking threshold from below (Kang et al.,
2005). Here we use Vr to denote the resetting potential; that
is, whenever the ith membrane potential reaches the threshold
Vth from below, the ith neuron will emit a spike and then the
membrane potential will be reset to Vr immediately. Let ti,k be
the kth spiking instant recorded from the ith neuron; then, the
output spike train of the ith neuron can be described as yi(t) =
∑

k δ(t − ti,k). In this network, the output spike trains from every
consisting neuron are fed back to the ith neuron for 1 ≤ i ≤ N
through the synaptic interaction.

f (t) =
G

N

∫ ∞

τD

dτ
τ − τD

τ 2S
exp(−

τ − τD

τS
)
∑N

n=1
yn(t − τ ) (3)

Here the global feedback interaction is implemented by a
convolution of the sum of all the spike trains with a delayed
alpha function. We fix the transmission time delay τD = 1
and the synaptic time constant τS = 0.5. In Equation (3), the
feedback strength G < 0 indicates inhibitory feedback, G > 0
represents excitatory feedback, and Equation (1) turns into a
neuron array model for enhancing information transition (Yu
et al., 2012) when G = 0.

For simplicity, let us drop the subscripts k and l in the
rates and the synaptic efficacies, so λE = λI = λ, p = q
and b = ra, with r being the ratio between inhibitory and
excitatory inputs. Invoking diffusion approximation transforms
the synaptic current to

dIi(t) = C(ap(1− r)λdt + a

√

pλ(1+ r2)dBi(t))

where (B1(t),B2(t), . . . ,BN(t)) is n dimensional standard
Brownian motions. With Equation (3) available, Equation (1)
can be rewritten as

d

dt
Vi = −

1

τ
(Vi − VL)+ ap(1− r)λ

+ a

√

pλ(1+ r2)ξi(t)+ f (t)+ s(t) (4)

where τ−1 = gL/C and ξi(t) is Gaussian white noise satisfying
〈

ξi(t)
〉

= 0 and
〈

ξi(t + s)ξj(t)
〉

= δ(s) for 1 ≤ i, j ≤ N.
It has been shown that the firing rate is approximately a

linear function of the external input near the equilibrium point
(Gu et al., 2019), so we apply the linear approximation theory
(Lindner and Schimansky-Geier, 2001; Pernice et al., 2011;
Trousdale et al., 2012) to calculate the response of each neuron.
Let µ = ap(1− r)λ+VL/τ and D = 1

2a
2p2λ(1+ r2). Regarding

each neuron as linear filter of an external perturbation, we rewrite
Equation (4) into Equation (5)

dVi(t)

dt
= −

1

τ
Vi(t)+ (µ +

〈

f (t)
〉

0
)+

√
2Dξi(t)

+ (f (t)−
〈

f (t)
〉

0
)+ s(t)

︸ ︷︷ ︸

external perturbation

, 1 ≤ i ≤ N. (5)
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FIGURE 1 | The evolution diagram of the integrate-and-fire neuron network:

(A) diffusion approximation transforming the synaptic current with r = 1, (B)

membrane potential of neuron where the red arrow denotes the discharge

time, (C) raster plot of the network where every node denotes a spike at a

corresponding time and neuron, and (D) feedback of the network. The

parameters are set as µ = 0.8, VT = 1, VR = 0, G = 0.5, ε = 0.1, � = 1,

τS = 0.5, τD = 1, τref = 0, and N = 50.

For simplicity, all of the variables are dimensionless and most of
parameters are taken from Lindner et al. (2005), and particularly,
time is measured in unit of membrane time constant τ . The
dynamical evolution of the network is illustrated in Figure 1.

The phenomenon of stochastic resonance is frequently
measured by the spectral amplification factor (Liu and Kang,
2018) and the output signal-to-noise ratio (Kang et al., 2005).
With the help of the linear approximation theory, both the
spectral amplification factor and the output signal-to-noise ratio
for the homogeneous network can be explicitly attained. The
spectral amplification factor is defined as the ratio of the power
denoted by the delta-like spike in the output spectrum at±� over
the power of the input signal, namely,

SAF =
πε2

∣
∣A(�, µ̄,D)

∣
∣
2

∣
∣1− GA(�, µ̄,D)F(�)

∣
∣
/πε2 =

∣
∣A(�, µ̄,D)

∣
∣
2

∣
∣1− GA(�, µ̄,D)F(�)

∣
∣
(6)

while the signal-to-noise ratio, defined as the ratio of the power
of the signal component over the background noise, is given by

SNR = lim
1ω→0

∫ �+1ω

�-1ω
Gyy(ω)dω

S2(�)
=

Nπε2|A(�, µ̄,D)|2

S0(�, µ̄,D)
(7)

where A is the linear susceptibility, µ̄ is the base current,
F(ω) = eiωτD/(1− iωτS)

2 is the Fourier transform of the
kernel in Equation (2) and S0(ω,µ,D,VT) is the fluctuating

spectral density of the unperturbed system. Gyy(ω) is power
spectral density of output spike train, which consists of the
signal component S1(ω) and the fluctuation component S2(ω).
Actually, within the range of linear response, the power spectrum
Gyy(ω) is a sharp power peak at the signal frequency riding over
the spectral density of fluctuations, as shown in Figure 2. The
detailed derivations of power spectral density Gyy(ω), spectral
amplification factor SAF and output signal-to-noise ratio SNR are
further described in Appendix.

Equation (6) demonstrates that the spectral amplification
factor is independent of the network size, whereas Equation
(7) shows that the signal-to-noise ratio is proportional to the
size. When comparing with the simulation results, Figure 3

shows that the theoretical results tend to be an overestimated
approximation, but the overestimation is reduced as the network
size increases. For this reason, the network size is fixed to be
large enough in Figures 4, 5 so that the theoretical and simulation
results are accurately matched.

Since the dependence of the spectral amplification factor or
the signal-to-noise ratio on noise intensity is non-monotonic,
one can conclude that stochastic resonance occurs for the given
parameters in Figure 3. Figure 4 further shows the image of
the signal-to-noise ratio on the two-parameter plane of noise
intensity and global feedback strength. From this figure, it can
be seen that, for fixed feedback strength, the existence of a
sharp peak indicates stochastic resonance in the global feedback
network, while for fixed noise intensity, the signal-to-noise ratio
is a growing function of the feedback strength, which suggests
the larger feedback strength is beneficial for resonant effect.
Here we emphasize that the effect of the inhibitory feedback on
the weak signal amplification is different from its effect on the
intrinsic oscillation measure in Lindner et al. (2005) since these
are two kinds of different synchronization. Phenomenologically,
the former is the synchronization behavior of the external weak
signal and the firing activity caused by noise, while the latter is
the synchrony among the population neurons, and the difference
in quantifying indexes directly leads to distinct observation.
Thus, from the viewpoint of weak signal detection, one can say
that the excitatory neural feedback is better than the inhibitory
neural feedback.

Note that, in real neural activities, the spiking threshold
may vary following the changing circumstance (Destexhe, 1998;
Taillefumier and Magnasco, 2013), so it makes sense to consider
the effect of the threshold on the population activity. By Equation
(7), one has

∂SNR

∂VT
= S−2

0 Nπε2
(

2Re

(

A∗ ∂A

∂VT

)

S0 − |A|2
∂S0

∂VT

)

, (8)

where

∂A
∂VT

= iω√
D(iω−1)







∂r
∂VT

D̃iω−1

(
µ−VT√

D

)

−eγ D̃iω−1

(
µ−VR√

D

)

D̃iω

(
µ−VT√

D

)

−eγ eiωτR D̃iω

(
µ−VR√

D

) + r

− 1√
D

∂D̃iω−1
∂VT

∣
∣
∣
∣
∣
µ−vT√

D

−eγ
(µ−VT )

2D D̃iω−1

(
µ−VR√

D

)

D̃iω

(
µ−VT√

D

)

−eγ eiωτR D̃iω

(
µ−VR√

D

)







+ iω√
D(iω−1)






r

(

− 1√
D

∂D̃iω
∂VT

∣
∣
∣
∣
∣
µ−vT√

D

−eγ eiωτR
(µ−VT )

2D D̃iω-1

(
µ−VR√

D

)
)
(

D̃iω−1

(
µ−VT√

D

)

−eγ D̃iω−1

(
µ−VR√

D

))

(

D̃iω

(
µ−VT√

D

)

−eγ eiωτR D̃iω

(
µ−VR√

D

))2






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FIGURE 2 | Power spectrum density obtained from linear approximation (blue solid curve), compared to simulation (red dash curve) for D = 0.01 (A) and D = 0.1 (B),

respectively. The parameters are set as µ = 0.8, VT = 1, VR = 0, G = 0.5, N = 3, ε = 0.1, � = 1, τS = 0.5, τD = 1, τref = 0, and τ = 1. The black arrow indicates the

spike spectral line at the driving frequency, and the remaining part characterizes the spectral density of environmental fluctuations. Clearly, the spectral line of the

driving signal is riding over the fluctuation spectral density. The explanation of figure and derivation of power spectrum density are displayed in Appendix.

and

∂S0

∂VT
=

∂r

∂VT

|D̃iω(
µ−vT√

D
)|2 − e2γ |D̃iω(

µ−vR√
D

)|2

|D̃iω(
µ−vT√

D
)− eγ eiωτRD̃iω(

µ−vR√
D

)|2

+ r

2 Re

(

− 1√
D

(

D̃iω(
µ−vT√

D
)
)∗

∂D̃iω
∂VT

∣
∣
∣
∣

µ−vT√
D

)

− e2γ µ−VT
D |D̃iω(

µ−vR√
D

)|2

|D̃iω(
µ−vT√

D
)− eγ eiωτRD̃iω(

µ−vR√
D

)|2

+ r

2 Re

(
(

D̃iω(
µ−vT√

D
)− eγ eiωτRD̃iω(

µ−vR√
D

)
)∗
(

D̃iω(
µ−vT√

D
) · ∂D̃iω

∂VT

∣
∣
∣
∣

µ−vT√
D

· (− 1√
D
)− eγ eiωτRD̃iω(

µ−vR√
D

)µ−VT
2D

))

∣
∣
∣D̃iω(

µ−vT√
D

)− eγ eiωτRD̃iω(
µ−vR√

D
)
∣
∣
∣

4

with Re( · ) being the real part of a complex value. Here,
the Whittaker notation D̃a(Abramovitz and Stegun, 1964)
is used for the parabolic cylinder function, with the

recursion property D̃′
a(x) + 1

2xD̃a(x) − aD̃a−1(x) = 0 and

∂r

∂VT
=

− r2
√

π√
2D

· exp
(
(

µ+Gr−VT√
2D

)2
)

erfc
(

µ+Gr−VT√
2D

)

1+ Gr2
√

π√
2D

(

exp

(
(

µ+Gr−VR√
2D

)2
)

erfc
(

µ+Gr−VR√
2D

)

− exp

(
(

µ+Gr−VT√
2D

)2
)

erfc
(

µ+Gr−VT√
2D

)
)

The evolution of the signal-to-noise ratio [Equation (7)] and its
partial derivative [Equation (8)] obtained via the threshold is
shown in Figures 5A,B, respectively. The monotonical decrease
in the signal-to-noise ratio suggests that a smaller threshold is
better for weak signal detection. Moreover, from these figures,
one can also see that an increasing distance between the
base current and the firing threshold will lead to a reduced
signal-to-noise ratio, as disclosed by Kang et al. (2005). As
a result, the minimum distance between the base current
and the firing threshold should be an important reference
in designing visual perception applications of the global
feedback network.

STOCHASTIC RESONANCE BASED IMAGE
PERCEPTION

We have systematically disclosed the phenomenon of stochastic
resonance from the viewpoint of model investigation, and in this

section, we wish to propose an algorithm for visual perception
under the guidance of the above theoretical results. In fact, it is
the theoretical evidence of SR in the integrate-and-fire neuron
network in section stochastic resonance in an integrate-and-
fire neuronal network that motivates us to do the application

exploration. If noise at a certain level can amplify a weak
harmonic signal via stochastic resonance, then noise of suitable
amount can very likely enhance a more realistic weak signal such
as the image of low contrast via aperiodic stochastic resonance.

In stochastic resonance, since the external weak signal is
harmonic, one can use the spectral amplification factor or
the output signal-to-noise ratio as quantifying index through
frequency matching, while in aperiodic stochastic resonance, the
external weak signal is aperiodic, so one has to resort to some
coherence measure to describe the involved shape matching,
as confirmed in neural information coding (Parmananda et al.,
2005), hearing enhancement (Zeng et al., 2000). For the picture
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FIGURE 3 | The theoretical (solid) and simulation (dash) results of spectral amplification factor (A) and signal-to-noise ratio (B) vs. noise intensity, with

µ = 0.8,VT = 1,VR = 0, ε = 0.1,� = 1,τS = 0.5,τD = 1,τref = 0, and τ = 1, under different sizes of the network N and different feedback strengths G, respectively.

FIGURE 4 | Signal-to-noise ratio for different noise intensities D and feedback

strengths G. Data were obtained by the numerical simulation of a network,

with µ = 0.8, VT = 1, VR = 0, N = 50, ε = 0.1, � = 1, τS = 0.5, τD = 1,

τref = 0, and τ = 1. It is clear that for fixed G, the signal-to-noise ratio shows a

rise before fall as a function of noise intensity D; for fixed D, the signal-to-noise

ratio is an increasing function of the feedback strength G.

of low contrast, its contrast can be changed by noise and
will attain to a maximum when the phenomenon of aperiodic
stochastic resonance occurs; thus, we use the variance of
image as a quantifying index as explained below. Even though
a difference exists in quantifying index between stochastic
resonance and aperiodic stochastic resonance, we can still use the
results obtained from the model investigation as guidance. The
numerical results in section stochastic resonance in an integrate-
and-fire neuronal network show that positive feedback strength
and low threshold are beneficial factors for observing the effect of
stochastic resonance, and therefore we will take the two factors
into account in the following algorithm design.

With the theoretical guidance inmind, we now start to present
the algorithm for enhancing the image of low contrast. By the

term dark image or image of low contrast, we mean that the
picture is taken in a dark surrounding and cannot be detected
at first sight. We put the new algorithm under the frame of
the fundamental process for visual formation (Purves, 2011; Li,
2019): the photoreceptors in the retina receive the light and
convert it into electrical signals, which is called encoding process,
and then the signals are processed ultimately in the visual cortex,
which is called decoding and integration process. Our algorithm
is expounded into three steps, as shown in the flow chart in
Figure 6.

Step 1. Encoding
When light enters the eye, the retina will convert the optical signal
into electrical signal first. There are two kinds of photoreceptors
in the retina, which are called rods and cones, respectively.
The cones are active at bright light conditions and capable of
color vision, while the rods are responsible for scotopic vision
but cannot perceive color. As a result, human can capture the
shape of the object in dim surroundings. We use the global
feedback network [Equation (5)] of K integrate-and-fire neurons
to simulate the perceptive process for rod cells. The membrane
potential Vm,n

i for each neuron is governed by

dVm,n
i (t)

dt
= −

1

τ
Vm,n
i (t)+ U(m, n)+

√
2Dη

m,n
i (t)

+ fm,n(t), 1 ≤ i ≤ K (9)

where the superscript corresponds to the pixels of the image
and the subscript corresponds to the neurons, U(m, n) ∈ [0, 1]
denotes the brightness of the input image, the Gaussian white

noise η
m,n
i (t) satisfying

〈

η
m,n
i (t + s)ηm,n

j (t)
〉

= δ(s)δ(i − j) is

assumed to describe the fluctuation arising from the rhythms and
the distribution of the rod cells along the retina, and fm,n(t) is
the same global feedback function as in Equation (3). Upon Vm,n

i
reaching the threshold Vth from below, the ith neuron will emit
an action potential at once and then the membrane potential is
immediately reset toVr .
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FIGURE 5 | Signal-to-noise ratio (A) and its partial derivative with respect to threshold VT (B) under different reference currents µ = 0.2 (blue), 0.5 (orange), and 0.8

(black). The network size is N = 50.

FIGURE 6 | Schematic diagram of the dark image enhancement algorithm based on the global feedback integrate-and-fire network.
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Step 2. Decoding and Integration
The coming information from the rod cells is decoded into a
binary image within the visual cortex. We explain it from two
aspects. Firstly, the carrier of neural information transmission is
spike impulse, so the encoded information should be in the form
of a spike train instead of the continuous membrane potential.
Secondly, note that rod cells play a minor role in color vision,
which actually leads to loss of color in dim light (Purves, 2011;
Owsley et al., 2016), so it is reasonable to assume that all the
receiving spike trains can be transformed into a binary image.
Let matrix (Index i)M×N store the spiking information of the ith
neuron at the encoding stage. Then, the corresponding binary
image matrix (Pic i)M×N decoded by the ith neuron can be
written as

Pici(m, n) =
{

0, Indexi(m, n) = 0;
255, Indexi(m, n) = 1.

(10)

With the decoded information from each neuron available,
the visual cortex, as command center, will integrate all the
information to form an overall gray image, which should be
the picture we finally see in the dark surrounding. The idea of
integration is inspired by boosting (Friedman, 2002). If each
binary image is regarded as the output of the weak learner, the
combination of the weak learners will be a strong learner and
produce the gray image. We assume that the integration is in the
way of linear superposition, namely,

Pic(m, n) =
1

N

k
∑

i=1

Pici(m, n) (11)

where (Pic)M×N represents the integrated image.
We wish to put more emphasis on the validity of using the

principle of stochastic resonance in our perception algorithm. It
is well-known that noise is prevalent at the cellular level, and the
level of the fluctuation in a neural system can be self-adjusted
(Faisal and Selen, 2008; Durrant et al., 2011). What is more,
distinct biophysical experiments (Douglass et al., 1993; Collins
et al., 1996; Cordo et al., 1996; Levin and Miller, 1996; Pei et al.,
1996; Borel and Ribot-Ciscar, 2016; Itzcovich et al., 2017; van
der Groen et al., 2018) have shown that the benefit of noise can
be utilized by biology. Thus, we assume that the human brain
can select the perceived image of maximal contrast by means
of the principle of stochastic resonance. The perceptive function
of the brain is realized by neuron population, while the effect
of stochastic resonance can be enhanced by uncoupled array or
coupled ensemble; thus, our visual perception algorithm should
be of some biological rationality.

The procedure of the new algorithm is carried out in one unit
of time by Euler integration with a step length of 0.01 time unit
for all the detection experiments. The dark-input images were
photos directly taken in a dark environment, such as that in
Figure 7A, or artificially designed by compressing the original
bright images into dark inputs, as shown in Figures 7D, G, J.
The recognized images of the best quality, namely, the best
enhanced images, are shown in the second column. During the
experiments, it was found that some subtle key details, such as the

quantifying index, the firing threshold, and the global feedback
strength, need to be further explained.

Quantifying Index
To evaluate the quality of an image, in the image processing
literature, the most frequently used indexes are the peak signal-
to-noise ratio and the mean-square error, where some known
reference images are required. The perceptual quality metric
(PQM) (Wang et al., 2002), another quantifying index used in
visual perception, can skillfully evade the reference images. The
more that PQM is close to 10, the better the quality of the image
is (Susstrunk and Winkler, 2003), but it tends to become flat
near the optimal value, as shown in Figure 7. Since the flatness
is not favorable for picking out the optimal noise intensity to get
the best enhanced image, the objective here is to find a better
quantifying index to assess the perceptual quality. The new index
is found to be the variance of image. For a given image UM×N ,
the variance is defined by

Var (U) =
1

(M × N)2

M
∑

i=1

N
∑

j=1

(

U (m, n) − Ū
)2
,

where Ū is the mean of the pixel matrix UM×N . The reason
lies in the fact that this variance can reflect the heterogeneity
among all the pixels. Intuitively, for a low-contrast image, the
value of the variance will be quite low, but for a high-contrast
image, the variance should take a much higher value. Figure 7
indeed verifies this reasoning. First of all, when the PQM is closer
to 10, the variance curve will be nearer its peak. That is, the
variance has the same capacity to identify which picture is the
best in this task. Secondly, there is a sharp peak in the variance
vs. the noise intensity curve so that one can easily detect an
image with the best quality, namely, the best enhanced image.
This is an advantage of the variance measure for the perceptual
quality over the PQM measure, as shown in the third column of
Figure 7. In addition, we note that the mean of the image is not
suitable to be used as quantifying index. In fact, the mean of the
image measures the luminance of an image, and it takes different
values from the dark input and the best enhanced image to the
blurred image due to excessive noise, but its value monotonically
grows as noise intensity increases, as shown in Figure 8; thus, the
mean is incapable of identifying the image with the best contrast
as well. Undoubtedly, the comparison further emphasizes the
applicability of the variance in visual perception.

Firing Threshold
In real cortical activities, neurons can adopt a self-adaptive
threshold strategy dependent on varying environments
(Destexhe, 1998; Taillefumier and Magnasco, 2013) since
the threshold has a direct impact on the neural electronic
activity. We find that the threshold also has a large impact on the
performance of the visual perception algorithm in Figure 9. The
picture clearly shows that the choice of a suitable firing threshold
is vital for the quality of the perceived image. Here the threshold
is chosen according to the following rule. Firstly, find the
frequency histogram of the dark image and denote the maximum
pixel of the normalized histogram as max ( U). Then, define the
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FIGURE 7 | First column (A, D, G and J): original dark-input images; second column (B, E, H and K): enhanced images with best quality; and third column (C, F, I

and L): dependence of variance (blue, square) and PQM (red, dot) on noise intensity, for each experiment. The parameters are set as k = 1,000, VT = 0.1, VR = 0,

G = 0.12, τs = 0.05, τD = 0.01, and τ = 1. For each experiment, the location of the peak of variance is always near the location of the bottom of the PQM, indicating

that variance helps in recognizing the best-quality image.

threshold byVth = 10−1ceil
(

10max( U)
)

, where ceil (·) is the
rounding function toward positive infinity. For example, the
maximum pixel of the image in Figure 7D is max ( U) = 0.05, as
seen from Figure 8A1; accordingly, the threshold is taken as 0.1.
It is worthy to remark that this kind of choice can guarantee that
the distance between the base current and the firing threshold
is minimized as far as possible, as suggested by the discussion
following Figure 5.

Feedback Strength
In section stochastic resonance based image perception, it was
demonstrated that, when the global feedback changes from the
inhibitory type into the excitatory type, the peak of the signal-
to-noise ratio can be improved as shown in Figure 4. This
theoretical observation encourages us to check the influence of
the feedback strength of the encoding stage on the enhanced
images as illustrated in Figure 10. Evidently, the excitatory
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FIGURE 8 | Demonstration of the advantage of variance over mean: (A) 1: normalized histogram of the dark input image in Figure 7D, (A) 2: normalized histogram of

the best enhanced image in Figure 7E, (B) Dependence of the variance (blue square) and the mean (red dot) on noise intensity. As seen from (A) 1 and 2, the

dark-input image and the best enhanced image differ in the histogram. Nevertheless, it is not applicable for picking up the image of the best contrast since the mean

grows monotonically (B) as noise intensity increases, even l when the contrast of the detected image deteriorates again. By contrast, the bell-shaped change of

variance is suitable.

FIGURE 9 | The best enhanced image under VT = 0.1 (A), VT = 0.2 (B), and VT = 0.3 (C), respectively. (D) Dependence of variance on the noise intensity under

VT = 0.1 (red, circle), VT = 0.2 (black, dash), and VT = 0.3 (green, solid). Other parameters are the same with Figure 7. This figure demonstrates that the best

enhanced image is dependent on the spiking threshold, and thus choosing a suitable threshold is vital for image detection.

FIGURE 10 | The best enhanced image under G = 0.12 (A), G = 0 (B), and G = −0.12 (C), respectively. (D) Dependence of variance on the noise intensity under

G = 0.12 (red, circle), G = 0 (black, dash), and G = −0.12 (green, solid). Other parameters are the same with Figure 7. Clearly, an excitatory feedback is the best

among all the types of global feedback, and this implies that different rods should cooperate with each other when facing the same task.
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feedback leads to the best enhancement among all the cases,
and thus one can fix the feedback strength to be positive as
shown in Figure 7. We emphasize that this finding does not
deny that inhibition plays an important role in visual perception
(Roska et al., 2006). As we know, both excitation and inhibition
exist in the retina (Rizzolatti et al., 1974). We assume that
excitation is reflected by step 1 of our algorithm. That is, different
neurons in the retina help each other in detecting the same
target and exhibit the cooperative effect in a general homogenous
network at the encoding stage. This cooperative effect helps the
individuals of the network spike regularly, and certainly this
effect is consistent with the description in Brunel (2000) which
states that the neurons exhibit a regular state when excitation
dominates inhibition.

CONCLUSION

We have proposed a visual perception algorithm by combining
the stochastic resonance principle of a global feedback network
of integrate-and-fire neurons with the biophysical process for
visual formation. The results can be summarized from the two
closely related aspects. From the aspect of model investigation,
we applied the technique of linear approximation and direct
simulation to disclose the phenomenon of stochastic resonance
in a global feedback network of integrate-and-fire neurons. It is
demonstrated that both the spectral amplification factor and the
output signal-to-noise ratio obtained from linear approximation
are accurate when the size of the network is sufficiently large.
Then, using the results derived from linear approximation, we
found that positive feedback strength is beneficial for boosting
the output signal-to-noise ratio, while a decreasing distance
between the base current and the firing threshold can enhance the
resonance effect. The theoretical observations are new, and they
are also helpful for us to understand the working mechanism in
rod neurons.

From the aspect of algorithm design, by applying the global
feedback network (5) of integrate-and-fire neurons to simulate
the perceptive process for rod cells, we have developed a
novel visual perception algorithm. In the algorithm, the firing
threshold is so critical that an inappropriate choice will lead
to inefficiency in image enhancement. Under the inspiration
of the theoretical finding that a decreasing distance between

the base current and the firing threshold is favorable for
stochastic resonance, we have proposed an explicit expression of
a suitable firing threshold by referring to the histogram of the
dark images. Moreover, we creatively introduced the variance
of image rather than the perceptual quality metric as a more
effective measure to examine the quality of the enhanced images.
Massively numerical tests have shown that the biologically
inspired algorithm is effective and powerful. We emphasize that
the visual perception algorithm is a dynamical system based
algorithm. We hope that it can be applied to relevant fields such
as medical diagnosis, flight security, and cosmic exploration,
where dark images are common. The algorithm also offers a
good example of how the dynamical system research guides the
neural engineering application. Following the success of this

research, we will start to explore more interesting and important
problems, such as the recovery of incomplete images, in the
near future.
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