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Human arm movements are highly stereotypical under a large variety of experimental

conditions. This is striking due to the high redundancy of the human musculoskeletal

system, which in principle allows many possible trajectories toward a goal. Many

researchers hypothesize that through evolution, learning, and adaption, the human

system has developed optimal control strategies to select between these possibilities.

Various optimality principles were proposed in the literature that reproduce human-like

trajectories in certain conditions. However, these studies often focus on a single cost

function and use simple torque-driven models of motion generation, which are not

consistent with human muscle-actuated motion. The underlying structure of our human

system, with the use of muscle dynamics in interaction with the control principles, might

have a significant influence on what optimality principles best model human motion. To

investigate this hypothesis, we consider a point-to-manifold reaching task that leaves

the target underdetermined. Given hypothesized motion objectives, the control input

is generated using Bayesian optimization, which is a machine learning based method

that trades-off exploitation and exploration. Using numerical simulations with Hill-type

muscles, we show that a combination of optimality principles best predicts human

point-to-manifold reaching when accounting for the muscle dynamics.

Keywords: neuro-musculoskeletal model, motor control, optimality principles, hierarchical control, biomechanics,

biorobotics, Bayesian optimization

1. INTRODUCTION

Goal-directed armmovement has been studied extensively in neuroscience with the aim of deriving
a predictive model of human and animal movements (e.g., Bizzi et al., 1984; Flash and Hogan,
1985; Harris and Wolpert, 1998; Campos and Calado, 2009). It is widely accepted that the central
nervous system (CNS) selects a specific movement to follow an optimal path, which minimizes
certain costs to achieve the movement goal (Todorov and Jordan, 2002; Franklin and Wolpert,
2011). Still, it is unclear which criterion of optimality is chosen by the CNS while generating
and controlling the motion. For point-to-point reaching tasks, several different isolated optimality
criteria have been proposed, such as e.g., minimum hand jerk (Flash and Hogan, 1985), minimum
torque change (Uno et al., 1989), minimum energy (Alexander, 1997), and minimum variance
(Harris and Wolpert, 1998). In a more recent work, Berret et al. (2011b) used kinematic input
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data and reconstructed the optimality function for point-
to-manifold movements in humans. Such point-to-manifold
movements are interesting, as they allow for a richer set of
solutions as compared to point-to-point movements (de Rugy
et al., 2012; Kistemaker et al., 2014; Mehrabi et al., 2017).
Berret et al. (2011b) found that only a combined cost function
minimizing mechanical energy consumption and movement
jerk (maximizing smoothness) allows to reasonably predict the
trajectories of point-to-manifold movements.

In the study of Berret et al. (2011b), muscle forces acting
on the respective joints are lumped to one joint torque per
each joint. While this assumption is supported by the idea
that muscles are grouped together to produce joint torque
forming synergies of muscles (e.g., d’Avella et al., 2003), it
neglects the contribution of the individual muscle to joint
torque generation. Similar, in a very recent study by Oguz et al.
(2018), free-space reaching motions were investigated by using
joint torques representing muscle contractions. Both studies
do not take into account the interaction of the individual,
non-linear muscle dynamics with the non-linear dynamics of
the skeleton. However, it is known that muscles with their
characteristic activation dynamics, non-linearities, elasticities,
and antagonistic setup contribute to the characteristics of
biological movement (van Soest and Bobbert, 1993; Daley
et al., 2009; Schmitt et al., 2019) which has consequences for
the interpretation of the underlying motor control principles
(Pinter et al., 2012). Thus, the question is whether individual
muscle dynamics play a significant role in the optimality of
motion generation and control for point-to-manifold tasks?
More precisely, in comparison with Berret et al. (2011b)
the question is, whether or not the composite optimality
function found, still holds true, if muscle dynamics are
considered, explicitly?

In this contribution, a neuro-musculoskeletal arm model
(Bayer et al., 2017; Driess et al., 2018; Stollenmaier et al.,
2020) is used to simulate arm movements. Point-to-manifold
experiments are investigated numerically. The underlying
control policy to generate arm movements is synthesized
using different isolated, well-known optimality principles and
combinations thereof. Due to the complexity of the movement
apparatus, the optimality of a given control policy can only
be evaluated by performing a simulation. Therefore, we
propose to use Bayesian optimization as a sample efficient
technique to optimize the cost function corresponding to
a chosen optimality principle. Bayesian optimization uses
a probabilistic surrogate model of the cost function to
automatically trade-off exploitation and exploration according
to a utility function. Thus, it can be interpreted as a form
of reinforcement learning similar to the natural process in
animal learning.

The purpose of this study is to investigate whether previously
proposed cost functions allow to reproduce experimental data
of human point-to-manifold movements. The novelty of our
work is the use of a neuro-musculoskeletal model to synthesize
optimal movement considering both isolated and combined cost
functions and investigate the contribution of individual muscle
dynamics in point-to-manifold movements.

2. METHODS

Different optimality principles are applied to a two-joint
biophysical arm model with six muscles, represented by Hill-
type muscles (Günther et al., 2007; Haeufle et al., 2014),
to investigate free endpoint movements. A point-to-manifold
scenario is set up to distinguish between various cost functions.
The arm movement is generated by finding a static, open-
loop muscle stimulation set for all included muscle, using the
selected optimality principle, to reach the manifold from a given,
fixed starting point. Thus, let ξ be a trajectory of features
(e.g., joint positions, velocities, torques, etc.) that is obtained by
simulating an arm movement as a function of the static muscle
stimulation u. The trajectory evolves solely from the dynamics
of the musculoskeletal system. The optimization problem for the
specified cost function J reads as

min
u∈U

J(ξ (u)) (1)

where U = [0, 1]n denotes the space of n possible muscle
stimulations (in our case n = 6). Testing a new muscle
stimulation involves the computationally expensive simulation of
the arm system since no closed-form expression for ξ (u) exists.
To address this challenge, we propose to findmuscle stimulations
in a sample efficient way via Bayesian optimization.

In the following, the single components of the workflow,
namely the neuro-musculoskeletal arm model, the formulation
of the optimality principles as cost functions, and Bayesian
optimization are described. Furthermore, the general setup is
shown.

2.1. Setup
Point-to-manifold experiments are more suitable to distinguish
between different cost functions than point-to-point
experiments, as shown by Berret et al. (2011b). To validate
the predictions of our model, we resort to previously published
experimental data from Berret et al. (2011a). In this study,
subjects were asked to point with a one-shot movement to a
bar placed in front of them with closed eyes. In contrast to
typical point-to-point experiments, the endpoint on the bar
was not defined a priori but is freely chosen by the subjects.
The numerical setup is established accordingly by placing the
neuro-musculoskeletal arm model in front of a vertical bar, as
visualized in Figure 1. The bar represents the target manifold in
front of the subject at a distance of 85% of the total arm length
(L = l1 + l2, where l1 and l2 denote upper arm and forearm
lengths, respectively). Every simulation starts from the same
given set point with zero initial velocities and an arm posture of
ϕ = 90◦ for the elbow and ψ = 0◦ for the shoulder angle. This
initial condition can be seen in Figure 1, the angles are defined
in Figure 2. These values are chosen to mimic the experimental
setup from Berret et al. (2011b). The initial condition for the
muscles was chosen to minimize the sum of muscle stimulation
to resemble a relaxed starting position (Bayer et al., 2017).
Applying an open-loop stimulation u ∈ U then results in the
execution of a dynamic movement. The trajectory and endpoint
equilibrium position depend on the chosen stimulation u.
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FIGURE 1 | Illustration of the setup. Possible trajectories of the finger tip from

the start position to the bar are shown in dashed lines.

2.1.1. Point-to-Manifold

We define the point-to-manifold scenario for our study
as follows:

x(0) = x0, ẋ(0) = 0,

z(0) = z0, ż(0) = 0,

x(T) = x⋆, ẋ(T) = 0,

z(T) : arbitrary ż(T) = 0. (2)

Here, x and z are the hand positions in the respective directions
for the starting time t = 0 and the movement duration t =

T, ẋ and ż denote the time derivatives of these quantities.
Furthermore, x⋆ stands for the desired horizontal end position.
Note, that in contrast to point-to-point movements, here the
desired z position is a random goal point within the manifold
spanned by the z axis.

2.2. Musculoskeletal Model
The numerical arm model consists of two segments representing
the upper and lower arm, which are driven by six muscles, two
monoarticular muscles each for the shoulder and the elbow joint,
as well as two biarticular muscles acting on both joints (Driess
et al., 2018, see Supplementary Material for more details). The
parameters are based on previous publications (Kistemaker et al.,
2007; Bayer et al., 2017). The upper body is fixed in space,
and a hinge joint connects the two segments. The limitation
to planar movements is justified, as it has been shown in the
analysis of experimental data that the movements mostly lay
along the para-sagittal plane (Berret et al., 2011a). The dynamics

FIGURE 2 | The numerical model of a human arm. The six muscles are

modeled as lumped Hill-type muscles depicted on the left (figure adapted from

Haeufle et al., 2014). On the right, the kinematic chain (green lines) with the

two joints and the joint angles ψ and ϕ is shown. Red lines depict the two

monoarticular shoulder muscles (ante- and retroversion), orange lines the two

biarticular ones and blue lines represent the two monoarticular elbow muscles

(flexor and extensor).

of the skeletal system are modeled as rigid bodies solving the
Euler-Lagrange equation

M(θ)θ̈ + C(θ , θ̇) = F(θ , θ̇ , t), (3)

where M(θ) is the mass matrix, θ = [ϕ,ψ] contains the
elbow and shoulder angle, respectively, C(θ , θ̇) consists of the
centrifugal, gravitational and Coriolis forces and F denotes all
components of the muscle-tendon forces acting on the arm.
Muscle forces acting on the segments are predicted by Hill-type
muscle models (Haeufle et al., 2014). This means that the muscle-
tendon unit (MTU) is modeled with spring-damper elements
consisting of four components (Figure 2): a contractile element
(CE) modeling the force-length and force-velocity properties of
active muscle fibers, a parallel elastic element (PEE), a serial
elastic element (SEE), and a serial damping element (SDE). The
underlying non-linear dynamics of the muscle model can be
formulated as follows

l̇CE = fv(lCE, lMTU, l̇MTU, a) (4a)

FMTU = ff (lMTU, l̇MTU, a, lCE, l̇CE). (4b)

Here, the first-order differential equation describes the
contraction dynamics of the contractile element l̇CE, which
is integrated in the calculation of the force of the muscle-
tendon unit FMTU. The muscle’s force depends on the current
contraction state of the muscle lCE, the length of the muscle-
tendon unit lMTU, and the muscle activity a. The relation
between a neural stimulation signal u and the muscle activity a
is a complex biochemical process which is approximated here
by Hatze’s model of activation dynamics (Hatze, 1977). Thus,
the muscle activity a, which represents the free calcium ion
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concentration in the muscle, can be predicted with a first-order
differential equation

ȧ = fa(a, lCE, u). (5)

To generate the stimulation signal u ∈ [0, 1]6, an open-loop
controller is implemented, which ensures that the simulated
arm movements always terminate in a static equilibrium with a
vanishing net joint moment (Bayer et al., 2017). The stimulations
u are selected based on the chosen optimality principle with
Bayesian optimization.

Performing a forward dynamic simulation with this arm
model results in a feature matrix ξ (u)

ξ (u)=
(

θi(t), θ̇i(t), θ̈i(t),
...
θi(t), x(t), z(t),

...
x (t),

...
z (t), τi(t), τ̇i(t), u

)T

t=0

for i = 1, 2. (6)

The single components of ξ (u) are trajectories in time t and
represent different physical quantities, such as the joint angles
θ = [ϕ,ψ], the hand position in x- and z-direction, the torques τ1
and τ2 (acting on the two joints, elbow and shoulder, respectively)
and time derivatives of these quantities. Note that all the results
are shown for a non-fixedmovement duration T (if not otherwise
mentioned). This is due to the fact that open-loop muscle
stimulations were found, which ensured that a steady state is
always reached at the end of the arm movement. Therefore, the
simulation was set up such that the model simulates until the
arm velocity drops below a threshold value (10−4 m/s) and then
terminates because the equilibrium state is reached.

2.3. Optimality Principles
Several cost functions have been proposed in the literature to
investigate human arm movement with optimality principles.
The most common ones are presented and compared here. Based
on the evaluated state variables (i.e., components of feature
matrix ξ ), they are divided into five general groups. First,
we consider kinematic models, e.g., the minimum-jerk model
in joint and Cartesian-space coordinates (Flash and Hogan,
1985; Wada et al., 2001) and the minimum angle acceleration
model (Ben-Itzhak and Karniel, 2008). They penalize high-order
derivatives which in turnmaximize the smoothness as introduced
by Todorov and Jordan (1998). Historically, the minimum-jerk
model was one of the most influential theories in motor control
theory which was able to reproduce many of the experimental
observations in real-human movements. However, kinematic
models do not take anatomical constraints or non-linear arm
characteristics into account. Therefore, dynamic models were
proposed. In the literature, two cost variables are formulated at
the dynamic level, namely the minimum torque (Nelson, 1983)
and theminimum torque changemodel (Uno et al., 1989; Nakano
et al., 1999). Although it might not seem intuitively important to
optimize the torque change in biological systems, it was argued
that the minimization of wear and tear on the musculoskeletal
system is desired. On the contrary, the necessity of energy
efficiency in the biological system is evident. Therefore, energetic
models were proposed. One approach could be to minimize

the metabolic energy consumed by the muscles, which is not
considered here. Instead, the total absolute work was formulated
as a cost function which is related to the mechanical energy
(Berret et al., 2008). Alternatively, a more robotic approach, such
as minimizing the control effort, can be used. Typically, using
control effort models helps to handle redundancies. In this case,
the amount of motor neuron activity is optimized by penalizing
the sum of the squared muscle activations (Guigon et al., 2007).
Furthermore, the class of hybrid models combines several single
optimality principles. This work specifically focuses on the hybrid
cost function proposed by Berret et al. (2011a) and Hilt et al.
(2016). This model combines an energy term with a smoothness
expression (e.g., angle jerk) and is able to predict free-endpoint
arm movements. Our hypothesis was that due to the use of
muscle dynamics, an additional term for the hybrid cost function
might be necessary. We propose to include the control effort
term (see JJEE in Table 1) as it is the only single cost function
term that directly affects muscle dynamics by taking the muscle
stimulations into account. An overview of the cost functions used
in this study is given in Table 1.

2.3.1. External Task Constraint

To ensure that the task constraints of pointing to a vertical bar
are fulfilled, the desired end position is imposed. This is done by
extending the cost function with an additional term. The total
cost function is then defined as

Jtotal = ||xT − x⋆||2 + 0.01 · Jopt (7)

where xT denotes the reached x-position of the hand in
equilibrium and x⋆ stands for the desired horizontal end position
(location of the bar). Note that the relation between the task
constraint and the chosen optimality principle has the same
magnitude as suggested by Li and Todorov (2007).

2.4. Finding Muscle Stimulations via
Bayesian Optimization
As discussed in section 2, the goal is to find static muscle
stimulations u ∈ U ⊂ R

6 that, when applied to the neuro-
musculoskeletal system, minimize the specified cost function J.
However, no analytical form of J, i.e., no gradient in particular,
is known, instead, J can only be queried for specific choices
of u, which involves the computationally expensive forward
dynamic simulation of the system, cf. section 2.2. Therefore, the
optimization procedure is an episodic process that seeks for an
optimal set of muscle stimulations based on the information
gathered so far. In this way, there are parallels between the
situation in the present work and real-world motor learning
tasks, where humans improve their skills by trial and error (Taube
et al., 2008).

Bayesian optimization (Brochu et al., 2010) addresses these
problems in a sample efficient manner, by learning a probabilistic
surrogate model of the cost function u 7→ J(ξ (u)) based on
collected data Dn =

{

(ui, J(ξ (ui)))
}n

i=1
obtained from n previous

episodes. (The cost function model can be interpreted as an
internal model of a biological system.)

A common choice for the probabilistic surrogate model are
so-called Gaussian processes (Rasmussen and Williams, 2004),
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TABLE 1 | Cost functions as proposed in literature.

Optimality principle Mathematical description

Angle acceleration (Ben-Itzhak and Karniel, 2008) JACC =
T
∫

0

(

ϕ̈2 + ψ̈2
)

dt

Hand jerk (Flash and Hogan, 1985) JHJ =
T
∫

0

(...
x 2 +

...
z 2

)

dt

Angle jerk (Wada et al., 2001) JAJ =
T
∫

0

(...
ϕ2

+
...
ψ

2
)

dt

Torque (Nelson, 1983) JT =
T
∫

0

(

τ 21 + τ 22

)

dt

Torque change (Uno et al., 1989; Nakano et al., 1999) JTC =
T
∫

0

(

τ̇1
2 + τ̇2

2
)

dt

Energy (Berret et al., 2008) JEN =
T
∫

0

(

|ϕ̇ · τ1| + |ψ̇ · τ2|
)

dt

Effort (Guigon et al., 2007) JEFF =
6
∑

i=1

u2i

Hybrid jerk and energy (Berret et al., 2011a; Hilt et al., 2016) JJE =
T
∫

0

(

|ϕ̇ · τ1| + |ψ̇ · τ2|
)

dt+ 10−3 ·
T
∫

0

(...
ϕ2

+
...
ψ

2
)

dt

Hybrid jerk, energy, and effort JJEE =
T
∫

0

(

|ϕ̇ · τ1| + |ψ̇ · τ2|
)

dt+10−3 ·
T
∫

0

(...
ϕ2

+
...
ψ

2
)

dt+
6
∑

i=1

u2i

which describe the probability density of J(ξ (u)) given the
current dataset Dn as a Gaussian distribution

P(J(ξ (u))|Dn) = N (J(ξ (u))|µn(u), σ
2
n (u)) (8)

with meanµn(u) = κ(u)T
(

Kn+ε
2In

)−1
yn and variance σ

2
n (u) =

k(u, u)−κn(u)
T
(

Kn+ε
2In

)−1
κn(u), where κn(u) =

(

k(u, ui)
)n

i=1
,

Kn =
(

k(ui, uj)
)n

i,j=1
, yn =

(

J(ξ (ui))
)n

i=1
. In this work, we use

the common squared exponential kernel k :U × U → R with

k(u, u′) = α exp
(

−γ
∥

∥u− u′
∥

∥

2

2

)

. The choice of the kernel and

its hyperparameters encodes the correlation between data points
and thereby the complexity/smoothness of the surrogate model.
In this case, the hyperparameters are the length scale γ ∈ R and
signal variance α ∈ R.

Based on the information encoded in the Gaussian process
model, Bayesian optimization selects the next query point un+1

for the next episode by maximizing an acquisition function a

un+1 = argmax
u∈U

a(u;Dn). (9)

In the vicinity of the already collected stimulations, the model
has high certainty, reflected in a low variance σ 2

n (un+1). This
knowledge can be exploited by querying the cost function at a
point of high certainty and low predicted cost. However, there
might be unexplored regions in U with low costs that the current
model is unaware of, i.e., has high uncertainty. This trade-off
between exploring U and minimizing J based on the current
information in the probabilistic model is formalized in the upper
confident bound acquisition function

aUCB(u;Dn) = βσn(u)− µn(u), (10)

where β ∈ R controls this exploration/exploitation tradeoff.
In all experiments, the tradeoff parameter was β = 0.01,

the kernel hyperparameters α, l were optimized with L-BFGS by
maximizing the data likelihood. The dataset was initialized with

10 random muscle stimulations sampled uniformly in U . The
optimization of the acquisition function was also performed with
L-BFGS using 30 random restarts, again uniformly sampled in
U . The algorithm terminates after a fixed number of iterations
(maxIter), in this case, after 600 iterations, which seems to be a
good choice for this problem setting, as shown in section 3.3.

The pseudo-code of this algorithm is shown in Table 2.
Bayesian optimization has empirically been shown to be a sample
efficient method for optimizing black-box cost functions, e.g., in
real world robotic applications (Marco et al., 2016; Drieß et al.,
2017).

3. RESULTS

3.1. Predicted Trajectories
Our neuro-musculoskeletal model predicts eight different
trajectories, one for each optimality principle. The first eight
subplots in Figures 3A–H show the best five simulated
trajectories corresponding to the five best u of each cost function,
which were found using Bayesian optimization. The last plot on
the lower right in Figure 3I, shows the recorded experimental
data for 17 subjects as collected by Berret et al. (2011a). Note,
that the data was post-processed in the same way as in the paper
from Berret et al. (2011a): The signals were low-pass filtered
using a digital fifth-order Butterworth filter at a cutoff frequency
of 10 Hz. Furthermore, the on- and offset of the movement
were defined at the time points where the linear tangential
velocity of the fingertip exceeded 5% of its peak velocity, and
respectively dropped below. The graphs show that the predicted
finger paths differ for the different optimality principles (subplots
Figures 3A–H). This is not surprising as, in contrast to typical
point-to-point tasks, the point-to-manifold experiment allows
more freedom. Another point to be mentioned is the similarity
between the angle acceleration model (Figure 3A), the hand jerk
model (Figure 3B), the angle jerk model (Figure 3C), and the
torque changemodel (Figure 3E). This behavior can be explained
by the fact that all four models maximize the smoothness of
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TABLE 2 | Bayesian optimization algorithm.

Algorithm

initialize data set D0 with 10 random samples

for n = 1,2,...,maxIter do

select muscle stimulation un ∈ R
6 by optimizing the acquisition function aUCB

un = argmax
u∈U

aUCB(u;Dn−1 )

Run dynamic simulation of musculoskeletal system to obtain ξ (un)

Evaluate the cost function J(ξ (un))

Augment the data Dn = Dn−1 ∪
{(

un, J(ξ (un))
)}

Update Gaussian process model of the cost function

end for

movements. Figure 3D displays the results using the torque
model. Based on this optimality principle, the arm points more
or less on a straight path toward the bar and predicts a much
lower endpoint on the bar compared to the experimental data.
Similar to the torque model, the energy model predicts a lower
endpoint on the bar (Figure 3F). Furthermore, the general
curvature is different to the experimental data. Instead of having a
concave trajectory as shown in the experimental data, the energy
model predicts trajectories which first drop downwards, before
pointing forward. It is also interesting to observe the effort model
(Figure 3G) for which the simulated trajectory first falls strongly
and then points upwards to the bar. Therefore, this model is the
only one which predicts a lower endpoint on the bar than the
original start point. As prioritized by the cost function, this model
uses the lowest muscle activations to control the movement in
comparison to all other model predictions. However, none of
the optimality principles with a single cost term reproduces the
experimental trajectories as well as the hybrid model JJE.

Similar to the results of Berret et al. (2011a), our model can
predict biological behavior more realistically with the hybrid
model (Figure 3H) in comparison to all single-cost optimality
principles. For the hybrid model, the endpoint, as well as
the general curvature, match the experimental data well (c.f.
Figure 3I). For the comparison between the simulated and the
experimental trajectories, it is still an open question in motor
control how to define a metric that includes all important
movement features (Gielen, 2009). One metric, which was
proposed by Berret et al. (2011a), is a sum of measuring the
Cartesian and curvature errors between the simulated and the
experimental trajectories. They discussed that based on human
intuition, it is important to include both the shape of the path
and the endpoint position. Due to this metric, we analyzed
all the endpoints and curvatures of the simulated trajectories
visually, as shown in Figure 3. Furthermore, we performed a
quantitative analysis, where we computed the endpoint error on
the bar and the maximum signed curvature error as a measure
of convexity or concavity of a trajectory. The results of this
quantitative analysis are shown in the Table S1 and Figure S2.
To summarize this analysis, looking at both trajectory metrics,
the hybrid jerk and energy model has the lowest error compared
to the experimental data for all cost functions presented in
Figure 3.

To conclude, the results presented above show the behavior
of different single cost functions. None of them is able to match
both the curvature and the endpoint of the experimental data
well. The predicted trajectory of the hybrid jerk and energymodel
is the closest to real human behavior w.r.t. the endpoint error
and curvature error, which is the reason why this cost function
is investigated in more detail in the following.

3.2. Influence of Muscle Stimulations on
Tangential Velocities
So far, only the position trajectory has been analyzed and
discussed. The next step is to investigate whether the hybrid
model (jerk and energy) is also able to predict other kinematic
features, such as the tangential velocity correctly. This is shown in
Figure 4. On the left, the experimental tangential velocities (again
17 subjects) are shown in comparison to the velocity curves of
the model with the best trajectory prediction, i.e., the hybrid
model JJE (solid blue line in Figure 4B). It is striking that both the
peak as well as the general curvature, are significantly different.
This is contrary to the results of Berret et al. (2011a), where
the hybrid model was able to match the experimental velocities
well. An explanation for these differences could be that in our
study, muscle stimulations are used as control variables instead
of controlling the torques directly. Another point is that the
movement duration was not restricted. Previous investigations
(e.g., Gribble and Ostry, 2000; Kistemaker et al., 2006; Shadmehr,
2010; Berret et al., 2011a; Pinter et al., 2012) usually fixed the
movement duration. To show how this affects the results, we
additionally implemented a limitation of the movement duration
to 1 s, which corresponds to the experimental movement
duration. This was done by terminating the simulation after 1
s. To ensure that the velocity at the endpoint is still zero, an
additional term was added to the external task constraint in
Jtotal. Restricting the movement duration also takes into account
that slow movements are favored by the jerk model due to the
fact that the jerk cost approaches zero for an infinite movement
duration. However, this restriction still leads to a right-skewness
in the curvature of the predicted tangential velocities, as shown
in Figure 4B (dashed red line). Consequently, the difference
in modeling the arm by including muscle dynamics was taken
into consideration. As mentioned previously (section 2.2), the
Hatze activation function was used for modeling the activation
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A B C

D E F

G H I

FIGURE 3 | The best five predicted trajectories for the fingertip movement ending on the bar are shown. Eight different cost functions are compared with the

experimental trajectories, in analogy to the metric of Berret et al. (2011a), which is based on Cartesian (endpoint of trajectory) and curvature errors (see section 3.1).

dynamics of themuscles. This function has the property that high
muscle stimulations only need a short time to reach peak activity,
while the time to decrease is longer (Rockenfeller et al., 2015;
Bayer et al., 2017). Indeed, some of the chosen muscle activations
based on the hybrid model are very high, e.g., the monoarticular
anteversion shoulder muscle (MSA) is activated with u = 1.
This explains the strong asymmetrical behavior of the tangential
velocity (Figure 4B).

This is in line with our hypothesis, as mentioned above
in section 2.3 that it is necessary to restrict the search space
by selecting low activated muscle stimulations. Therefore, we
proposed to add an effort term to the hybrid cost function, which

favors a small sum of squared muscle stimulations (JJEE, last
row of Table 1). This additional term directly affects and takes
the muscle dynamics into account. As shown with the JJEE line
(orange) in Figure 4C, this leads to movements with a realistic
bell-shaped velocity curve with a peak velocity of 0.85m/s.
This is comparable to experimental data. All other tangential
velocities shown in Figure 4C have smaller peak velocities and
show more right-skewness in their velocity profiles compared to
both the experimental data and the JJEE function. Furthermore,
Figure 5 shows that the predicted finger path of the new cost
function JJEE is similar to the experimental results regarding two
significant movement features: the Cartesian error (endpoint of
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A B C

FIGURE 4 | (A) The experimentally measured tangential velocities of 17 subjects are compared to the simulated velocities using (B) the hybrid JJE model and (C) all

cost functions including the extended hybrid JJEE model (1 s) for the best prediction.

A B

FIGURE 5 | Comparison between the experimental trajectories and the new

cost function JJEE.

the trajectory) and the general curvature error (based on the
metric of Berret et al., 2011a). Taken these twomovement features
together with the movement features of the velocity curve (see
Figure 4C: bell-shaped profile and peak velocity matches), this
supports our hypothesis that the additional effort term should be
included in the cost function JJEE. In addition, we performed a
quantitative analysis for the two trajectory movement criteria (as
mentioned above) and for two velocity movement criteria for all
cost function including the final proposed cost function JJEE. The
quantitative analysis of the velocity profiles consists of the peak
velocity error and the skewness error (measuring bell-shapedness
or left- or right-skewness) in comparison to the experimental
data. The results are shown in Table S1 and Figure S2. For all
movement criteria, the JJEE cost function has either the lowest or
a very small error compared to the other presented models.

Summed up, the results show that our model can predict
biological behavior more realistically if the muscle activation is
taken into account.

3.3. Performance of Bayesian Optimization
The performance of Bayesian optimization in comparison to
random testing was investigated. The reason for this is to show

that the optimization is better than simply randomly sampling
the search space of u ∈ U ⊂ R

6. The results for all cost functions
were similar, therefore, they are shown using the example of the
hybrid model (JJE). To do so, three test runs were performed
using random testing (each run with 600 iterations) and then
compared to three test runs using Bayesian optimization (each
run with 600 iterations). The resulting cost function Jtotal for
both cases is shown with boxplots in Figure 6. It can be stated
that the median of Jtotal, indicated by the red central line, for
random testing (left side) is significantly higher compared to
using Bayesian optimization (right side). Furthermore, the 25th
to 75th percentiles, also called the interquartile ranges (IQR), are
in different magnitudes as indicated by the blue boxes. In this
case, the maximum whisker length w is 1.5 times the IQR. This
means that points are classified as outliers if they are greater than
q3+ w · (q3− q1) or less than q1− w · (q3− q1), where q1 and
q3 are the 25th and 75th percentiles of all drawn observations.
It is interesting to note that most points classified as outliers
in the Bayesian optimization case (shown as orange crosses)
are still part of the interquartile range in the case of random
testing. Additionally, it can be shown that the mean values of
the two test scenarios are from different populations by using a
statistical hypothesis test with the Student’s t-distribution. The
H0-hypothesis that the two test runs have an equal mean value
is rejected with a significance level of α = 0.01. Therefore, it
can be stated that Bayesian optimization is better than random
testing for sampling muscle activations under the consideration
of different optimality principles.

Furthermore, we evaluated how the absolute cost value
of the best evaluation changes over the iterations for thirty
repeated runs. The mean and the standard deviation of this
evaluation is shown in Figure 7. The absolute cost value
drops at the beginning and then settles on a mean value
of around 8.09e−5. Note, that we would not expect the
absolute cost value to go to zero, because the movement
has a cost and rather converges toward a finite value.
Furthermore, the absolute value of the standard deviation
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FIGURE 6 | Performance of Bayesian optimization. The total error using

random testing (left boxplot) is compared to using Bayesian optimization (right

boxplot). The median of all observations is shown with a central red line, and

the blue boxes represent the 25th to 75th percentile. The tested muscle

activations sampled by Bayesian optimization result in a significantly lower

error compared to randomly drawn stimulations.

FIGURE 7 | Absolute cost value of the best observation. Plotting the mean

and the standard deviation (shaded area) for 30 repeated runs.

(shown as the shaded area) narrows down, the more iterations
are performed.

4. DISCUSSION

In this study, we hypothesized that a combination of optimality
principles determines human point-to-manifold reaching and
that the muscle dynamics have an influence on the investigation
of optimality. For this purpose, we applied several cost functions
to a forward dynamics simulation of a muscle-driven armmodel.
The cost functions are minimized using Bayesian optimization,
which searches for optimal open-loop muscle stimulations. We
showed that a mixed cost function minimizing mechanical work,
jerk, and neuronal stimulation effort simultaneously can replicate

the participants’ behavior in this task much better than any other
of the investigated single cost criteria (Figure 3).

In the human arm, all sources of mechanical energy to
drive the movement lie in the muscle-tendon unit (MTU). All
actions of the MTU are triggered by motor commands of the
central nervous system (CNS) sent directly to the individual
muscle fiber within theMTU over neural pathways. Additionally,
the MTU sends sensory signals back to the CNS. Thus, the
MTU is the crucial link between the neuronal communication
of the CNS and the physical interaction within the body’s
structure and the environment. In literature, several authors
highlight the contribution of muscle properties to the control of
motion, e. g., in jumping (van Soest and Bobbert, 1993), hopping
(Haeufle et al., 2010), animal running (Daley et al., 2009).
For studying neuroscience, however, it is still unclear which
features to include into a mathematical model of a biological
motion system. Pinter et al. (2012) compared arm models with
actuators of different levels of detail – from a plain torque
generator to a model actuated by four macroscopic Hill-type
MTUs. They demonstrated that the response to perturbations
varies and conclusions on control concepts may be inadequate
if the macroscopic muscle characteristics are not considered.
The findings of this work are in line with the literature. By
using an arm model including individual muscles and, at least,
a macroscopic model formulation of the muscles’ dynamics,
the arm kinematics change, significantly. We are not the first
to mention that the choice of the used biophysical model and
its level of detail to study motion generation and control is
sensible as mentioned above, however, we recommend to include
explicit formulations of the muscles’ dynamics (Kistemaker
et al., 2014; Mehrabi et al., 2017). For example, the velocity
profile of the arm kinematics changed dramatically (Figure 4),
just by accounting for appropriate muscle stimulations in the
cost function.

In combination with these Hill-type muscles, we used an
open-loop control approach to investigate optimality principles.
This means no trajectories were planned, nor did we perform
an inverse dynamics calculation (internal inverse model).
Furthermore, open-loop control, in this case, means no sequence
of muscle activations was used because setting only one set of
scalar muscle stimulations is sufficient to produce trajectories
(Figures 3, 5). This is different from some of the previous
investigations (e.g., Kawato et al., 1987; Wolpert et al., 1995;
Todorov and Jordan, 2002; Berret et al., 2011a) where closed-
loop control or inverse simulations were used to analyze different
cost functions. We think the assumption that feedback does
not play a large role in this experiment is justified (Shadmehr
et al., 2010; Oguz et al., 2018) because the participants had
closed eyes without any external perturbations. Furthermore,
the lack of feedback corrections means that the controller
also acts as a planner (internal forward model) because it
predicts the arm motion for a selected control signal. Summed
up, we showed that it is possible to generate trajectories
and investigate optimality with a simple open-loop control
(see Figure 3).

Another important aspect of the controller is not only
investigating optimality but also fulfilling the task, in this

Frontiers in Computational Neuroscience | www.frontiersin.org 9 May 2020 | Volume 14 | Article 38

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Wochner et al. Optimality Principles

case, point-to-manifold reaching. Point-to-manifold reaching
allows discriminating between cost functions which is shown
in Figure 3. This is important because other tasks, like the
intensely studied point-to-point reaching task, may result in
similar behavior for different cost functions resulting in the
conclusion that cost functions may be interchangeable (Nelson,
1983; Kistemaker et al., 2014; Spiers et al., 2016). Tasks like
point-to-manifold reaching with a more openly defined target
have a higher potential for revealing differences in the optimality
principles as they result in different trajectories. This was also
discussed by Berret et al. (2011a) where they showed, as a proof
of concept, that hand jerk and torque change cost functions
are much more distinguishable in point-to-manifold than in
point-to-point reaching. Furthermore, we performed point-to-
point simulations with a similar setup described above from the
point-to-manifold simulations (see Figure S1). As shown there,
almost all criteria predict the two typical movement features
for point-to-point reaching movements: straight paths and bell-
shaped speed profiles similar to previous findings in the literature
(e.g., Abend et al., 1982; Flash and Hogan, 1985; Harris and
Wolpert, 1998; Todorov, 2004). This makes it almost impossible
to decide which cost function is the true one based on the
given task since they all have a good theoretical basis and
predict very similar trajectories. Therefore, it can be stated that
conclusions on optimality principles depend, at least partly, on
the chosen task.

Using this openly defined task, we showed that a combination
of smoothness, energy, and effort seems to be a good choice as
optimality principle for selecting a trajectory (Figure 5). Many
arguments have been made to give an understanding of why
each of the single cost criteria gives an advantage to the survival
of the fittest (for an overview see Todorov, 2004). It is often
argued that while energy is a limited resource in our system,
it is important to minimize its consumption (Hatze and Buys,
1977; Alexander, 1997; Berret et al., 2008), whereas smoothness
can be interpreted as a measure of the prevention of self-injuries
of the musculoskeletal system (Todorov and Jordan, 1998). A
combination of these two principles was already proposed by
Berret et al. (2011a). However, we found that by including muscle
dynamics, the cost function needs to be adapted, as well. If muscle
stimulation represents a physiological signal, like the muscle
membrane potential in our case, we found that the interpretation
of control effort is more plausible and physiologically valid.
Therefore, including the cost of muscle stimulation into the cost
function (JJEE, last row of Table 1) is not only necessary but
allows for a more realistic search for the underlying optimality
principles, as well. Additionally, such an enhanced cost function
allows for an implicit integration of earlier findings regarding
movement optimality, such as reduction of noise (Harris and
Wolpert, 1998), because noise scales with the control signal.
Furthermore, it was mentioned by McKay and Ting (2012) that
similar muscle activity patterns are predicted by cost functions,
such as reduction of signal-dependent noise compared to the
minimization of control effort. This would further support our
findings. Concluding, a combination of these cost functions is
reasonable, and evidence for this combination is shown in this
work (see Figure 5).

Considering this influence of the muscles on the selection
of the optimality principle, the question arises if other implicit
aspects also have an influence? In this study, we showed that
transferring a real task to a valid simulation task also leaves
some other parameters open to be set, such as movement
duration (see Figure 4). It is unclear how the non-specific task
requirement of pointing fast is translated into a quantitatively
measured time. Some authors (e.g., Tanaka et al., 2006) argued
that movement duration is minimized under the constraint that
the endpoint accuracy of the movement is still good enough
based on Fitts’s law (Fitts, 1954). However, in this openly
defined target we used in this work, the accuracy is not given
explicitly, which in turn makes it difficult to set a movement
end time. Therefore, we first choose an open subset of possible
solutions by simulating the movement until an equilibrium
endpoint is reached. However, we have seen that restricting
the movement duration from an equilibrium endpoint to 1 s,
consequently, also changed the tangential velocities. Setting this
new end time which is closer to the experimental movement
durations, affected the simulated tangential velocities such that
theymatched the experimental ones better (Figure 4). This shows
that it is not clear how implicit task aspects, such as time
are incorporated in the biological structure nor how they can
be modeled.

Another point which is important for investigating muscle-
actuated synthesized movement is that not only the initial angles
or initial end-effector position determine the system state but
rather the pre-activation of the muscles needs to be included
as well. In another study by Bayer et al. (2017), it was shown
that the pre-activation of the muscles has a strong effect on the
maximummovement velocity. Therefore, we chose theminimum
sum of muscle stimulations as the initial condition. This can
be interpreted as a “relaxed” starting state. Taken this together
with the previously discussed time aspect (Figure 4), we want
to emphasize that through external factors or non-specific task
requirements, the arm movement control is changed. In this
context, by external factors, we mean both the environment
as well as the given task. Here, the environment includes,
e.g., external perturbations, joint limits, obstacle avoidance, and
many more. Both the environment and the given task can
influence the movement features, such as speed and movement
duration, accuracy, distance and amplitude, noise and the initial
condition. Connecting these points, this supports the hypothesis
that optimality is a restricted function in the domain of task
and environment.
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