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The exponential time differencing (ETD) method allows using a large time step to efficiently

evolve stiff systems such as Hodgkin-Huxley (HH) neural networks. For pulse-coupled

HH networks, the synaptic spike times cannot be predetermined and are convoluted with

neuron’s trajectory itself. This presents a challenging issue for the design of an efficient

numerical simulation algorithm. The stiffness in the HH equations are quite different, for

example, between the spike and non-spike regions. Here, we design a second-order

adaptive exponential time differencing algorithm (AETD2) for the numerical evolution of

HH neural networks. Compared with the regular second-order Runge-Kutta method

(RK2), our AETD2 method can use time steps one order of magnitude larger and improve

computational efficiency more than ten times while excellently capturing accurate traces

of membrane potentials of HH neurons. This high accuracy and efficiency can be robustly

obtained and do not depend on the dynamical regimes, connectivity structure or the

network size.
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1. INTRODUCTION

The Hodgkin-Huxley (HH) model (Hodgkin and Huxley, 1952; Hassard, 1978; Dayan and Abbott,
2003) is a classical neuron model, originally proposed to describe the behaviors of action potentials
of the squid’s giant axon. It provides a useful mechanism that accounts for the detailed generation of
action potentials and the existence of the absolute refractory periods. It also serves as the foundation
for other neuron models such as the one that can describe the behaviors of bursting and adaption
(Pospischil et al., 2008). However, the HH equations are so complicated that it is difficult to study
its properties analytically such as the Hopf bifurcation and chaotic dynamics (Aihara, 1986; Hansel
and Sompolinsky, 1996; Guckenheimer and Oliva, 2002; Lin, 2006). Therefore, its investigation
often relies on numerical simulations, for example, by the Runge-Kutta (RK) methods.

There are several difficulties to design an efficient and accurate numerical algorithm for the HH
neural network, especially when the network size is large. First, when an HH neuron driven by
external input generates an action potential (the interval of action potential is called spike period
in this work), the HH neuron equations become stiff. Regular RK methods have to use very small
time step to satisfy the requirement of numerical stability (Guckenheimer and Oliva, 2002; Börgers
et al., 2005; Kassam and Trefethen, 2005; Börgers and Nectow, 2013). This small time step will
significantly increase the computational cost when studying long time behavior of large-scale HH
networks such as chaotic attractor dynamics or collecting reliable statistical information of HH
neurons such as the distribution of inter-spike-intervals.
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For more realistic situations, the neurons are generally driven
by stochastic spike input and the interaction term is usually
modeled by a Dirac delta function (pulse-coupled), while the
spike-induced conductance dynamics are modeled by an alpha
function (Somers et al., 1995; Hansel et al., 1998; Sun et al.,
2009). These make the system become non-smooth and event-
driven, while providing challenges for the design of efficient
numerical simulation algorithms. For instance, it is impossible to
predetermine the synaptic spike times since they are convoluted
with neurons’ trajectories themselves. As a result, one has to
evolve the HH network by ignoring the spike interactions among
neurons and then use spike-spike interaction to amend the
neurons’ trajectories at the end of the time step (Hansel et al.,
1998; Brette et al., 2007). Without a careful recalibration for the
neuronal spikes, the numerical algorithm often suffers from the
issue of instability or relatively low numerical accuracy.

The exponential time differencing (ETD)method (Hochbruck
et al., 1998; Cox and Matthews, 2002; Kassam and Trefethen,
2005; de la Hoz and Vadillo, 2008; Nie et al., 2008; Hochbruck
and Ostermann, 2010) is proposed for efficient simulation of
stiff ordinary differential equations (ODEs). The basic idea is to
decompose the ODEs into a linear stiff part and a nonlinear non-
stiff part. Then, the linear stiff part can be solved by using the
integrating factor method, while the nonlinear non-stiff part can
be approximated by numerical quadrature (Cox and Matthews,
2002). A second-order ETD (ETD2) method for HH neural
networks has been proposed in a recent work (Börgers and
Nectow, 2013), which allows using a large time step to raise
computational efficiency. In Börgers and Nectow (2013), the
HH equations are linearly approximated in each time step, and
then solved analytically over the time step. The ETD2 method
proposed in Börgers and Nectow (2013) is a reduced situation of
that in Cox andMatthews (2002), but it is difficult to generalize to
higher-order cases, e.g., the fourth-order ETD method. Besides,
although the ETD2 method proposed in Börgers and Nectow
(2013) is proven to be unconditionally stable for HH system, it
will be inaccurate using a large time step (Börgers and Nectow,
2013).

In this work, we first provide an ETD2 method following
the idea proposed in Cox and Matthews (2002) to evolve a
pulse-coupled HH neural network driven by stochastic spike
input. Note that the stiffness of HH equations are quite different,
especially between the spike and non-spike periods, and we find
that the ETD2 method may introduce a relatively large error in
the membrane potentials in the non-stiff period if using the same
time step as that in the stiff period. We then design an adaptive
ETD2 method (AETD2) that using different decompositions of
the linear and non-linear parts in stiff and non-stiff periods. In
addition, for the situation where neurons generate spikes in the
time step, the effects of the spikes are carefully recalibrated in our
AETD2 method to achieve a second-order numerical accuracy.
Our AETD2 method is capable of using a large time step, while
achieving the same high accurate traces of membrane potential of
each neuron as the second-order RK (RK2) method using a very
small time step. It can improve computational efficiency more
than one order of magnitude compared with the RK2 method.
This high numerical accuracy and computational efficiency can

be achieved over a wide range of dynamical regimes and does not
depend on the network connectivity or size.

2. MATERIALS AND METHODS

2.1. The Model
The dynamics of the ith neuron of an HH neural network is
governed by

C
dVi

dt
= −(Vi − VNa)GNam

3
i hi − (Vi − VK)GKn

4
i

− (Vi − VL)GL + I
input
i , (1)

dzi

dt
= (1− zi)αz(Vi)− ziβz(Vi), for z = m, h, n, (2)

where C is the cell membrane capacitance, Vi is the membrane
potential, mi, hi, and ni are gating variables for sodium and
potassium currents, respectively (Dayan and Abbott, 2001). The
parameters VNa,VK , and VL are the reversal potentials for the
sodium, potassium, and leak currents, respectively, GNa,GK , and
GL are the corresponding maximum conductances. The form
of αz and βz are set as (Dayan and Abbott, 2001): αm(V) =

(0.1V+4)/(1−exp(−0.1V−4)), βm(V) = 4 exp(−(V+65)/18),
αh(V) = 0.07 exp(−(V + 65)/20), βh(V) = 1/(1 + exp(−3.5 −
0.1V)), αn(V) = (0.01V + 0.55)/(1 − exp(−0.1V − 5.5)), and
βn(V) = 0.125 exp(−(V + 65)/80).

The input current I
input
i is given by

I
input
i = −GE

i (t)(Vi − VE
G)− GI

i (t)(Vi − VI
G), (3)

where GE
i and GI

i are excitatory and inhibitory conductances,
respectively, VE

G and VI
G are the corresponding reversal

potentials. The dynamics of conductance G
Q
i , Q = E, I, is

governed by

dG
Q
i

dt
= −

G
Q
i

σ
Q
r

+HQ
i , (4)

dH
Q
i

dt
= −

H
Q
i

σ
Q
d

+ FQ
∑

l

δ(t − sil)+
∑

j

SQij

∑

l

δ(t − τjl), (5)

where HQ
i is an auxiliary dynamical variable to make the

conductance GQ
i as a continuous function, δ(·) is the Dirac delta

function, sil is the spike time of the feedforward Poisson input
with strength FQ and rate ν, τjl is the lth spike time of the jth

neuron, and σ
Q
d

and σ
Q
r are slow decay and fast rise time scale,

respectively. Each neuron is either excitatory or inhibitory and
its coupling strength is labeled by its type E or I, respectively. For
example, SEij (S

I
ij) is the coupling strength from the jth excitatory

(inhibitory) neuron to its postsynaptic ith neuron. By analytically
solving Equations (4) and (5), the spike-induced conductance
change can be explicitly expressed as

G(σQ
d
, σQ

r , t) =
σ
Q
d

σ
Q
r

σ
Q
d
− σ

Q
r

(e−t/σ
Q
d − e−t/σ

Q
r )2(t), (6)
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where 2(·) is the Heaviside function. For all neurons, we take
FE = f and FI = 0. The model parameters are C = 1µF·cm−2,
VNa = 50 mV, VK = −77 mV, VL = −54.387 mV, GNa =

120 mS·cm−2, GK = 36 mS·cm−2, GL = 0.3 mS·cm−2, VE
G = 0

mV, VI
G = −80 mV, σ E

r = 0.5 ms, σ E
d

= 3.0 ms, σ I
r = 0.5 ms,

and σ I
d
= 7.0 ms (Dayan and Abbott, 2001).

The voltage Vi evolves continuously according to Equations
(1) and (2). When it reaches the firing threshold V th = −50
mV (Sun et al., 2009), we say the ith neuron generates a spike
at this time, say τil. Then it will trigger its postsynaptic jth

neuron’s conductance change in the form of SQji G(σQ
d
, σQ

r , t−τil),

Q = E, I. For the ease of discussion about our algorithm design,

we consider an all-to-all connected network with S
Q
ij = S/N,

where Q = E, I, S is the coupling strength, and N is the total
number of neurons in the network. Note that our algorithm
can be easily extended to networks with more complicated
connectivity structure.

2.2. Runge-Kutta Method
Without loss of generality, we consider the RK2 method as the
benchmark and compare it with the ETD methods. We first
introduce the RK2method to evolve the HH neural network with
a fixed time step 1t, for example, to evolve the system from time
t = tk = k1t to t = tk+1 = (k + 1)1t. Since the synaptic spike
times in [tk, tk+1] can not be predetermined, one has to evolve
the network without considering synaptic spike interactions and
reconsider their effects by using spike-spike interactions at the
end of time step (Hansel et al., 1998; Brette et al., 2007).

Due to the pulse-coupled dynamics in Equation (5), the
numerical accuracy may be very low if the spike timing is not well
estimated. For example, suppose that a presynaptic spike fired at
t̃ between tk and tk+1. If one simply assigns it to be the end of
time step tk+1, then the error of the spike-induced conductance
change is

S

N
[G(σQ

d
, σQ

r , t − t̃)− G(σQ
d
, σQ

r , t − tk+1)] = O(tk+1 − t̃) (7)

= O(1t),Q = E, I.

Therefore, the error with the magnitude of 1t will be introduced
when the system evolves to t = tk+1.

We now solve the above issue arising from the pulse-
coupled dynamics to achieve a second-order numerical accuracy.
First, we evolve the HH neural network without considering
the feedforward and synaptic spikes during the time interval
[tk, tk+1]. Then, at time t = tk+1, some neuron’s voltage may
be above the threshold, i.e., generating a spike, say neuron i, if
Vi,k < Vth and Vi,k+1 ≥ Vth where Vi,k and Vi,k+1 represent
Vi(tk) and Vi(tk+1), respectively. The spike time, say τil, can be
estimated following the idea proposed in Hansel et al. (1998) and
Shelley and Tao (2001). The neuron’s membrane potential during
the time interval can be approximated by a linear interpolation:

Vi(t) ≈ Vi,k +
Vi,k+1 − Vi,k

1t
(t − tk), (8)

and the spike time τil can be estimated by solving the equation:

V th = Vi,k +
Vi,k+1 − Vi,k

1t
(τil − tk). (9)

Since there may be some neurons firing and some feedforward
spikes emitting during the time interval and they will induce
the conductance change, the conductance should be then
recalibrated. When the neuron firing and the feedforward spikes
are not considered, the conductance variables in such cases,
denoted by G̃Q and H̃Q, Q = E, I, are

H̃
Q
j,k+1

= H
Q
j,k
e−1t/σ

Q
d , (10)

G̃
Q
j,k+1

= G
Q
j,k
e−1t/σ

Q
r +H

Q
i,k

G(σQ
d
, σQ

r ,1t), (11)

and the conductance variables are then recalibrated by taking into
account the neuron firing and the feedforward spikes as

H
Q
j,k+1

= H̃
Q
j,k+1

+ FQ
∑

tk<sjl≤tk+1

e−(tk+1−sjl)/σ
Q
d

+
S

N

∑

i

∑

tk<τil≤tk+1

e−(tk+1−τil)/σ
Q
d , (12)

G
Q
j,k+1

= G̃
Q
j,k+1

+ FQ
∑

tk<sjl≤tk+1

G(σQ
d
, σQ

r , tk+1 − sjl)

+
S

N

∑

i

∑

tk<τil≤tk+1

G(σQ
d
, σQ

r , tk+1 − τil), (13)

for j = 1, 2, ...,N. A detailed algorithm of the RK2 method is
given in Algorithm 1.

Algorithm 1: RK2 algorithm

Input: an initial time tk and feedforward input times {sil}
Output: Solutions at time tk+1

1 for i = 1 to N do

2 Solve the HH equations for the ith neuron without
considering spike input using RK2 scheme.

3 if Vi(tk) < V th and Vi(tk+1) ≥ V th then

4 The ith neuron spiked in [tk, tk+1].
5 Estimate the spike time τil by Equation (9).

6 end

7 end

8 Recalibrate the conductance by Equations (12) and (13).

We show that the above algorithm can indeed achieve a
second-order numerical accuracy as follows. If there are no
feedforward or synaptic spikes, then all the dependent variables
are infinitely differentiable and the RK2 method can achieve
an error of order O(1t2). For the time step that contains
feedforward or synaptic spikes, an error of order O(1t) is
introduced in the conductance with the form of GQ − G̃Q,Q =

E, I. Nevertheless, the dependent variables of V ,m, h, and n can
have an error of order O(1t2). The synaptic spike times are
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estimated by a linear interpolation and also have an error of
order O(1t2). After recalibration shown in Equations (12) and
(13), the conductance variables GQ and HQ,Q = E, I can achieve
numerical accuracy of second-order at the end of the time step.
Therefore, all the dependent variables V ,m, h, n,GE, GI , HE, and
HI that are numerically solved in each time step have an error of
order O(1t2) (see below for verification of numerical results).

2.3. Exponential Time Differencing Method
Exponential time differencing method is proposed to solve the
stiff problem in differential equations by decomposing the system
into a linear stiff term and a nonlinear non-stiff term (Hochbruck
et al., 1998; Cox and Matthews, 2002; Kassam and Trefethen,
2005; Nie et al., 2008). Following this idea, we propose the ETD
schemes for HH Equations (1) and (2) below. As illustrated
in Algorithm 1, each neuron in the HH network is evolved
independently and their conductances are recalibrated at the
end of time step. Thus, one can first derive an ETD scheme for
a single HH neuron and then consider the spike interactions
among neurons, and obtain an ETD scheme for the numerical
evolution of an HH neural network.

Consider the evolution of a single HH neuron from tk to tk+1.
The first step of the ETD method is to rewrite Equations (1) and
(2) as

dz

dt
= czz + Fz , for z = V ,m, h, n, (14)

where

cV = (−GNam
3
khk − GKn

4
k − GL)/C, (15)

cz = −αz(Vk)− βz(Vk), for z = m, h, n, (16)

FV (t,V ,m, h, n) =
[

−(V − VNa)GNam
3h− (V − VK)GKn

4

−(V − VL)GL + Iinput
]

/C − cVV
(17)

and

Fz(t,V ,m, h, n) = (1− z)αz(V)− zβz(V)− czz, for z = m, h, n,
(18)

where zk represents z(tk) for z = V ,m, h, n of this neuron. Here,
Fz(t,V ,m, h, n) is actually a function of t,V , and z for z = m, h, n,
but we write in this way for ease of illustration. Note that the
linear coefficient cz in Equation (14) is a constant value in the kth
time step [tk, tk+1] and is updated with respect to k. Multiplying
Equation (14) by an integrating factor e−czt and taking integral
from tk to tk+1, we obtain

zk+1 = zke
cz1t + ecz1t

∫ 1t

0
e−czτFz(tk

+ τ ,V(tk + τ ),m(tk + τ ), h(tk + τ ), n(tk + τ ))dτ (19)

for z = V ,m, h, and n.
The next step of the ETD method is to derive proper

approximations to the above integration.We take a second-order

ETD formula with RK time stepping which was proposed as
ETD2RK method in Cox and Matthews (2002). Let,

az,k = zke
cz1t + Fz,k(e

cz1t − 1)/cz , (20)

and approximate Fz during the time interval [tk, tk+1] by

Fz(tk + τ ,V(tk + τ ),m(tk + τ ), h(tk + τ ), n(tk + τ )

= Fz,k + τ (Fz(tk+1, aV ,k, am,k, ah,k, an,k)− Fz,k)/1t + O(1t2),
(21)

for z = V ,m, h, and n, where Fz,k represents Fz(tk,Vk,mk, hk, nk).
Substituting the above approximation into Equation (19) yields
the ETD2 scheme (the ETD method which has second-order
numerical accuracy) which is given by

zk+1 = az,k + [Fz(tk+1, aV ,k, am,k, ah,k, an,k)

− Fz,k](e
cz1t − 1− cz1t)/c2z1t, (22)

for z = V ,m, h, and n. The procedure of the ETD2 algorithm for
an HH neural network is similar to that of the RK2 algorithm
given in Algorithm 1, but the RK2 scheme is replaced by the
ETD2 scheme in Equation (22).

2.4. Adaptive Exponential Time
Differencing Method
The ETD2 method can indeed use a large time step to improve
computational efficiency, but we find that it will introduce
relatively large error in the trajectories of neurons’ membrane
potentials and even lead to the missing of action potentials (see
below for numerical results). In addition, the number of the
missed action potentials in the ETD2 method can grow with the
increase of time steps compared with the RK2 method using a
small time step. Thus, it is important to design an efficient but
also reliable ETD method to solve this issue.

As shown in Figure 1A, the slope of voltage has a very large
value when the neuron generates an action potential (spike
period) and quickly reduces to a value around zero in the non-
spike period until the next spike time. Therefore, the stiffness
of HH equations is quite different between spike and non-spike
periods. In the non-spike period, the slope of voltage is almost
zero, while the linear and nonlinear parts in Equation (14) have
a much larger absolute value and nearly cancel each other out as
shown in Figure 1B. Therefore, the decomposition in Equation
(14) may not be appropriate in the non-spike period since both
the linear and nonlinear parts become stiff while the summation
of them is indeed non-stiff. Based on this, we propose a different
decomposition in the non-stiff period from that in the stiff
period: taking cz = 0 and the whole right hand side of Equation
(14) as the nonlinear part. For such a decomposition, the ETD2
scheme reduces to the RK2 scheme in the non-stiff period.

The stiff period of HH equations can be clearly identified as
shown in Figure 1A and is defined as follows. For each spike
event, the starting point of the stiff period is determined as
the spike time when the voltage reaches the firing threshold
Vth = −50 mV and the interval of stiff period is chosen as 3.5
ms which is sufficient long to cover the highly stiff region of
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FIGURE 1 | (A) Trajectory of voltage (blue solid curve) and the slope of voltage (red dashed curve) for a single HH neuron. (B) Trajectory of the slope of voltage (red

dashed curve), linear part cVV (green dash-dotted curve), and nonlinear part FV (black dotted curve) in Equation (14) for the non-spike period. The time interval of (B)

zooms into the later part of (A).

FIGURE 2 | Illustration of the AETD2 method. After neuron 1 fires a spike, we

use the ETD2 scheme to evolve the HH equations for neuron 1 during the stiff

period indicated by the red vertical lines, while the HH equations for neuron 2

is evolved using RK2 scheme since neuron 2 is in the non-stiff period. The

starting point of the stiff period is determined as the spike time and it lasts for

the following about 3.5 ms. The circles and dots indicate the time nodes

where we use the ETD2 and RK2 schemes, respectively.

the spike. Based on the above observation, we give our AETD2
method for HH neural network as following: each neuron is
evolved using ETD2 scheme if it is in the stiff period and
use the reduced ETD2 scheme, the RK2 scheme, otherwise,
as shown in Figure 2. Detailed AETD2 algorithm is given in
Algorithm 2.

3. RESULTS

We consider an all-to-all connected network of 80 excitatory
and 20 inhibitory neurons driven by Poisson feedforward

Algorithm 2: AETD2 algorithm

Input: an initial time tk, feedforward input times {sil}
Output: Solutions at time tk+1

1 for i = 1 to N do

2 Solve the HH equations for the ith neuron without
considering spike input:

3 if The ith neuron is inside the stiff period then
4 use ETD2 scheme
5 else

6 use RK2 scheme
7 end

8 if Vi(tk) < V th and Vi(tk+1) ≥ V th then

9 The ith neuron spiked in [tk, tk+1].
10 Estimate the spike time τil by Equation (9).

11 end

12 end

13 Recalibrate the conductance by Equations (12) and (13).

input. For the ease of illustration, we choose the Poisson
input strength f = 0.06 mS·cm−2 and input rate ν =

300 Hz, and the coupling strength between neurons are
chosen as S = 0.2 mS·cm−2 throughout this work,
unless indicated otherwise. However, our algorithm can be
applied to HH neural networks under a variety of dynamical
regimes.

First, we verify the second-order numerical accuracy by
performing convergence tests. A high precision solution is
obtained by using RK2 method with a sufficiently small time step
1t = 1 × 10−6 ms and is denoted by a superscript “high.” It
is compared with the solutions computed by the RK2, ETD2,
and AETD2 methods with various values of larger time steps
1t = 2−4, 2−5, ..., 2−12 ms which is denoted by a superscript
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“1t.” Errors of membrane potentials at final run time T = 2, 000
ms and the last spike time of each neuron are computed:

ErrorV =

√

∑

i

(V
(1t)
i (T)− V

(high)
i (T))2, (23)

Errorτ =

√

∑

i

(τ
(1t)
il∗

− τ
(high)

il∗
)2, (24)

where τil∗ indicates the last spike time of the ith neuron during
the run time interval. As shown in Figure 3, if one naively assigns
the end of time step as the spike times in the RK2 method (naive
RK2), the numerical accuracy of the membrane potentials and
spike times can only be of the first-order. In contrast, if one
determines the spike times by linear interpolation and recalibrate
the conductances accordingly, all the RK2, ETD2, and AETD2
methods can achieve a second-order numerical accuracy. In
addition, we find that the ETD2 method has much larger error
compared with the RK2 and AETD2 methods using the same
time step as shown in Figure 3. When using a time step larger
than 1t = 2−6 = 0.0156 ms, the ETD2 method performs even
worse than the naive RK2 method. The underlying reason is that
the HH equations are almost non-stiff in the non-spike period,
but the decomposition in Equation (14) induces a relatively large
stiffness for the nonlinear term as discussed previously.

We next discuss the numerical performance of our AETD2
method and compare it with other different numerical methods.
As shown in the top panel of Figure 4, the AETD2 method with
large time steps (maximum time step 1t = 0.277 ms) can
obtain the same high accuracy in membrane potentials as the
RK2 method using a very small time step 1t = 0.01 ms. The
bottom panel of Figure 4 shows the raster plots (neuron index
vs. its spike time) of the spike events in the network. It can be
seen that the spike times are well-captured by the AETD2method
with large time steps. In contrast, as shown in Figures 5A,B,
the ETD2 method is highly inaccurate in terms of voltage traces
and raster plots when the time step 1t = 0.277 ms is used
(the maximum time step in AETD2 method). Figure 5C shows
the relative error in the mean firing rate (the average number
of synaptic spikes per unit time) between the ETD2 and RK2
methods, and that between the AETD2 and RK2 methods over
different values of coupling strength. It can be seen that the ETD2
method can achieve only one digit of numerical accuracy while
the AETD2 method can robustly achieve more than two digits of
numerical accuracy when the time step 1t = 0.277 ms is used in
both methods. Therefore, the ETD2method has worse numerical
performance compared with the AETD2 method.

To demonstrate the efficiency of our AETD2 method, we
compare the simulation time that RK2, ETD2, and AETD2
methods take for a common total run time. We simulate the
all-to-all connected network by the RK2, ETD2, and AETD2
methods on a Windows platform using an Intel i7 2.6 GHz
processor (the weblink of the source codes is given in section 4),
and the simulation time and numerical accuracy of mean firing
rate are given inTable 1. The AETD2method can achieve over an

order of magnitude of speedup compared with the RK2 method
while achieving the same high accuracy in terms of the mean
firing rate.

In addition, we define the efficiency ratio of the AETD2
method over the RK2 method as

E =
TRK2

TAETD2
(25)

where TRK2 and TAETD2 indicate the simulation times of the RK2
and AETD2 methods, respectively, for the HH neural network to
evolve the run time T. Note that the RK2 and ETD2methods take
almost the same simulation time when using the same small time
step as shown in Table 1. Thus, the above efficiency ratio can be
approximated by the ratio of the total number of time steps each
method requires as

E ≈
T/1tRK2

T/1tAETD2
=

1tAETD2

1tRK2
, (26)

where 1tRK2 and 1tAETD2 indicate the time steps used in
the RK2 and AETD2 methods, respectively. To demonstrate
that the above efficiency ratio is independent of the network
connectivity, size, and dynamical regimes, we evolve the all-to-
all connected network of 80 excitatory and 20 inhibitory neurons
and a randomly connected network of 800 excitatory and 200
inhibitory neurons with a variety choice of coupling strength.
Not surprisingly, the efficiency ratio approximated by Equation
(26) agrees well with the one measured by the ratio of simulation
time between the RK2 andAETD2methods in both two networks
as shown in Figure 6. Hence, the efficiency ratio of the AETD2
method relies on only the size of evolved time steps.

4. DISCUSSION

We have presented an adaptive second-order ETD method
to evolve the pulse-coupled HH neural network. Our AETD2
method can solve the stiff problem in the HH equations when
an HH neuron generates an action potential (spike period). It
can use a large time step to raise computational efficiency while
accurately capturing dynamical properties of HH neurons such
as the trace of membrane potentials, spike times of each neuron,
and the mean firing rate. We point out that our AETD2 method
can robustly enlarge time steps and raise computational efficiency
over one order of magnitude compared with the RK2 method.
This high efficiency seems to be independent of parameter choice
of connectivity structure, dynamical regimes, or network size.

Our adaptive ideas of ETD methods can be applied to
dynamical systems with stiff and non-stiff periods. In addition,
we point out that the ETD scheme in our AETD2 algorithm can
be chosen in a variety of forms according to the properties of
dynamical systems. Here, we use the ETD2 scheme derived by
approximating the integration in Equation (19) with RK time
stepping. Other forms of numerical schemes can also be used
to approximate the integration. For example, one can use a liner
interpolation to approximate the nonlinear part in Equation (14)
to obtain another form of ETD2 scheme. Besides, one can derive
an ETD scheme following the idea proposed in Börgers and
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FIGURE 3 | Errors of membrane potentials (A) and the last spike time of each neuron (B) in the all-to-all connected network when it is evolved using various time

steps. Blue crosses are naive RK2 method without performing the linear interpolation for the estimate of the spike times. Green squares are RK2 method, cyan

diamonds are ETD2 method, and red circles are AETD2 method. The last three methods all perform the linear interpolation to estimate the spike times. The dashed

line and the solid line indicate the numerical convergence of the first-order and the second-order, respectively. The total run time T = 2, 000 ms.

FIGURE 4 | Comparing the AETD2 method with the RK2 method. (Top) Traces of membrane potential of an HH neuron in the all-to-all connected network. (Bottom):

Raster plots of the network spikes. The blue solid curves and dots indicate the results by the RK2 method with time step 1t = 0.01 ms, while the red dashed curves

and circles indicate the results by the AETD2 method. The time steps for the AETD2 method are 1t = 0.01, 0.1, 0.277 ms for (A,D), (B,E), and (C,F), respectively.

Nectow (2013) by linearly approximating the HH equations. The
derived ETD scheme is proven to be unconditionally stable for
HH system in Börgers and Nectow (2013). All these different
ETD schemes can be easily embedded into our AETD2 method
in the same way as given in Algorithm 2. For example, we
can embed the ETD formula proposed in Börgers and Nectow
(2013) into the AETD2 method to evolve the reduced Traub

Miles (RTM) neural networks (Ermentrout and Kopell, 1998;
Olufsen et al., 2003; Börgers and Nectow, 2013). The dynamical
equations for an RTM neuron is almost the same as that for an
HH neuron except that the gating variable m is described by
mi = αm(Vi)/(αm(Vi) + βm(Vi)). The forms of α and β for the
RTMneurons are set as: αm(Vi) = 0.32(Vi+54)/(1−exp(−(Vi+

54)/4)), βm(Vi) = 0.28(Vi+27)/(exp((Vi+27)/5)−1), αh(Vi) =

Frontiers in Computational Neuroscience | www.frontiersin.org 7 May 2020 | Volume 14 | Article 40

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Tian and Zhou AETD2 Algorithm for HH Networks

FIGURE 5 | Comparing the ETD2 and AETD2 methods with the RK2 method. (A) Voltage trace of the same HH neuron used in Figure 4. (B) Raster plot of the

network spikes. The blue solid curve and dots indicate the results by the RK2 method with time step 1t = 0.01 ms while the red dashed curve and circles indicate the

results by the ETD2 method with time step 1t = 0.277 ms. The coupling strength is S = 0.2 mS·cm−2. (C) Relative error in the mean firing rates between the ETD2

and RK2 methods (cyan diamonds), and that between the AETD2 and RK2 methods (red circles) for different choice of the coupling strength. Both the ETD2 and

AETD2 methods use time step 1t = 0.277 ms. The benchmark mean firing rate is computed by the RK2 method with a very small time step 1t = 1× 10−6 ms.

TABLE 1 | Simulation of the all-to-all connected network with a total run time T = 10 s.

RK2 ETD2 AETD2

1t (ms) CPU Relative error CPU Relative error CPU Relative error

0.005 60.56 s 0 (13.61 Hz) 60.07 s 0 (13.61 Hz) 60.82 s 0 (13.61 Hz)

0.01 30.22 s 0 (13.61 Hz) 30.05 s 0 (13.61 Hz) 30.55 s 0 (13.61 Hz)

0.02 14.99 s 0 (13.61 Hz) 15.03 s 0.074% (13.60 Hz) 15.30 s 0 (13.61 Hz)

0.05 *** *** *** 5.95 s 0.66% (13.52 Hz) 6.16 s 0.074 % (13.62 Hz)

0.1 *** *** *** 2.94 s 2.65% (13.25 Hz) 3.11 s 0.074 % (13.62 Hz)

0.2 *** *** *** 1.48 s 9.99% (12.25 Hz) 1.57 s 0.15 % (13.63 Hz)

0.277 *** *** *** 1.09 s 12.56% (11.29 Hz) 1.15 s 0.59 % (13.69 Hz)

0.5 *** *** *** 0.57 s 41.59% (7.95 Hz) *** *** ***

1 *** *** *** 0.29 s 87.07% (1.76 Hz) *** *** ***

The simulation time is measured in seconds. The relative error in the mean firing rate between each method using different time steps and the RK2 method using a very small time step

1t = 1× 10−6 ms is measured in percentage and the mean firing rate is measured in Hz given inside the parentheses. Asterisks indicate overflow errors.

FIGURE 6 | Efficiency ratio of the AETD2 method when evolving the HH neural network using various time steps (A) and coupling strength (B). In (A,B), the blue lines

are efficiency ratio measured by the approximation in Equation (26), while the black stars and red circles are the efficiency ratio measured by the ratio of simulation

times between the RK2 and AETD2 methods. The black stars represent the results for the all-to-all connected HH neural network of 80 excitatory and 20 inhibitory

neurons, while the red circles represent the results for an HH neural network of 800 excitatory and 200 inhibitory neurons randomly connected with probability 25%.

The black solid and red dashed curves in (B) are the mean firing rates in the smaller network of 100 neurons and larger network of 1,000 neurons, respectively. The

coupling strength in (A) is S/N = 0.002 mS·cm−2 and the time step for AETD2 method in (B) is 1t = 0.277 ms. The time step for RK2 method is 0.01 ms and total

run time is T = 50 seconds in both (A,B).
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FIGURE 7 | The AETD2 method for the RTM neural network. (A) Illustration of the AETD2 method. We take a relatively high firing threshold V th = 0 mV for the RTM

neurons indicated by the solid horizontal line. The stiff period is defined as the region where |dV/dt| ≥ 20. The circles and dots indicate the time nodes where we use

the ETD2 and RK2 schemes, respectively. (B) Traces of membrane potential of an RTM neuron. The blue solid and red dashed curves indicate the results by the RK2

method with time step 1t = 0.02 ms and the AETD2 method with time step 1t = 0.3 ms, respectively. (C) Relative error in the mean firing rates between the AETD2

and RK2 methods for different choice of time steps used in the AETD2 method for an all-to-all connected RTM network of 80 excitatory and 20 inhibitory neurons with

Poisson input. The dashed horizontal line indicates 5% error, relative error = 0.05. The benchmark mean firing rate is computed by the RK2 method with a very small

time step 1t = 1× 10−6. The parameters for RTM model is C = 1µF·cm−2, VNa = 50 mV, VK = −100 mV, VL = −67 mV, GNa = 100 mS·cm−2, GK = 80 mS·cm−2,

and GL = 0.1 mS·cm−2.

0.128 exp(−(Vi + 50)/18), βh(Vi) = 4/(1+ exp(−(Vi + 27)/5)),
αn(Vi) = 0.032(Vi+ 52)/(1− exp(−(Vi+ 52)/5)), and βn(Vi) =
0.5 exp(−(Vi + 57)/40).

Note that the rising phase of action potentials for the
RTM neurons is extremely short, around 0.03 ms as shown
in Figure 7A. In such a situation, it may not be appropriate
to choose the spike time (when the voltage reaches the firing
threshold) as the starting point of the stiff period in the AETD2
method as shown in Figure 7A since large numerical error will
be introduced, especially when a large time step is used, e.g., time
step 1t = 0.3 ms. This is because the system is evolved by the
RK2 scheme during the time step that contains the rapid rising
region of the neuron’s action potential. Therefore, to achieve
high numerical accuracy, the interval of the stiff period should
cover the rapid rising region. To achieve this, we then define
the stiff period of the RTM neurons as the region where the
magnitude of the slope of voltage is over a proper threshold
as shown in Figure 7A. We point out that our AETD2 method
using a large time step can still accurately capture the membrane
potential traces and the mean firing rates compared with the
RK2 method using a small time step as shown in Figures 7B,C.
Therefore, the definition of the stiff period in our AETD2method
can be flexibly determined based on dynamical properties of
studied systems.

In this work, the numerical accuracy of our AETD2 method
is second-order. In some situations, high accurate traces of
membrane potentials may be required, especially the accurate
shapes of action potentials (Traub et al., 2001; Kopell and
Ermentrout, 2004). Therefore, one future workmay be the design
of the fourth-order ETD method. As illustrated above, due to
the discontinuity arising from the pulse-coupled dynamics, an
even more careful recalibration needs to be designed to achieve
fourth-order numerical accuracy.

Finally, we point out that our AETD2 method can be
easily extended to networks of other HH type neurons
(Pospischil et al., 2008). And our AETD2 method can also
robustly achieve high numerical accuracy and efficiency. In
addition, our method is naturally a parallel algorithm which
can be applied to simulations of large-scale neural network
dynamics. For reproducibility of our results by other researchers,
all the source codes written in C++ can be accessed at
http://github.com/KyleZhongqi/ETD2_HH.
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