
ORIGINAL RESEARCH
published: 26 June 2020

doi: 10.3389/fncom.2020.00042

Frontiers in Computational Neuroscience | www.frontiersin.org 1 June 2020 | Volume 14 | Article 42

Edited by:

Yilei Zhang,

Nanyang Technological University,

Singapore

Reviewed by:

Shivakeshavan Ratnadurai Giridharan,

Burke Medical Research Institute,

United States

Hermann Cuntz,

Ernst Strüngmann Institut für

Neurowissenschaften, Germany

*Correspondence:

Gillian Queisser

gillian.queisser@temple.edu

Received: 30 October 2019

Accepted: 17 April 2020

Published: 26 June 2020

Citation:

Grein S, Qi G and Queisser G (2020)

Density Visualization Pipeline: A Tool

for Cellular and Network Density

Visualization and Analysis.

Front. Comput. Neurosci. 14:42.

doi: 10.3389/fncom.2020.00042

Density Visualization Pipeline: A Tool
for Cellular and Network Density
Visualization and Analysis
Stephan Grein 1, Guanxiao Qi 2 and Gillian Queisser 1*

1Department of Mathematics, Temple University, Philadelphia, PA, United States, 2 Institute of Neuroscience and Medicine

(INM-10), Research Centre Jülich, Jülich, Germany

Neuron classification is an important component in analyzing network structure and

quantifying the effect of neuron topology on signal processing. Current quantification

and classification approaches rely on morphology projection onto lower-dimensional

spaces. In this paper a 3D visualization and quantification tool is presented. The

Density Visualization Pipeline (DVP) computes, visualizes and quantifies the density

distribution, i.e., the “mass” of interneurons. We use the DVP to characterize and classify

a set of GABAergic interneurons. Classification of GABAergic interneurons is of crucial

importance to understand on the one hand their various functions and on the other

hand their ubiquitous appearance in the neocortex. 3D density map visualization and

projection to the one-dimensional x, y, z subspaces show a clear distinction between

the studied cells, based on these metrics. The DVP can be coupled to computational

studies of the behavior of neurons and networks, in which network topology information is

derived from DVP information. The DVP reads common neuromorphological file formats,

e.g., Neurolucida XML files, NeuroMorpho.org SWC files and plain ASCII files. Full 3D

visualization and projections of the density to 1D and 2D manifolds are supported by the

DVP. All routines are embedded within the visual programming IDE VRL-Studio for Java

which allows the definition and rapid modification of analysis workflows.

Keywords: GABAergic, barrel cortex, density visualization, visual programming, neuronal morphology,

synaptogenesis, density maps, interactive data analysis

1. INTRODUCTION

The stunning diversity of neuronal morphologies is being studied since the work of Cajal (Ramón y
Cajal, 1899) a century ago. Since then, neuronal morphology has been considered an important
component when analyzing rapidly growing neuroanatomical data. Neuronal morphology may
be consulted to support or assist in characterization of neuronal function in local cortical
microcircuits. Detailed reconstructions enable in silico experimentation of the electrical and
chemical signals associated with specific cell types to study and validate structure-function
interaction. The somato-dendritic and axonal morphologies reflect the neuronal input and
output patterns: The former indicates the number and location of synaptic inputs while the
latter defines the spatial distribution of synaptic outputs. When the axonal morphology of
one neuron and the dendritic morphology of another neuron are both available, the spatial
overlap between the axonal and dendritic trees can be used to calculate the location of

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2020.00042
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2020.00042&domain=pdf&date_stamp=2020-06-26
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gillian.queisser@temple.edu
https://doi.org/10.3389/fncom.2020.00042
https://www.frontiersin.org/articles/10.3389/fncom.2020.00042/full
http://loop.frontiersin.org/people/68451/overview
http://loop.frontiersin.org/people/173955/overview
http://loop.frontiersin.org/people/22034/overview

Grein et al. Density Visualization Pipeline

potential synapses (Lubke et al., 2003; Stepanyants and
Chklovskii, 2005; Jefferis et al., 2007; Helmstaedter et al.,
2008; Levy and Reyes, 2012; Packer et al., 2013) motivated
by Peters’ rule (Peters and Feldman, 1976; Peters and Payne,
1983; Braitenberg and Schüz, 1991). With the development
of neuronal reconstruction techniques [e.g., the Neurolucida
system (MicroBrightField) (Aguiar et al., 2013) and (Halavi et al.,
2012)] and several large-scale brain research projects and novel
reconstruction methods (Peng et al., 2010, 2014; Bria et al., 2016),
digital neuronal morphologies have been systematically acquired
and became freely accessible, via projects and databases, such as
NeuroMorpho.org (Ascoli et al., 2007), The Blue Brain Project
(Markram et al., 2015), Allen Cell Types Database1, and Allen
Brain Atlas (Sunkin et al., 2012; Gouwens et al., 2019).

Density maps are important for cell classification and judging
where synaptic contacts could potentially be formed. Density
maps are typically one- or two-dimensional projections of the
neuronal morphology onto the x-, y-, or z-axis or to xy-, xz-,
yz-plane. A density map can be thought of as a population
density map, subdividing the x-, y-, or z-axis into 1D bins and
respectively subdividing the planes into 2D bins for which one
can calculate the neuronal morphology mass contained in the
bin. For each bin the total neuronal length is normalized to
yield a density in the range [0, 1]. For the purpose of neuronal
visualization and morphometric analysis for the ever-growing
data, the development of open source, highly efficient, multi-
functional software becomes a necessary objective.

While morphometric analysis tools exist, there are some
drawbacks that are addressed in the presented work. Commercial
tools, such as the Neurolucida Explorer (MicroBrightField) allow
for 1D and 2D density field visualization and analysis, but not a
full three-dimensional method. Their source-code is proprietary
and thus not extendible by the research community. Other
toolboxes support 3D density analysis, like the TREES toolbox
(Cuntz et al., 2010) or the Filament Editor (Dercksen et al., 2014),
but rely on third-party commercial software, such as Matlab and
Amira. Finally, freely available tools, like Py3DN (Aguiar et al.,
2013) support certain analysis features, but are challenging to use
and extend given their dependency on various plugins.

Given some of the existing limitations, the presented Density
Visualization Pipeline (DVP) has the following developmental
objectives. The DVP framework should be self-contained, i.e.,
a single project file contains all dependencies and workflow
information, and can be launched in VRL-Studio (Hoffer et al.,
2013). Since data needs to be processed efficiently, either
interactively or remotely, workflows need to be established
to batch-process a large number of neuroanatomical data,
thus, allow for a flexible workflow design via a declarative
GUI programming framework. Leveraging parallel processing
power enables processing large data sets. Furthermore, data
should be visualized efficiently and analyzed by the same token
and the workflow of visualization and analysis needs to be
easily shared. Solving these challenges by employing a platform
independent approach using the Java and Groovy programming
language allows for flexible application and distribution of

1http://alleninstitute.github.io/AllenSDK/

the analysis and visualization workflows (see Figure 1). Using
the DVP in a computational research setting the functional
objectives of the DVP include the ability to generate and
visualize three-dimensional density maps (as well as projected
1D profiles), differentiate between dendritic and axonal density
maps, visualize the unprojected neuronal morphology and
cortical landmarks (layer borders and barrel borders in case
of the barrel cortex and differs for the corpus of cortical
reconstructions) and to export all generated data. The DVP and
its’ functional objectives are presented in sections 2.1–2.4.

Density maps have been applied to classify and characterize
neuronal cell types in different cortical areas and species (Jefferis
et al., 2007; Cuntz et al., 2008, 2012; Oberlaender et al., 2011;
Sümbül et al., 2014a,b; Koelbl et al., 2015; Emmenegger et al.,
2018) and to produce morphometric statistics which include
detailed representation of the neuronal morphologies (Uylings
and van Pelt, 2002; Scorcioni et al., 2008; Lu et al., 2013; Budd
et al., 2015). Novel approaches worth mentioning are feature
representation by graph theory and topology developed recently
by Li et al. (2007), Heumann and Wittum (2009), Gillette and
Grefenstette (2009), Gillette and Ascoli (2015), and Kanari et al.
(2018, 2019). Thus, we here apply the DVP to a data set of
neurons and demonstrate the ability to classify neuron types
by their distinct density maps. The results are presented in
sections 2.5–2.6. Such results can then be integrated in larger
computational workflows, e.g., numerical simulation of electrical
signal processing in neurons and networks (Breit et al., 2016;
Stepniewski et al., 2019).

The DVP front-end is graphically controllable and completely
separate from the programmable backend. Thus, the DVP is easy
to use by neuroscience researchers. The presented framework
nonetheless allows developers to seamlessly add new features to
the backend and make them easily available to front-end users.
This strategy is described in section 3.

2. RESULTS

To judge where the mass of neurons is located and thus synapses
may be formed (Peters and Feldman, 1976; Braitenberg and
Schüz, 1991) density maps, as discussed by Peters and Payne
(1983) can be a valuable tool. Such density maps enable the
researcher to locate the spatial overlap of cells or functional
parts of a cell, e.g., soma, axon, dendrite by proximity analysis
and have been applied successfully to reveal design principles
of dendritic arbors (Cuntz et al., 2008, 2012). Cell types can
be furthermore discriminated by analyzing density maps and
classes of cells might be defined by the characteristics of such
density profiles (Sümbül et al., 2014b). Statistics arising from
the density data can then be further used to classify and
categorize the prevalent cells in e.g., different layers of some
designated brain region or animal species (Oberlaender et al.,
2011). Typically 1D and 2D density maps have been employed
for such neuroanatomical analysis, however also 3D densitymaps
(without projections to 1D or 2D manifolds) can potentially
reveal characteristics of the cell morphologies whichmight be lost
during projection. Due to the steadily increasing availability of

Frontiers in Computational Neuroscience | www.frontiersin.org 2 June 2020 | Volume 14 | Article 42

http://alleninstitute.github.io/AllenSDK/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Grein et al. Density Visualization Pipeline

FIGURE 1 | A VRL template project loaded from the included template projects folder in the plugin. The simulation workflow (data- and control-flow logic) is displayed.

There are three main components, ComputeDensity component, the Densityvisualization component as well as the TrajectoryPlotter components

which will plot the projected data to the x-, y-, and z-axis, respectively. Start and Stop components are available to start or stop the workflow.

neuroanatomical data, through novel reconstruction techniques
and large-scale brain research projects like the Allen Brain Atlas
(Sunkin et al., 2012), and stored in publicly available databases
like NeuroMorpho.org (Ascoli et al., 2007) it is inevitable to
devise an automatic, yet user-controllable, and thus interactive
pipeline to analyze large data sets, potentially also in non-
interactive batch mode for very large data sets. Classification of
overlap regions are of crucial interest in the context of synapse
loss and synaptogenesis and thus are of utmost importance
for understanding neurodegenerative or learning processes.
The DVP plugin addresses the automatization of data import,
visualization and subsequent analysis of the projected and
unprojected density data originating from neuroanatomical data.

2.1. Density Analysis and Customization of
Data and Control-Flow Logic
In the following the main workflow will be described, in
particular how to apply the DVP to given input data. For an
overview of the workflow cf. Figure 1 which illustrates the main
components in the workflow. After downloading, installing and
opening VRL-Studio2 (Hoffer et al., 2013), the user can open
the DVP template project which lays out all the components
shown in Figure 1. User-modified templates can be saved to
a VRLP file which is internally versioned with the distributed
versioning framework Git in the VRLP project file itself. It is

2http://vrl-studio.mihosoft.eu

worth mentioning that the user can use the graphical UI of the
DVP without any knowledge of the backend. The Java backend,
which is described in section 3, can be accessed for adding new
user-defined features and behaviours.

After opening the VRLP template project, the user can provide
a folder of neuroanatomical input data which should be analyzed
through the folder option in the DensityVisualization
component. Additionally a single consensus geometry file can
be specified which will contain the allowed compartments for
visualization and density calculation. The consensus geometry
file can also be used later to align all cells from the input
folder with respect to the single consensus geometry file,
e.g., center at soma. The consensus geometry file typically
also provides contours for layer boundaries which makes it
easier to identify specific regions in e.g., the Barrel Cortex
and so on, see Figure 1 second column. Data connection
lines between the components are colored in black color and
the control-flow logic is defined by yellow lines. By default,
the DensityVisualization component will visualize the
density in 3D and all neuroanatomical data, i.e., cells and if
present, layer boundaries which are provided by the single
consensus geometry file. The currently supported file formats
are listed in Table 1. However, custom importers can be swiftly
added by the user. Next, the density profiles can be exported
by a right-click mouse operation on the main canvas of the
aforementioned component and per default the projections to
the x-, y- and z-axes of the 3D density data is displayed in

Frontiers in Computational Neuroscience | www.frontiersin.org 3 June 2020 | Volume 14 | Article 42

https://NeuroMorpho.org
http://vrl-studio.mihosoft.eu
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Grein et al. Density Visualization Pipeline

TABLE 1 | Supported file formats in the current version of the DVP plugin.

Type Description Reference Note

SWC Stores trees as connected cylindrical segments as

specification of neural morphology (used in compartment

neuronal modeling). The conversion from commercial,

feature-rich formats to SWC comes with a loss of information.

For example all lines, markers or contours that mark features

of the neuron and its position in the tissue are lost.

Cannon et al. (1998) SWC are the initials of the last names of E.W.

Stockley, H.V. Wheal, and H.M. Cole, who

developed a system for generating

morphometric reconstructions of neurons that

is described in Stockley et al. (1993).

XML Hierarchical data format containing the modeling data for

Neurolucida (dendrites, axons, somata, markers, spines) and

for Stereo Investigator (probes, markers).

https://www.

mbfbioscience.com/

help/si11/Content/

About/FileFormats.htm

XML (extensible markup language) version of

the ASCmodeling data file. This format contains

some extensions for 3D mesh modeling not

stored in the ASC and DAT file versions.

ASC Non-hierarchical data format containing the modeling data for

Neurolucida (dendrites, axons, somata, markers, spines) and

for Stereo Investigator (probes, markers).

https://www.

mbfbioscience.com/

help/si11/Content/

About/FileFormats.htm

Text version of the DAT modeling data file.

DAT Non-hierarchical data format containing the modeling data for

Neurolucida (dendrites, axons, somata, markers, spines) and

for Stereo Investigator (probes, markers).

https://www.

mbfbioscience.com/

help/si11/Content/

About/FileFormats.htm

Not yet used or supported

Most neuroanatomical data is either specified in SWC, XML, or ASC respectively DAT file format (Neurolucida plain ASCII files) and thus these formats are primarily supported by the

DVP plugin. However, additional file formats or types can be easily added by following the described procedure in the main text.

TABLE 2 | ComputeDensity parameters, types, allowed values, and description of intended use in the DVP plugin for VRL-Studio.

Type Description Range Default

FOLDER

Input folder Directory string Specify the input folder for the neuroanatomical data – –

DIMENSIONS

Width Float Width of sampling cuboid used during density calculation [0, 100] 50

Height Float Height of sampling cuboid used during density calculation [0, 100] 50

Depth Float Depth of sampling cuboid used during density calculation [0, 100] 50

Consensus Geometry File string Specify the consensus geometry to align files from stack input folder – –

COMPARTMENTS

Compartment types List of strings Specify the compartment types which should be ignored in density

calculation. Compartment names from consensus geometry file

– –

the right-most TrajectoryPlotter component. By clicking
the Start component button the processing pipeline will be
invoked and can be stopped prematurely if needed by the Stop
component. All components have a variety of options to control
the analysis and are summarized in Tables 2, 3.

2.2. Workflow Components
This section illustrates all plugin components and explains
the available input and output options, parameter ranges, and
meaning of the individual parameters which can be adjusted
during interactive and iterative data analysis or batch-mode.
Batch-mode projects can be created by setting up all of the
control-flow and data-flow logic in the VRL-Studio GUI view
or canvas and can be exported as a console application. Such a
console application can be deployed to another computer which
runs Java in headless mode to provide batch processing on a
remote computing facility.

2.2.1. The ComputeDensity Component

Entry point to the analysis is the ComputeDensity
component displayed in Figure 1 (second column). User
options are selection of an input folder specifying the location of
user-acquired neuroanatomical data. The folder should contain
the morphology files to be analyzed. The path is saved in a
directory string for the DVP ComputeDensity component
for subsequent processing or passing to other components of the
DVP, see also the summarized options for this component in
Table 2. Supported file types are listed in Table 1.

Each geometry file contains vertices V, edges E which are
defined by a pair of vertices, and diameter information associated
with each vertex. To calculate a 3D density from the line-graph
geometry, a sampling cuboid B with a user-specified size l is
defined. The number Nj of sampling cuboids in x, y, and z
direction (j = 1, 2, 3, respectively) is determined by

Nj = ⌈
Ej

l
⌉,

Frontiers in Computational Neuroscience | www.frontiersin.org 4 June 2020 | Volume 14 | Article 42

https://www.mbfbioscience.com/help/si11/Content/About/FileFormats.htm
https://www.mbfbioscience.com/help/si11/Content/About/FileFormats.htm
https://www.mbfbioscience.com/help/si11/Content/About/FileFormats.htm
https://www.mbfbioscience.com/help/si11/Content/About/FileFormats.htm
https://www.mbfbioscience.com/help/si11/Content/About/FileFormats.htm
https://www.mbfbioscience.com/help/si11/Content/About/FileFormats.htm
https://www.mbfbioscience.com/help/si11/Content/About/FileFormats.htm
https://www.mbfbioscience.com/help/si11/Content/About/FileFormats.htm
https://www.mbfbioscience.com/help/si11/Content/About/FileFormats.htm
https://www.mbfbioscience.com/help/si11/Content/About/FileFormats.htm
https://www.mbfbioscience.com/help/si11/Content/About/FileFormats.htm
https://www.mbfbioscience.com/help/si11/Content/About/FileFormats.htm
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Grein et al. Density Visualization Pipeline

TABLE 3 | DensityVisualization parameters, types, allowed values, and description of intended use in the DVP plugin for VRL-Studio.

Type Description Range Default

VISUALIZATION

Min. Density Integer Threshold. Visualize all densities above this value. [%] 0

Density Color 0 RGB color Color representing 0 % density RGB value Blue

Density Color 1 RGB color Color representing 100 % density RGB value Red

Density Transparency Float Enables density transparency for visualization [%] [0, 1] 0

Density Visible? Boolean Enables or disables visualization of the density – True

ISOSURFACES

Visible? Boolean Enables or disables visualization of isocontours – False

Average Integer Value of isocontours to be visualized [%] 0

Deviation Integer Amount of deviation from average still to visualize [%] 0

GEOMETRY

Compartment Types List of strings Specifies which compartments of the geometry shall be – ∅

excluded from visualization

CANVAS

Scalebar visible? Boolean Add scalebar to canvas – True

Coordinate system visible? Boolean Add coordinate system to canvas – True

OUTPUT

Blur Matrix Apply a blurring kernel to the density view – Gaussian blur

Animation – File type specified output format. Frames per second or seconds Integer 0 and AVI format

per frame can be specified

Rotation – Rotation matrix can be specified to rotate density view in canvas

where Ej : = Uj − Lj and

Lj =
|V|

min
i=0

Vij , Uj =
|V|
max
i=0

Vij

are the minimum and maximum coordinate of all loaded cell
geometries, respectively. The density |B| within a given B is
determined by summing the length of all segments contained in
B and then normalizing by the total segment length of a given
neuron. When analyzing multiple neurons at once, this process is
repeated for each neuron. The total density then is

|B| =
1

m

n∑

i=0

|Bi|,

where n denotes the total number of neurons, |Bi| the density of
neuron i in a given sampling cuboid B, andm = maxB |B|.

Having selected an input folder for density analysis the
user needs to specify the granularity of the sampling. Since
3D data is available, the user can specify the dimension
for the three coordinate axes. Typically the sampling is
performed using a cuboid, where the x, y, and z dimension
are positive integers. With the same value, e.g., x =

y = z = 50µm, i.e., the cuboid degenerates to a
regular bounding or sampling cube. Before sampling the
input neurons can be aligned to a point of reference with
help of the consensus geometry file. The sampling of the
density can exclude compartments of the input neurons,
e.g., depending on the availability of the soma, axon or
dendrite compartments in the neurons, one can exclude

one or multiple compartments for density analysis. The
ComputeDensity component has no inputs from other
components since it is the starting point of the analysis pipeline,
but forwards the Density and the Geometry data structures
to the DensityVisualization component which uses
these data structures to visualize the geometry and layer
boundaries specified by a consensus geometry file and the
ComputeDensity component actually calculates the density
maps in 3D by using a parallel algorithm which subdivides
the bounding box enclosing all neuronal compartments into
a cuboid-like lattice by the number of available processors
to accomplish a work sharing. The geometry is read in
depending on the supported file type in an appropriate
Geometry data structure, which is derived from a common
Java interface, which is also used ultimately during the
visualization of the neuronal morphologies by means of
DensityVisualization component.

2.2.2. The DensityVisualization Component

To visualize the density and neuronal geometry which
was calculated and converted by the ComputeDensity
component to an internal representation suitable. for the
DensityVisualization component, see Figure 1 (third
column), the data can be further analyzed. For an overview of
options for the DensityVisualization component, see
Table 3. The user can choose which density values to visualize.
If all density values should be considered for visualization
then the option minimum density in percentage can be left
unchanged. The user can choose, by increasing or decreasing
the density value, to visualize only voxels which lie above the

Frontiers in Computational Neuroscience | www.frontiersin.org 5 June 2020 | Volume 14 | Article 42

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Grein et al. Density Visualization Pipeline

chosen threshold value. Furthermore density colors for the
zero density and for the unit density can be specified. In the
visual representation these colors are mixed linearly to color
code all density values. Density transparency can be toggled
such that the neuronal morphologies can be made visible
within the density voxels and are not occluded by the otherwise
solid-colored density voxels. The options are summarized by
the Visualization tab in the aforementioned component. The
next adjustable group settings are the isosurfaces options. If the
checkbox is marked then isosurfaces will be visualized on top
of the geometry and density view. To calculate the isosurface
in the DVP plugin a parallel implementation of the marching
cubes algorithms was used to create contours of an average
density in percentage and a deviation in percentage, see options
for this settings group in Table 3. Threshold and deviation for
visualization of these contours are adjustable. The geometry tab
lets the user specify whether the neuronal morphologies should
be visible or not by marking a checkbox. The spatial extent
of all neuronal morphologies, e.g., bounding box or bounding
cuboid, can be visualized if the corresponding checkbox is
selected. The user can specify a bounding box color as well as
a transparency value in percentage which allows the user to
make all components visible and not occlude the view. One can
exclude compartments from being considered during processing
and display in the density visualization view. The user can
choose between the representation to use for visualization of
the neuronal geometries, i.e., either the neuronal geometries
are approximated in the view as piecewise linear cylinders in
3D or by a line-graph structure, e.g., only edges and vertices
are used. In the following “cylinder” refers to the first and
“schematic” to the second representation type. The canvas allows
to add a coordinate system and axes to the visualization as
well as a scale bar for the neuronal morphologies to provide a
measure to compare sizes of the cells automatically. The output
tab summarizes the various output options. First, the resulting
images can be blurred by a blurring kernel prior to saving the
image to JPG, PNG, GIF, or TIFF. This option might be useful
when saving the calculated voxel densities, which are discrete
by nature. To create rotating animations of the view a rotation
matrix might be specified by the user prior to exporting the
AVI, MOV, or MPG video file by the animation tab parameters.
To export statistics of the 1D profiles one can use the provided
methods getAxisX(), getAxisY(), and getAxisZ()
which export a general “trajectory” data structure or XYData
to provide the line chart plotter (TrajectoryPlotter
component) with data. Notice that by a right-click mouse
operation on the main density visualization canvas, on the
right hand side, a popup menu opens which allows to reset the
view, save images, increase and decrease pan speed, increase
and decrease translation increment and toggle a rotational
view as well as toggle an animation and save the animation
as a video. To save the blurred image a special save dialog is
available to the user. Note that the user can use mouse chording
operations in the presented view, e.g. zoom-in and zoom-out in
the z-direction can be accomplished by using the mouse wheel,
whereas left-click mouse down is used to rotate the view while
moving the mouse.

TABLE 4 | TrajectoryPlotter parameters, types, allowed values, and description of

intended use.

Function name Type Description Range

lineChart() Trajectory Plots a specified trajectory XYData

lineCharts() Array of trajectories Plots specified array of trajectory XYData[]

Note that the square brackets indicates an array data type.

2.2.3. The TrajectoryPlotter Component

This component receives data input from the general XYData
class provided by the component DensityVisualization
to create line chart views. The default project setting is shown
in Figure 1, (forth column), adds the three coordinate axes,
x, y, and z and each coordinate axis is plotted in a distinct
component view. It is also possible to combine all three
line charts in one TrajectoryPlotter component. The
TrajectoryPlotter component can save the plotted data
by a save and export dialog to a variety of image formats. The
available options are summarized in Table 4.

2.3. Data Import and Supported Formats
Typically neuroanatomical data is stored in a database like
NeuroMorpho.org (Ascoli et al., 2007) as point-diameter data
recorded in a plain text file of type SWC and line by line for
each point and diameter. SWC files store the compartment type,
e.g., axon, dendrite, soma by a numeric identifier, a running
index, the 3D coordinates x, y and z as well as the diameter
for each traced respectively recorded point and the connectivity
information. The DVP allows the use of these traditional SWC
files and is not necessarily restricted to this database or file
type. SWC format represents the neuronal morphology by a list
of nodes or points. Each item connects to its parent with a
straight line by specifying an identifier. Additionally, ASCII
files and XML files which have been exported by Neurolucida
are supported. Hence, there is no need to use software, such
as NLMorphologyConverter3 (Aguiar et al., 2013) to convert
data and thus the DVP is self-contained. XML files are parsed
by traversing the tree structure and are stored in a list of edges
and vertices. If no header for the XML file is provided or the
header is corrupted an auto-correction attempt of the XML file
is performed. SWC files are stored in a similar manner. XML
files record colors for the compartments whereas for SWC files
one needs to assign either automatically or user-specified colors
for the compartments. If more than one file is provided as
input data for the DVP the data needs to be aligned by a point
of reference, or, if using data exported by Neurolucida, this
step can be omitted since Neurolucida usually aligns a stack
at the soma. If other data formats are required, an interface,
DensityVisualizable, is provided which can be used
to implement a raw data import for an arbitrary custom file
format which facilitates the data visualization and analysis.
The density data is usually described by voxels but may be
changed through the interfaces Density and Geometry. Data
import and visualization can be performed in “batch-mode”

3http://neuronland.org

Frontiers in Computational Neuroscience | www.frontiersin.org 6 June 2020 | Volume 14 | Article 42

http://neuronland.org
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Grein et al. Density Visualization Pipeline

FIGURE 2 | Density view. Displayed is the main Canvas view in VRL-Studio. Note that the workflow is organized from left to right, thus ComputeDensity is invoked

first, then DensityVisualization. The graphical representations show a neuronal morphology with density voxels with specified size in the leftmost component

and the neuron is represented as a line-graph consisting of vertices and edges. Note that the yellow bounding box indicates the spatial extent of all considered

neuronal morphologies.

which the user specifies a folder of interest and all neuronal
morphologies are processed and visualized successively and
added to the density and geometry view in VRL-Studio via
batch processing.

2.4. Morphology and Density Visualization
The DVP allows viewing the morphology and density in a
3D viewer embedded in VRL-Studio. The spatial structure
can be inspected by rotation, zooming and translation of
the camera using the mouse or keyboard. Compartments are
color-coded according to the description in the data files and
compartments can be excluded for analysis and visualization—
or both—by a drop-down menu in the GUI. The neuronal
morphology can either be displayed in 3D schematically as
a line graph to only display the topological or connectivity
structure of the cells of interest or by utilizing the diameter
informations stored in the input data to create a cylinder
graph representation. The latter representation uses per se more
memory than the simple line graph representation and might
not be advisable to use for fairly large neuronal morphologies.
3D densities (see Figure 2) and isocontours can be added
to the view. To calculate densities one needs to specify a
physiological length scale for the voxels, then the length of
the neuronal morphologies are summed and normalized by the
voxel volume to produce a density value for a given voxel.
Voxel dimensions can be specified in pixels to control the
level of detail of the density visualization. To add isosurfaces
to the visualization, two parameters need to be specified, i.e.,

a mean value and a standard deviation. Isosurfaces are then
generated by means of a parallel implementation of the marching
cubes algorithm, see Lorensen and Cline (1987), and added
to the visualization view in VRL-Studio (cf. Figure 2). The
colormap of the density view can be adjusted as well and the
isovalue can be specified for contours. The contours or cortical
landmarks of the surrogate cell in the examples, e.g., Barrel
border, can be visualized (see Figure 3 and Figure S2). Scale
bar and coordinate axes are calculated automatically and can be
added by the user. Density data can be projected to the x-, or-
or z-axis (or to a user-specified plane or line) and can be plotted
by using the ProjectToXYZAxisDensityDecorator (cf.
Figure 4). In addition the user can write custom projections by
implementing a decorator for the DensityVisualizable as
mentioned before. Density profiles can be exported as images
and rotational views can be exported as an animation from
within the GUI, currently supported formats are PNG, GIF,
and JPEG.

2.5. Neuromorphological Analysis
Neuromorphological analysis comprises both characterization
(Costa and Velte, 1999; Costa et al., 2007) and classification
(Bota and Swanson, 2007) of neuronal cells through multivariate
techniques, which require choosing appropriate measurements
(Costa, 1995) and the application of pattern recognitionmethods.
A particularly relevant approach involves the grouping of
neuronal cells into categories according to their morphological
similarity. Such an approach is important for understanding

Frontiers in Computational Neuroscience | www.frontiersin.org 7 June 2020 | Volume 14 | Article 42

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Grein et al. Density Visualization Pipeline

FIGURE 3 | Geometry view with layer borders. Displayed is the main canvas view in VRL-Studio. A similar view as in Figure 2 is provided except the density is not

visualized.

FIGURE 4 | Density view with projection to axes. The default main canvas view in VRL-Studio is presented. Schematic representations of a pyramidal cell with layer

boundaries are rendered and the density data (not shown) is projected to the x, y, and z-axis, respectively.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 June 2020 | Volume 14 | Article 42

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Grein et al. Density Visualization Pipeline

FIGURE 5 | Interneurons of the rat barrel cortex which are composed out of neurons from the Trans-columnar projection (MC1), Local Projection (MC2),

Supra-granular projection (MC3), and Intra-columnar projection (MC4).

the heterogeneity of the groups, as well as for unveiling the
relationship between neuronal structure and function, and can be
applied to comparative anatomy, developmental neurobiology,
and diagnosis.

One of the most promising recent trends in neuroscience
has been the advent of public data repositories, such as the
NeuroMorpho.org database (Ascoli et al., 2007). Initiated in
2006, this database has grown steadily to become what is the

Frontiers in Computational Neuroscience | www.frontiersin.org 9 June 2020 | Volume 14 | Article 42

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Grein et al. Density Visualization Pipeline

most complete database of neuronal morphology, comprising
currently4 a total of 112,244 cell reconstructions of several
different types and species. It includes 3D reconstructions,
measurements, software, and general information about the cells,
such as reference papers, animal species, brain region, neuron
class, amongst many others.

Typically there are three kinds of analyses one can conduct
with neuroanatomical data at hand which can be extracted from
such databases:

1. Visualization of neuronal morphology (soma, dendrites, and
axons) and cortical landmarks (layer borders and barrel
borders)

2. Calculation of the 3D density maps of dendritic and axonal
branches and 1D profiles

3. Visualization of 3D (and 1D) density maps in addition to
neuronal morphology

Density maps are of interest for cell type discrimination
(Oberlaender et al., 2011; Jiang et al., 2015) emphasized
recently. To this end interneurons of the rat barrel cortex
have been analyzed in the following paragraphs which are
composed out of neurons from the Trans-columnar projection
(MC1), Local Projection (MC2), Supra-granular projection
(MC3), and Intra-columnar projection (MC4). The schematic
neuronal morphologies and cortical landmarks can be found in
Figure 5. The neuronal morphology can be visualized, which
in this example is comprised out of soma, dendrites and axons
compartments only (see Figure S1). A bounding box can be
displayed to indicate the extent of the neuronal morphologies
in the three dimensional space (not shown). Another possibility
to visualize the data is to provide instead only the view of
the neuronal morphology and in addition display the cortical
landmarks of the barrel cortex as point of reference for navigation
through the cell structure, scale bars and coordinate axes can be
added through the graphical user interface (cf. Figure 3).

To judge where the “mass” of neurons is located one can
employ density maps. To gain a better understanding of how
the density is distributed a 3D density map might help. The
3D density maps of the interneurons can be found in Figure 6.
As reported before the density maps might indicate where
synapses can be formed in the brain. Another important analysis
encompasses the calculation of density maps and plotting the
corresponding 1D profiles, see Figure 4 for a projection of the
density data to the three coordinate axes, e.g., x-, y-, and z-axis
with the corresponding plots of the density distribution. Another
task is to visualize the isocontours of the density data.

Density maps of lower dimensionality, e.g., 1D or 2D, are
generated by projections of the neuronal morphology to a line
or a plane. While the DVP plugin allows the specification of
an arbitrary plane or line, it is customary to project data to
either 1D lines which correspond to one of the coordinate
axes or 2D planes which are a combination respectively pair
of the coordinate axes, x-, y-, and z-axis, e.g., xy-plane, xz-
plane, and yz-plane. The projected data and 1D density maps
of the interneurons can be found in Figure 6 and evidently the

4As by Wednesday 15th April, 2020.

profiles appear distinct. Lastly, a common theme in the analysis
of neuroanatomical data is to overlay the 3D density maps with
the cell morphologies themselves. This can be done as well, see
Figure 2 and Figures S1, S2 and is useful when analyzing the
overall structure and “hotspots” of synaptic density.

2.6. Characterization and Classification of
Neocortical GABAergic Interneurons
Of the three commonly used methods, i.e., morphological,
electrophysiological, and molecular, to characterize and classify
cortical neurons the morphological method is regularly
employed since it is relatively stable. The drawback to this
approach however is that it is rather time-consuming (DeFelipe
et al., 2013; Seung and Sumbul, 2014; Zeng and Sanes, 2017).
Morphologies of different cell types for characterization and
classification, morphologies of dendritic and axonal structures
have been obtained from stained and labeled neurons using
a light microscopy-based reconstruction system for retina
ganglion cells (Sümbül et al., 2014a) neocortical pyramidal
cells (Oberlaender et al., 2011; Narayanan et al., 2015; Kanari
et al., 2019; Egger et al., 2020) and neocortical GABAergic
interneurons (Helmstaedter et al., 2008; Jiang et al., 2015; Koelbl
et al., 2015) as well as (Emmenegger et al., 2018; Gouwens et al.,
2019; Scala et al., 2019). In addition, neuronal morphologies
could also be generated through a variety of computational
modeling approaches (Ascoli et al., 2001) as well as (Cuntz et al.,
2008, 2012; Wolf et al., 2013).

Here, we applied the DVP to the characterization and
classification of non-fast spiking GABAergic interneurons in
layer 4 of rat primary somatosensory (barrel) cortex. Four
morphological clusters (MCs) are identified as: (1) Trans-
columnar projection; (2) Local projection; (3) Supra-granular
projection; (4) Intra-columnar projection have been obtained
using the unsupervised hierarchical cluster analysis on dendritic
and axonal parameters (Emmenegger et al., 2018). Representative
examples for each of the MCs are displayed in Figure 5. The
axonal and dendritic arborization pattern for neurons within
the same cluster show a high similarity while for neurons from
different clusters shows a prominent difference. To illustrate
the general behavior of axonal and dendritic arborization
pattern for neurons within each MC, length density maps
of individual neurons and their average are generated and
visualized in the xy-plane (Figure 6). In addition, 1D profiles
of densities in vertical and horizontal directions (canonical
coordinate axes) are also given. From the dendritic and axonal
density maps, the potential input and output connectivities
of neurons in each MC could be predicted according to
the Peters’ rule, which imply the specific functional role
of each interneuron type in information processing within
local microcircuits.

3. MATERIALS AND METHODS

The Density Visualization Pipeline was implemented as a plugin
for the integrated development environment VRL-Studio5, a

5https://vrl-studio.mihosoft.eu/

Frontiers in Computational Neuroscience | www.frontiersin.org 10 June 2020 | Volume 14 | Article 42

https://vrl-studio.mihosoft.eu/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Grein et al. Density Visualization Pipeline

FIGURE 6 | The DVP was applied to layer 4 non-fast spiking interneuron morphologies, where four morphological clusters (MCs) were obtained using the

unsupervised cluster analysis based on their morphological features (Emmenegger et al., 2018). In addition to 3D density maps for individual interneurons within each

MC (left), the average 3D density maps for each MC (right) were calculated. Furthermore, the 1D profile of density maps in vertical and horizontal direction is given.

From the density maps, it can be clearly seen that the 4 MCs show distinct patterns of dendritic and especially axonal arborization.

declarative programming framework for the Java and Groovy
programming language for the platforms Linux, OSX, and
Windows. VRL-Studio provides a customizable graphical user
interface (GUI), which allows development of workflows by
visual programming, i.e., by manipulating and rearranging
GUI elements and thus creating interactive program and data
workflows. The workflows can be programmed by traditional
programming paradigms (Java or Groovy), where textual
representation and the code representation is visualized by
the use of the visual reflection library (VRL6) established
by Hoffer et al. (2013) and available in VRL-Studio. The
user can switch between graphical code representation via
a toggle in the GUI’s main view and text-based code
representation. The Java virtual machine (JVM) language Groovy
is available from within VRL-Studio out of the box, which
allows a rapid prototyping of work- and dataflow components.

6https://github.com/VRL-Studio/VRL

Unlike traditional programming which has not readily a
visual representation of code available, visual programming is
capable of representing textual code as graphical components
immediately in a GUI view which allows for a more
direct design of complex control-flow and data-flow logic
aided by visual representation of the underlying code. As
mentioned before VRL-Studio provides the possibility to
decompile the graphical components via a toggle to reveal
the underlying textual code representation. This is possible
by using the Groovy language which runs on the JVM and
by means of the VRL through code introspection. Through
this mechanism the user is empowered to switch seemlessly
to and between the appropriate representation(s) of the
program depending on the user context and application, see
Listing 1: Control-flow and data-flow logic, illustrating how
a user can create a graphical component from Groovy or
Java code and the resulting graphical representation is shown
in Figure S3.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 June 2020 | Volume 14 | Article 42

https://github.com/VRL-Studio/VRL
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Grein et al. Density Visualization Pipeline

3.1. VRL-Studio Components
New components are introduced by the VRL annotation
@ComponentInfo which specifies the name of a component
as well as a category. The category is used to group multiple
components, with the option of introducing multiple levels
of grouping. Although Java code has advantages concerning
runtime, the equivalent code can be defined within VRL-Studio
by Groovy code basically (omitting the public modifier in the
Listing 1). The advantage of defining components in Groovy
is that one can decompile the graphical representation of the
component into the code and vice versa. In this example
the component is grouped under the group CustomGroup
which in turn is subdivided in this example into one
further subgroup Examples. Since Integers are built-in data
types they can be represented graphically by the default
representation of the type in VRL. For custom data types
a custom type representation, which described how the
data type should be rendered on the canvas, needs to
be added.

@ComponentInfo(name="Add Integers",
category="CustomGroup/Examples")

public class AddIntegers implements Serializable {
private static final long serialVersionUID=1;

public Integer add(Integer a, Integer b) {
return a+b;

}
}

Listings 1 | Example for adding two integers (Java).

VRL makes use of Java annotations which are a form of syntactic
metadata that can be added to Java source code. The annotations
can be retained by the JVM at runtime and read via reflection or
introspection methods. This technique is used to create graphical
representations of standard Java types or custom types which
can be compiled to type representations. The DVP was designed
as a plugin for VRL-Studio. A plugin defines an additional
functionality which can be added to the VRL-Studio IDE at
runtime by using the plugin mechanisms Add and Remove
via the drop-down menu for Plugins in the VRL-Studio GUI.

FIGURE 7 | UML diagram of the density visualization pipeline. The class DensityVisualizable is aggregated in the VRL framework. For each (supported) file

format a derived class is available which implements the format specific imports and density visualization. Different (generic) computational strategies exist, and for

now the main strategy is to subdivide the data into a kd-tree and calculate densities in parallel depending on the number of processors available on the computer.

Visualizing two generic strategies is possible, either a schematic representations by a line-graph geometry (edges and vertices) which are colored by the color specified

in the data file or a cylindrical representation in 3D. Using the generic visualizers no additional implementation is required, but custom visualizers and density computors

can be implemented easily by the provided interfaces, only the data format importer actually has to be implemented if not already supported by the DVP plugin.

Frontiers in Computational Neuroscience | www.frontiersin.org 12 June 2020 | Volume 14 | Article 42

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Grein et al. Density Visualization Pipeline

The scripting language Groovy for the JVM is also available
for VRL-Studio and thus the designed DVP can be enhanced
at runtime in the GUI editor of VRL-Studio. The plugins for
VRL-Studio, and in particular the DVP, are self-contained, i.e.,
no additional runtime dependencies are required except VRL-
Studio, which ships with an integrated Java runtime environment
(JRE). The JRE is not hardwired into VRL-Studio and can be
exchanged by the user if necessary. To extend plugins in VRL-
Studio or the DVP the user needs in addition a Java development
kit (JDK) to program in Java. Groovy is supported out-of-
the-box through the VRL-Studio IDE. Each VRL-Studio plugin
corresponds to a Java Netbeans respectively Java Gradle project
and can be compiled to a single JAR file. The plugin can be either
installed via VRL-Studio’s GUI by using the plugins tab or can
be copied to the VRL-Studio home directory .vrl/current
in the user-specific directory. Since the plugin is a single JAR
file, deployment to different platforms reduces to sharing one
single file without platform-specific overhead and ceremony
deployment and allowing to easily share the workflows used
to carry out neuroanatomical data analysis. Each plugin can
be accompanied by template projects which define recurring
workflows (see Figure 1). These templates can be found in the
drop-down menu File in the sub-menu Project from Template.
Embedded in the template system is a Git versioning system
which can be controlled via the VRL-Studio GUI, making it easy
to roll back to old versions. Furthermore the necessity to include
additional libraries can be satisfied by adding dependencies to the
Java project and compile the project to a plugin. The software is
distributed as a Gradle or Netbeans project or as a pre-compiled
plugin packaged into a single JAR file or ZIP file licensed open-
source (see section 4). To obtain VRL-Studio a direct link to the
current version for OSX, Linux and Windows is provided on
the project website and an archive of older versions for legacy
projects is maintained on the website7. For further illustrations
and an overview of the main workflow and the implementation
details one may refer to Figures 1, 7.

3.2. Interactive Data-Analysis and Code
Customization
The template project structure in Figure 1 provides control-
flow logic, e.g., a Start and Stop component, and data-flow
logic. Each graphical component (instance) in VRL-Studio can be
recognized by a header with a unique name or identifier which
corresponds to exactly one component class which is the code
representation in either Groovy or Java code. For all built-in data
types in Java a so-called type representation for the component
can be defined, which overrides the default visual appearance of
the corresponding component on the canvas, see Listing 2 for
an excerpt of the Shape3dArrayTypeRepresentation
which dictates the appearance of the neuronal morphology in
the VisualizeDensity component. One can observe the
TypeInfo annotation, which specifies the type, input and
output behavior, and a style name for the class as a mnemonic for

7https://vrl-studio.mihosoft.eu/

the user. All type representations need to inherit from the VRL
type representation base class TypeRepresentationBase.

@TypeInfo(type = Shape3DArray.class, input = false,
output = true, style = "shaped3darraytype")

public final class Shape3DArrayType extends
TypeRepresentationBase {

private static final long serialVersionUID =
-4516600302355830671L;

/**
* @brief
* @param canvas the 3D canvas
* @param universeCreator the universe creator
*/
public Shape3DArrayCustomType(VCanvas3DCustom

canvas, UniverseCreator universeCreator) {
init();
init3DView(canvas, universeCreator);

}

/**
* @brief initializes the type
*/
public Shape3DArrayCustomType() {
init();

}

/**
* @brief initializes this type representation
*/
protected void init() {
// method stub

}

/**
* @brief initializes the 3D view of this type
representation

* @param canvas the 3D canvas
* @param universeCreator the universe creator
*/
protected void init3DView(final VCanvas3DCustom

canvas, UniverseCreator universeCreator) {
// method stub

}

/**
* @brief empty the view
*/
@Override
public void emptyView() {
// method stub

}

/**
* @brief evaluates a script request in the VRL
workflow

* @param script
*/
@Override
protected void evaluationRequest(Script script) {
// method stub

}
}

Listings 2 | Example for a custom type representation for a custom type.

The VRL-studio canvas is represented as a grid and there
are different color schemes available, which can be controlled
through the View sub-menu. Components can be added to the
canvas by the Components sub-menu which can be enabled by
using right-click mouse operation. Observe that the control-flow
corners logic is defined by connecting the white circles in the top
left of each component with another component. The control-
flow logic is visualized by the yellow curved lines connecting
the component (see Figure 1). In addition, data can be shared
between components as input or output. This fact is depicted in

Frontiers in Computational Neuroscience | www.frontiersin.org 13 June 2020 | Volume 14 | Article 42

https://vrl-studio.mihosoft.eu/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Grein et al. Density Visualization Pipeline

the template project by the black lines between the components.
Using Java annotations the input and output names of members
can be changed for the visual representation of the type which is
dictated by the type representation for the built-in types or can
be altered by custom type representations as explained earlier.

@ComponentInfo(name="Add Integers",
category="Custom")

class AddIntegers implements Serializable {
private static final long serialVersionUID=1;

public Integer add(
@ParamInfo(name="First Number") Integer a,
@ParamInfo(name="Second Number") Integer b) {
return a+b;

}
}

Listings 3 | Example for adding two integers (Groovy).

Finally, it is worth mentioning that the DVP can be executed
remotely in batch-mode. On a remote computing facility or a
compute cluster the DVP enables users to process large number
of cells on a remote resource, leveraging the processing power
of parallel computing when subdividing the data sets in an
appropriate fashion suitable for the compute resource of interest.

4. DISCUSSION

This paper presents the Density Visualization Pipeline (DVP),
a project that focusses on three-dimensional visualization and
analysis of cellular mass distribution for cell classification.
The DVP was implemented in Java using the VRL-Studio
framework. This implementation automatically generates
a user-interface of the desired workflow for ease of use.
The flexibility of the framework is not compromised by
the UI frontend, since functionality is implemented in
the Java backend. The implemented features of the DVP
include import of cell morphologies, computation and
visualization of 3D density maps, 1D density profiles,
and cortical landmarks.

Density maps are useful in discriminating cell types and are
an important tool for analysis and classification of neuronal
morphologies (see Jiang et al., 2015). In particular 1D and
2D density maps have been proven useful in the past for cell
morphology analysis. Here, a data set provided by the Feldmeyer
group was analyzed using the DVP in order to demonstrate the
functionality of the open-source toolbox. Using the visual output
and the 1D density profiles computed by the DVP cell types fall
into distinct clusters that can be used to classify cells based on
the DVP output. The involved measurements neglect the detailed
fine-grained neuromorphology and instead uses 3D density in
full 3D space together with projections onto lower-dimensional
subspaces to add insight into the interconnectivity patterns of
specific cell types.

In contrast to this approach, morphometric statistics quantify
the complex branching of neuronal structures, e.g., axons and
dendrites interconnectivity, and generate summary statistics for
the involved measures. From literature and recent analysis by
Jiang et al. (2015) these two approaches yield the best result when
classifying different cell categories. Sholl intersection analysis can

be used as an intermediate approach between density maps and
morphometric statistics. Since the presented DVP is fully open-
source, additional methods, like morphometric statistics, or Sholl
intersections analysis can be readily added to the framework once
the data is imported which is already possible for supported data
types in Table 1. In the presented examples (see Figure 6), the
1D density maps can be used to discriminate between the two
different cell types.

Given the flexibility of VRL-Studio to integrate additional
morphometric evaluators, the DVP framework can be further
developed by the research community to couple graph theory
metrics or neuroanatomical measurements. Since these types
of cell type discrimination algorithms are not trivial in the
sense of robustness, density maps are a robust addition to
existing tools. The DVP framework was developed to offer
a flexible platform to integrate heterogeneous classification
tools and with an open-source policy in mind will ideally
further promote collaborative research advances in automatic
cell classification.

CODE

For the density visualization the data set provided in
Emmenegger et al. (2018) was utilized. The code used for
the density visualization and analysis can be found on Github
in the following repository http://github.com/stephanmg/VRL-
SWC-Density-Vis.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

AUTHOR CONTRIBUTIONS

SG implemented the density visualization pipeline. GQu
analyzed the data. GQi provided the morphological data files and
biological expertise. SG, GQu, and GQi wrote the manuscript.

FUNDING

The presented work is supported by the NIH through
grant R01MH118930.

ACKNOWLEDGMENTS

GQi would like to thank Prof. Dirk Feldmeyer for his continuous
support, Jawad Jawadi for initiating this collaborative research.
Neuroanatomical data was provided by the Feldmeyer lab located
at FZ Jülich.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2020.00042/full#supplementary-material

Frontiers in Computational Neuroscience | www.frontiersin.org 14 June 2020 | Volume 14 | Article 42

http://github.com/stephanmg/VRL-SWC-Density-Vis
http://github.com/stephanmg/VRL-SWC-Density-Vis
https://www.frontiersin.org/articles/10.3389/fncom.2020.00042/full#supplementary-material
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Grein et al. Density Visualization Pipeline

REFERENCES

Aguiar, P., Sousa, M., and Szucs, P. (2013). Versatile morphometric analysis and

visualization of the three-dimensional structure of neurons. Neuroinformatics

11, 393–403. doi: 10.1007/s12021-013-9188-z

Ascoli, G. A., Donohue, D. E., and Halavi, M. (2007). NeuroMorpho.org: a

central resource for neuronal morphologies. J. Neurosci. 27, 9247–9251.

doi: 10.1523/JNEUROSCI.2055-07.2007

Ascoli, G. A., Krichmar, J., Scorcioni, R., Nasuto, S., and Senft, S. (2001). Computer

generation and quantitative morphometric analysis of virtual neurons. Anat.

Embryol. (Berl). 204, 283–301. doi: 10.1007/s004290100201

Bota, M., and Swanson, L.W. (2007). The neuron classification problem. Brain Res.

Rev. 56, 79–88. doi: 10.1016/j.brainresrev.2007.05.005

Braitenberg, V., and Schüz, A. (eds.). (1991). “Peters’ rule and white’s exceptions,”

in Cortex: Statistics and Geometry of Neuronal Connectivity, 1st ed (Berlin-

Heidelberg: Springer-Verlag), 109–112. doi: 10.1007/978-3-662-02728-8_21

Breit, M., Stepniewski, M., Grein, S., Gottmann, P., Reinhardt, L., and

Queisser, G. (2016). Anatomically detailed and large-scale simulations studying

synapse loss and synchrony using NeuroBox. Front. Neuroanat. 10:8.

doi: 10.3389/fnana.2016.00008

Bria, A., Iannello, G., Onofri, L., and Peng, H. (2016). Terafly: real-time three-

dimensional visualization and annotation of terabytes of multidimensional

volumetric images. Nat. Methods 13:192. doi: 10.1038/nmeth.3767

Budd, J. M. L., Cuntz, H., Eglen, S. J., and Krieger, P. (2015). Quantitative analysis

of neuroanatomy. Front. Neuroanat. 9:143. doi: 10.3389/fnana.2015.00143

Cannon, R., Turner, D., Pyapali, G., and Wheal, H. (1998). An on-line archive

of reconstructed hippocampal neurons. J. Neurosci. Methods 84, 49–54.

doi: 10.1016/S0165-0270(98)00091-0

Costa, L., d,. F., Rodrigues, F. A., Travieso, G., and Villas Boas, P. (2007).

Characterization of complex networks: a survey of measurements. Adv. Phys.

56, 167–242. doi: 10.1080/00018730601170527

Costa, L., d,. F., and Velte, T. J. (1999). Automatic

characterization and classification of ganglion cells from

the salamander retina. J. Comp. Neurol. 404, 33–51.

doi: 10.1002/(SICI)1096-9861(19990201)404:1<33::AID-CNE3>3.0.CO;2-Y

Costa, L., and d. F. (1995). Computer vision-based morphometric characterization

of neural cells. Rev. Sci. Instr. 66, 3770–3773. doi: 10.1063/1.1145435

Cuntz, H., Forstner, F., Borst, A., and Husser, M. (2010). One rule to grow them

all: a general theory of neuronal branching and its practical application. PLoS

Comput. Biol. 6:e1000877. doi: 10.1371/journal.pcbi.1000877

Cuntz, H., Forstner, F., Haag, J., and Borst, A. (2008). The morphological

identity of insect dendrites. PLoS Comput. Biol. 4:e1000251.

doi: 10.1371/journal.pcbi.1000251

Cuntz, H., Mathy, A., and Häusser, M. (2012). A scaling law derived from

optimal dendritic wiring. Proc. Natl. Acad. Sci. U.S.A. 109, 11014–11018.

doi: 10.1073/pnas.1200430109

DeFelipe, J., Lopez-Cruz, P., Benavides-Piccione, R., C., B., Larranaga, P.,

et al. (2013). New insights into the classification and nomenclature of

cortical gabaergic interneurons. Nat. Rev. Neurosci. 14, 202–216. doi: 10.1038/

nrn3444

Dercksen, V. J., Hege, H.-C., and Oberlaender, M. (2014). The Filament

Editor: an interactive software environment for visualization, proof-editing

and analysis of 3D neuron morphology. Neuroinformatics 12, 325–339.

doi: 10.1007/s12021-013-9213-2

Egger, R., Narayanan, R. T., Guest, J. M., Bast, A., Udvary, D., and Messore, L. F.

(2020). Cortical output is gated by horizontally projecting neurons in the deep

layers. Neuron 105, 122–137. doi: 10.1016/j.neuron.2019.10.011

Emmenegger, V., Qi, G., Wang, H., and Feldmeyer, D. (2018). Morphological

and functional characterization of non-fast-spiking GABAergic interneurons

in layer 4 microcircuitry of rat barrel cortex. Cereb. Cortex 28, 1439–1457.

doi: 10.1093/cercor/bhx352

Gillette, T. A., and Ascoli, G. A. (2015). Topological characterization of

neuronal arbor morphology via sequence representation: I-motif analysis. BMC

Bioinformatics 16:216. doi: 10.1186/s12859-015-0605-1

Gillette, T. A., and Grefenstette, J. (2009). On comparing neuronal morphologies

with the constrained tree-edit-distance. Neuroinformatics 7, 191–194.

doi: 10.1007/s12021-009-9053-2

Gouwens, N. W., Sorensen, S. A., Berg, J., Lee, C., Jarsky, T., Ting,

J., et al. (2019). Classification of electrophysiological and morphological

neuron types in the mouse visual cortex. Nat. Neurosci. 22, 1182–1195.

doi: 10.1038/s41593-019-0417-0

Halavi, M., Hamilton, K., Parekh, R., and Ascoli, G. (2012). Digital reconstructions

of neuronal morphology: three decades of research trends. Front. Neurosci. 6,

49–55. doi: 10.3389/fnins.2012.00049

Helmstaedter, C., Staiger, J. F., Sakman, B., and Feldmeyer, D. (2008).

Efficient recruitment of layer 2/3 interneurons by layer 4 input in

single columns of rat somatosensory cortex. J. Neurosci. 28, 8273–8284.

doi: 10.1523/JNEUROSCI.5701-07.2008

Heumann, H., and Wittum, G. (2009). The tree-edit-distance, a measure

for quantifying neuronal morphology. Neuroinformatics 7, 179–190.

doi: 10.1007/s12021-009-9051-4

Hoffer, M., Poliwoda, C., and Wittum, G. (2013). Visual reflection library: a

framework for declarative GUI programming on the Java platform. Comp. Vis.

Sci. 16, 181–192. doi: 10.1007/s00791-014-0230-y

Jefferis, G. S. X. E., Potter, C. J., Chan, A., Marin, E. C., Rohlfing, T., Maurer, C.

R. J., et al. (2007). Comprehensive maps of Drosophila higher olfactory centers:

spatially segregated fruit and pheromone representation. Cell 128, 1187–1203.

doi: 10.1016/j.cell.2007.01.040

Jiang, X., Shen, S., Cadwell, C. R., Berens, P., Sinz, F., Ecker, A. S., et al. (2015).

Principles of connectivity among morphologically defined cell types in adult

neocortex. Science 350:6264. doi: 10.1126/science.aac9462

Kanari, L., Dlotko, P., Scolamiero, M., Levi, R., Shillcock, J., Hess, K., et al.

(2018). A topological representation of branching neuronal morphologies.

Neuroinformatics 16, 3–13. doi: 10.1007/s12021-017-9341-1

Kanari, L., Ramaswamy, S., Shi, Y., Morand, S., Meystre, J., Perina, R., et al. (2019).

Objective morphological classification of neocortical pyramidal cells. Cereb.

Cortex 23, 1719–1735. doi: 10.1093/cercor/bhy339

Koelbl, C., Helmstaedter, M., Lubke, J., and Feldmeyer, D. (2015). A barrel-related

interneuron in layer 4 of rat somatosensory cortex with a high intrabarrel

connectivity. Cereb. Cortex 25, 713–725. doi: 10.1093/cercor/bht263

Levy, R. B., and Reyes, A. D. (2012). Spatial profile of excitatory and inhibitory

synaptic connectivity in mouse primary auditory cortex. J. Neurosci. 32,

5609–5619. doi: 10.1523/JNEUROSCI.5158-11.2012

Li, Y., Wang, D., Ascoli, G. A., Mitra, P., and Wang, Y. (2007). Metrics for

comparing neuronal tree shapes based on persistent homology. PLoS ONE

12:e0182184. doi: 10.1371/journal.pone.0182184

Lorensen, W. E., and Cline, H. E. (1987). Marching cubes: a high resolution

3D surface construction algorithm. SIGGRAPH Comput. Graph. 21, 163–169.

doi: 10.1145/37402.37422

Lu, Y., Trett, K., Shain, W., Carin, L., Coifman, R. R., and Roysam, B.

(2013). “Quantitative profiling of microglia populations using harmonic co-

clustering of arbor morphology measurements,” in 10th IEEE International

Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2013, 7–11

April, 2013 (San Francisco, CA: IEEE), 1360–1363. doi: 10.1109/ISBI.2013.

6556785

Lubke, J., Roth, A., Feldmeyer, D., and Sakmann, B. (2003). Morphometric

analysis of the columnar innervation domain of neurons connecting layer

4 and layer 2/3 of juvenile rat barrel cortex. Cereb. Cortex 13, 1051–1063.

doi: 10.1093/cercor/13.10.1051

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M.,

Sanchez, C. A., et al. (2015). Reconstruction and simulation of neocortical

microcircuitry. Cell 163, 456–492. doi: 10.1016/j.cell.2015.09.029

Narayanan, R. T., Egger, R., Johnson, A. S., Mansvelder, H. D., Sakmann, B.,

de Kock, C. P., et al. (2015). Beyond columnar organization: cell type-

and target layer-specific principles of horizontal axon projection patterns

in rat vibrissal cortex. Cereb. Cortex 25, 4450–4468. doi: 10.1093/cercor/

bhv053

Oberlaender, M., de Kock, C. P. J., Bruno, R. M., Ramirez, A., Meyer, H. S.,

Dercksen, V. J., et al. (2011). Cell type-specific three-dimensional structure of

thalamocortical circuits in a column of rat vibrissal cortex. Cereb. Cortex 22,

2375–2391. doi: 10.1093/cercor/bhr317

Packer, A. M., McConnel, D. J., Fino, E., and Yuste, R. (2013). Axo-dendritic

overlap and laminar projection can explain interneuron connectivity to

pyramidal cells. Cereb. Cortex 23, 2790–2802. doi: 10.1093/cercor/bhs210

Frontiers in Computational Neuroscience | www.frontiersin.org 15 June 2020 | Volume 14 | Article 42

https://doi.org/10.1007/s12021-013-9188-z
https://doi.org/10.1523/JNEUROSCI.2055-07.2007
https://doi.org/10.1007/s004290100201
https://doi.org/10.1016/j.brainresrev.2007.05.005
https://doi.org/10.1007/978-3-662-02728-8_21
https://doi.org/10.3389/fnana.2016.00008
https://doi.org/10.1038/nmeth.3767
https://doi.org/10.3389/fnana.2015.00143
https://doi.org/10.1016/S0165-0270(98)00091-0
https://doi.org/10.1080/00018730601170527
https://doi.org/10.1002/(SICI)1096-9861(19990201)404:1<33::AID-CNE3>3.0.CO;2-Y
https://doi.org/10.1063/1.1145435
https://doi.org/10.1371/journal.pcbi.1000877
https://doi.org/10.1371/journal.pcbi.1000251
https://doi.org/10.1073/pnas.1200430109
https://doi.org/10.1038/nrn3444
https://doi.org/10.1007/s12021-013-9213-2
https://doi.org/10.1016/j.neuron.2019.10.011
https://doi.org/10.1093/cercor/bhx352
https://doi.org/10.1186/s12859-015-0605-1
https://doi.org/10.1007/s12021-009-9053-2
https://doi.org/10.1038/s41593-019-0417-0
https://doi.org/10.3389/fnins.2012.00049
https://doi.org/10.1523/JNEUROSCI.5701-07.2008
https://doi.org/10.1007/s12021-009-9051-4
https://doi.org/10.1007/s00791-014-0230-y
https://doi.org/10.1016/j.cell.2007.01.040
https://doi.org/10.1126/science.aac9462
https://doi.org/10.1007/s12021-017-9341-1
https://doi.org/10.1093/cercor/bhy339
https://doi.org/10.1093/cercor/bht263
https://doi.org/10.1523/JNEUROSCI.5158-11.2012
https://doi.org/10.1371/journal.pone.0182184
https://doi.org/10.1145/37402.37422
https://doi.org/10.1109/ISBI.2013.6556785
https://doi.org/10.1093/cercor/13.10.1051
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1093/cercor/bhv053
https://doi.org/10.1093/cercor/bhr317
https://doi.org/10.1093/cercor/bhs210
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Grein et al. Density Visualization Pipeline

Peng, H., Ruan, Z., Long, F., Simpson, J. H., and Myers, E. W. (2010). V3D enables

real-time 3D visualization and quantitative analysis of large-scale biological

image data sets. Nat. Biotechnol. 28, 348–353. doi: 10.1038/nbt.1612

Peng, H., Tang, J., Xiao, H., Bria, A., Zhou, J., Butler, V., et al. (2014).

Virtual finger boosts three-dimensional imaging and microsurgery as well

as terabyte volume image visualization and analysis. Nat. Commun. 5:4342.

doi: 10.1038/ncomms5342

Peters, A., and Feldman, M. (1976). The projection of the lateral geniculate

nucleus to area 17 of the rat cerebral cortex. J. Neurocytol. 5, 63–84.

doi: 10.1007/BF01176183

Peters, A., and Payne, B. (1983). Numerical relationships between geniculocortical

afferents and pyramidal cell modules in cat primary visual cortex. Cereb. Cortex

3, 69–78. doi: 10.1093/cercor/3.1.69

Ramón y Cajal, S. (1899). Textura del sistema nervioso del hombre y de los

vertebrados. Madrid: Gobierno Aragon - Centro Libro.

Scala, F., Kobak, D., Shan, S., Bernaerts, Y., Laturnus, S., Cadwell, C.

R., et al. (2019). Layer 4 of mouse neocortex differs in cell types

and circuit organization between sensory areas. Nat. Commun. 10:4174.

doi: 10.1038/s41467-019-12769-3

Scorcioni, R., Polavaram, S., and Ascoli, G. A. (2008). L-Measure: a web-accessible

tool for the analysis, comparison and search of digital reconstructions of

neuronal morphologies. Nat. Protoc. 3:866. doi: 10.1038/nprot.2008.51

Seung, H., and Sumbul, U. (2014). Neuronal cell types and connectivity: lessons

from the retina. Neuron 83, 1262–1272. doi: 10.1016/j.neuron.2014.08.054

Stepanyants, A., and Chklovskii, D. B. (2005). Neurogeometry and

potential synaptic connectivity. Trends Neurosci. 28, 387–394.

doi: 10.1016/j.tins.2005.05.006

Stepniewski, M., Breit, M., Hoffer, M., and Queisser, G. (2019). NeuroBox:

computational mathematics in multiscale neuroscience. Comput. Vis. Sci. 20,

111–124. doi: 10.1007/s00791-019-00314-0

Stockley, E. W., Cole, H. M., Brown, A. D., and Wheal, H. V. (1993). A system

for quantitative morphological measurement and electronic modelling of

neurons: three-dimensional reconstruction. J. Neurosci. Methods 47, 39–51.

doi: 10.1016/0165-0270(93)90020-R

Sümbül, U., Song, S., McCulloch, K., Becker, M., Lin, B., Sanes, J. R.,

et al. (2014a). A genetic and computational approach to structurally

classify neuronal types. Nat. Commun. 5:3512. doi: 10.1038/ncomm

s4512

Sümbül, U., Zlateski, A., Vishwanathan, A., Masland, R. H., and Seung, H. S.

(2014b). Automated computation of arbor densities: a step toward identifying

neuronal cell types. Front. Neuroanat. 8:139. doi: 10.3389/fnana.2014.

00139

Sunkin, S. M., Ng, L., Lau, C., Dolbeare, T., Gilbert, T. L., Thompson, C. L.,

et al. (2012). Allen Brain Atlas: an integrated spatio-temporal portal for

exploring the central nervous system. Nucleic Acids Res. 41, D996–D1008.

doi: 10.1093/nar/gks1042

Uylings, H. B. M., and van Pelt, J. (2002). Measures for quantifying

dendritic arborizations. Netw. Comput. Neural Syst. 13, 397–414.

doi: 10.1088/0954-898X_13_3_309

Wolf, S., Grein, S., and Queisser, G. (2013). Employing NeuGen 2.0

to automatically generate realistic morphologies of hippocampal

neurons and neural networks in 3D. Neuroinformatics 11, 137–148.

doi: 10.1007/s12021-012-9170-1

Zeng, H., and Sanes, J. R. (2017). Neuronal cell-type classification: challenges,

opportunities and the path forward. Nat. Rev. Neurosci. 18, 530–546.

doi: 10.1038/nrn.2017.85

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Grein, Qi and Queisser. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 16 June 2020 | Volume 14 | Article 42

https://doi.org/10.1038/nbt.1612
https://doi.org/10.1038/ncomms5342
https://doi.org/10.1007/BF01176183
https://doi.org/10.1093/cercor/3.1.69
https://doi.org/10.1038/s41467-019-12769-3
https://doi.org/10.1038/nprot.2008.51
https://doi.org/10.1016/j.neuron.2014.08.054
https://doi.org/10.1016/j.tins.2005.05.006
https://doi.org/10.1007/s00791-019-00314-0
https://doi.org/10.1016/0165-0270(93)90020-R
https://doi.org/10.1038/ncomms4512
https://doi.org/10.3389/fnana.2014.00139
https://doi.org/10.1093/nar/gks1042
https://doi.org/10.1088/0954-898X_13_3_309
https://doi.org/10.1007/s12021-012-9170-1
https://doi.org/10.1038/nrn.2017.85
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Density Visualization Pipeline: A Tool for Cellular and Network Density Visualization and Analysis
	1. Introduction
	2. Results
	2.1. Density Analysis and Customization of Data and Control-Flow Logic
	2.2. Workflow Components
	2.2.1. The ComputeDensity Component
	2.2.2. The DensityVisualization Component
	2.2.3. The TrajectoryPlotter Component

	2.3. Data Import and Supported Formats
	2.4. Morphology and Density Visualization
	2.5. Neuromorphological Analysis
	2.6. Characterization and Classification of Neocortical GABAergic Interneurons

	3. Materials and Methods
	3.1. VRL-Studio Components
	3.2. Interactive Data-Analysis and Code Customization

	4. Discussion
	Code
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

