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Determination of muscle forces during motion can help to understand motor control,

assess pathological movement, diagnose neuromuscular disorders, or estimate joint

loads. Difficulty of in vivo measurement made computational analysis become a

common alternative in which, as several muscles serve each degree of freedom,

the muscle redundancy problem must be solved. Unlike static optimization (SO),

synergy optimization (SynO) couples muscle activations across all time frames, thereby

altering estimated muscle co-contraction. This study explores whether the use of

a muscle synergy structure within an SO framework improves prediction of muscle

activations during walking. A motion/force/electromyography (EMG) gait analysis was

performed on five healthy subjects. A musculoskeletal model of the right leg actuated

by 43 Hill-type muscles was scaled to each subject and used to calculate joint

moments, muscle–tendon kinematics, and moment arms. Muscle activations were then

estimated using SynO with two to six synergies and traditional SO, and these estimates

were compared with EMG measurements. Synergy optimization neither improved SO

prediction of experimental activation patterns nor provided SO exact matching of joint

moments. Finally, synergy analysis was performed on SO estimated activations, being

found that the reconstructed activations produced poor matching of experimental

activations and joint moments. As conclusion, it can be said that, although SynO did

not improve prediction of muscle activations during gait, its reduced dimensional control

space could be beneficial for applications such as functional electrical stimulation or

motion control and prediction.

Keywords: static optimization, synergies, gait, muscle forces, EMG validation

INTRODUCTION

Knowledge of muscle forces during human movement could elucidate basic principles of human
motor control (Pierrynowski and Morrison, 1985), facilitate assessment of pathological movement
and diagnosis of neuromuscular disorders, and improve estimation of the loads experienced
by diseased or injured joints (Hardt, 1978). Because in vivo measurement of muscle force is
invasive and impossible for some muscles, computer modeling has become a commonly used
alternative approach (Nagano et al., 2005). However, becausemoremuscles than degrees of freedom
(DOFs) exist in the human musculoskeletal system, an infinite number of recruitment patterns are
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possible mathematically. This problem is often referred to as
the muscle redundancy problem (Damsgaard et al., 2006) or
force-sharing problem (Dul et al., 1984).

The muscle redundancy problem is commonly solved by an
inverse-dynamics optimizationmethod called static optimization
(SO) (Crowninshield, 1978; Ambrósio and Kecskeméthy, 2007;
Shourijeh et al., 2017), which considers muscle activations as
if each muscle was activated independently. However, recent
studies have demonstrated that the central nervous system (CNS)
appears to use muscle synergies to simplify neural control of
movement by coupling muscle activations together (Merkle et al.,
1998; Shourijeh et al., 2016b; Barroso et al., 2017). Synergies
take a high dimensional control space and reduce it to a low
dimensional space, which is potentially useful for reducing
the level of indeterminacy when estimating muscle forces via
optimization. Recent studies have demonstrated the potential
utility of muscle synergies for facilitating motor learning in
healthy and impaired individuals (d’Avella, 2016; Patel et al.,
2017; Togo and Imamizu, 2017; Niu et al., 2019). Nonetheless,
the use of muscle synergy information for neurorehabilitation
remains controversial, as the muscle synergy hypothesis is
difficult to prove or falsify (Tresch and Jarc, 2009; Kutch and
Valero-Cuevas, 2012).

Several studies have used a synergy structure to reduce
the dimensionality of the unknown muscle activation controls
(Neptune et al., 2009; McGowan et al., 2010; Mehrabi et al.,
2019). However, the models used in these studies were limited
to sagittal plane motion and used a reduced number of
muscles because the synergy information was extracted from
electromyographic (EMG) measurements available from only
superficial muscles. In contrast, a recent study applied a
computational approach termed synergy optimization (SynO)
to a three-dimensional walking model possessing 35 muscle–
tendon actuators per leg, where each muscle could be associated
with one of 16 experimentally measured surface or fine-
wire EMG signals (Shourijeh and Fregly, 2020). The model’s
lower body joint motion and muscle–tendon force-generating
properties were personalized to subject walking data using
EMG-driven modeling approach (Meyer et al., 2017). The
authors evaluated how the specified number of synergies affected
estimated lower body joint stiffness and inverse-dynamics
joint moment matching. While results obtained from SynO
were compared with those obtained from SO, experimental
evaluation of the muscle activations predicted by SynO was
not performed. Furthermore, because imposition of a synergy
structure on predicted muscle activations ties all time frames
together, SynO is more complex and slower computationally
than is SO.

This study evaluated whether imposition of a synergy
structure on muscle activations estimated via inverse-dynamics
optimization (i.e., SynO) produces muscle activation estimates
that are more consistent with EMG measurements than
are those produced by traditional SO. Muscle activations
reconstructed by performing synergy analysis on SO activations
were included in the evaluation as well. Muscle activations
and inverse-dynamics joint moment matching from all three
approaches were compared to activations derived from

experimental EMG data and joint moments calculated by
inverse dynamics using data collected from five subjects
performing overground walking. Three-dimensional models of
the subjects were used to perform the evaluation. Comparison
of these three approaches provides insight into the extent
to which, and the conditions under which, imposition of a
synergy structure may improve the estimation of muscle forces
during walking.

METHODS

Experimental Data Collection
Five subjects (four males, one female; aged 42 ± 16 years;
height 178 ± 11 cm; body mass 75 ± 25 kg) were recruited for
this study. All subjects gave written informed consent for their
participation. Subjects walked at their self-selected speed (1.1
± 0.18 m/s) along a walkway with two embedded force plates
(AccuGait, sampling at 100Hz; AMTI, Watertown, MA, USA).
The motion was captured using 12 optical infrared cameras
(OptiTrack FLEX:V100, also sampling at 100Hz; Natural Point,
Corvallis, OR, USA) that computed the position of 37 optical
markers. Additionally, 11 surface EMG signals on the right
leg were recorded at 1 kHz (FREEEMG; BTS, Quincy, MA,
USA). Each EMG signal was rectified, filtered by a singular-
spectrum analysis with a window length of 250 (Romero
et al., 2015) (equivalent to the common forward and reverse
low-pass fifth-order Butterworth filter with a cutoff frequency
of 15Hz) and then normalized with respect to its maximal
value as recommended in Raison et al. (2011). This cutoff
frequency value is consistent with the ranges reported in previous
studies using EMG data (Buchanan et al., 2004; Raison et al.,
2011).

Musculoskeletal Model Creation
The human body was modeled as a three-dimensional multibody
system formed by rigid bodies (Figure 1, left and center).
The model consisted of 18 anatomical segments (Lugrís et al.,
2013b): two hindfeet, two forefeet, two shanks, two thighs,
a pelvis, a torso, a neck, a head, two arms, two forearms,
and two hands. The segments were linked by ideal spherical
joints, thus defining a model with 57 DOFs. The axes of
the global reference frame were defined as follows: x-axis
in the anterior–posterior direction, y-axis in the medial–
lateral direction, and z-axis in the vertical direction. The
computational model was defined with 228 mixed (natural
+ angular) coordinates. The subset of natural coordinates
comprised the three Cartesian coordinates of 22 points and the
three Cartesian components of 36 unit vectors, thus yielding a
total of 174 variables.

Matrix-R formulation (García de Jalón and Bayo, 1994)
was applied to obtain the joint torques along the motion
using the in-house–developed MBSLIM library (Dopico et al.,
2016) programmed in FORTRAN, as described in Lugrís
et al. (2013a). Once the joint torques were computed, we
assumed that 43 right leg muscles contributed to six right leg
inverse-dynamics moments: three rotational DOFs at the hip,
the flexion/extension DOF at the knee, and the plantar/dorsi
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FIGURE 1 | Three-dimensional human model and detail of muscles on the right leg.

flexion and internal/external rotation at the ankle. Muscles
were modeled as one or more straight-line segments with
via points. These points corresponded to the attachments of
muscle and tendon to bone and were defined as the origin
(i.e., proximal attachment) and insertion (i.e., distal attachment).
Muscle properties and local coordinates for these points were
obtained from OpenSim (model Gait2392) (Delp et al., 2007)
and scaled to each subject from the generic reference OpenSim
model. Length parameters (optimal muscle fiber length and
tendon slack length) were scaled, for each muscle, with a
scale factor calculated as the relation between the subject’s
musculotendon length in a standing position and that of
the generic model in the same position. Muscle forces were
calculated from optimization-predicted muscle activations using
a custom Hill-type rigid tendon–muscle model (Zajac, 1989)
developed in MATLAB (MathWorks, Natick, MA, USA) (De
Groote et al., 2016). For slow activities such as walking,
use of a rigid tendon model is justifiable because it gives
nearly identical muscle force estimates to those produced by
a compliant tendon model (De Groote et al., 2016; Michaud,
2020). We assumed that not calibrating the positions and
orientations of the joint functional axes in the leg model likely
affected inverse-dynamics joint moment calculations (Reinbolt
et al., 2007), which in turn likely affected muscle activation
calculations. Moreover, not having a process for calibrating
Hill-type muscle–tendon model properties likely affected the
estimated muscle activations (Serrancolí et al., 2016). However,
all the methods proposed in this work were used with the
same limitations.

Muscle Activation Estimation Approaches
Using this human body model, we explored three approaches
for estimating muscle activations and quantified how closely
each one reproduced experimental muscle EMG data. For
the first approach, muscle activations were estimated using
SynO. For the second approach, traditional SO was used.
For the third approach, non-negative matrix factorization
(NMF) was performed on the SO activations, and then muscle
activation estimates were constructed from the synergies. For
each approach, inverse-dynamics joint moment matching was
quantified using the total variance account (VAF), whereas
EMG matching was quantified via cross correlation using the
Pearson correlation coefficient r (MATLAB’s function corrcoef )
with a maximum time delay of 100ms (Shourijeh et al.,
2016a). The correlation coefficient r was chosen to compare
muscle activations and EMG data so as to focus on shape
differences (between the activation patterns, the activation/no-
activation areas) rather than magnitude differences, as there is
no direct relationship between EMG amplitude and muscle force
amplitude (Hof, 1997; Buchanan et al., 2004). Each of the three
approaches for estimating muscle activations is described in
greater detail below.

Synergy Optimization
The SynO approach used in Shourijeh and Fregly (2020)
estimates muscle forces during human walking using synergy-
constructed muscle activations, similar to the more complex
approach in Gopalakrishnan et al. (2014). Synergy optimization
finds muscle forces that match the inverse-dynamics joint
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moments as closely as possible through the moment tracking
error term in the cost function. In SynO, synergies couple muscle
activations across time frames, requiring the optimization to be
performed over all the time frames simultaneously as follows:

af xm = Cf xnS (Cp)VnS×m (1)

where Cf xnS (Cp) and VnS×m are the time-varying synergy
activations defined by B-spline nodes and the corresponding
time-invariant synergy vectors, respectively. Each muscle
activation synergy was composed of a single time-varying
synergy activation defined by p = (f – 1)/5 + 1 (nearest integer,
f = number of frames) B-spline nodal points along with its
corresponding time-invariant synergy vector defined by m = 43
weights specifying intermuscle activation coupling. Thus, for nS
synergies (nS = 2 through 6), the number of design variables was
nS × (p + m). Muscle synergy quantities were used as the design
variables for SynO. On the other hand, the six joint moments

multiplied by the f time frames led to 6f equations from inverse-
dynamics joint moment matching. Therefore, the optimization
problem was theoretically overdetermined. However, in practice,
the problems remained underdetermined because neighboring
time frames are not completely independent from one another.

Using these design variables, the SynO cost function was
formulated as follows:

JSynO
Cp ,V

=

n
∑

j=1



β

6
∑

k=1

[

QMT
jk

− QID
jk

max(|QID
k
|)

]2

+

m
∑

i=1

(

a2ij + λij,pen(aij − 1)2
)



 (2)

where aij is the synergy-based muscle activation, and λij,pen =
{

0 0 ≤ aij ≤ 1
105 otherwise

are penalization factors for muscle i at the

time frame j to ensure that muscle activations stay between zero
and one. β = 100 is a scale factor to give more importance to the

FIGURE 2 | Block diagram of SynO and combined SO-NMF approaches. QMT is the vector of the intersegmental moments driven by muscles, J is the Jacobian

matrix of moment arms, lMTand vMT are, respectively, the length and velocity of the musculotendons. FMT , and a represent the estimated muscular forces and

activations; H, the single time-varying synergy activation; and W, the time-invariant synergy vector. QMT∗, FMT∗, and a∗ are the reconstructed intersegmental

moments, muscular forces, and activations.

TABLE 1 | Mean correlation VAF values across subjects between intersegmental moments calculated by inverse-dynamics and (i) joint intersegmental moments from

SynO, (ii) joint intersegmental moments from NMF with SO, for n synergies (n = 2 through 6) for the five subjects.

Mean VAF values across subjects for joint intersegmental moment matching

Two synergies Three synergies Four synergies Five synergies Six synergies SO

SynO SO-NMF SynO SO-NMF SynO SO-NMF SynO SO-NMF SynO SO-NMF

Hip abd/add. 91.25 73.36 96.63 86.19 98.91 85.31 99.39 92.59 99.79 92.73 100.00

Hip flex/ext. 92.99 78.16 97.90 94.29 98.95 95.13 99.70 93.76 99.80 97.67 100.00

Hip int/ext rot. 94.45 24.99 97.83 26.84 98.80 35.75 99.73 54.08 99.85 49.05 100.00

Knee flex/ext. 92.80 35.61 96.42 52.74 98.19 88.62 99.38 87.62 99.70 92.50 100.00

Ankle int/ext rot. 75.59 52.64 91.99 51.59 98.29 68.74 99.81 80.12 99.87 85.59 100.00

Plantar/dorsi flex. 91.87 75.04 95.80 80.70 98.17 84.98 98.93 91.69 99.69 91.02 100.00

Mean across joints 89.82 56.63 96.10 65.39 98.55 76.42 99.49 83.31 99.78 84.76 100.00

(VAF <95% is considered not good enough, in red).
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minimization of the error between QID
k
, the vector of the inverse-

dynamics joint moments for the kth DOF, and QMT
k

, the joint
moments produced by the muscle forces estimated by SynO. A
broad range of β values (1, 10, 50, 100, 200, 500, and 1,000) was
explored, and similar to Ou (2012), the best compromise between
joint moment tracking and activation minimization was a value
of 100.

The objective function was programmed as a Fortran mex
file to reduce computation time (16 times faster than the
original MATLAB function). Linear equality constraints made

the sum of weights within each synergy vector equal to one,
which made the synergy construction unique, whereas lower-
bound constraints made the synergy activation B-spline nodes
and synergy vector weights non-negative. Synergy optimization
problems were solved using MATLAB’s fmincon non-linear
constrained optimization algorithm. Five global optimizations
were run using MATLAB’s ga genetic optimization algorithm
with a population size of 50, providing random initial guesses for
fmincon. The SynO’s solution with the lowest objective function
value was chosen as the final solution.

FIGURE 3 | Intersegmental moments from SynO for n synergies (n = 2 through 6) vs. intersegmental moments calculated by inverse dynamics for one subject.
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Static Optimization
In contrast to SynO, SO’s muscle activations are independent
between time frames, allowing the optimization to be performed
one time frame at a time. Static optimization was run for
the same conditions as SynO (Figure 2) using the same solver
fmincon and carrying out five global optimizations to obtain
the initial guess for the initial time point. Thereafter, as
muscle activation is normally smooth and continuous during
gait, the optimal solution from the previous time frame was

used as the initial guess for the current time frame (e.g.,
Shourijeh et al., 2017). Unlike SynO, SO finds muscle forces
that perfectly reproduce the inverse-dynamics joint moments (in
the absence of reserve actuators) through equality constraints.
Both optimization approaches were evaluated based on their
ability to reproduce the inverse-dynamics joint moments and
the shapes of the experimentally measured muscle excitations.
In contrast to SynO, SO reproduces inverse-dynamics joint
moments perfectly through its equality constraints, which

FIGURE 4 | Intersegmental moments from SO and NMF for n synergies (n = 2 through 6) vs. intersegmental moments calculated by inverse dynamics for one subject.
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can be viewed as a high-penalty weight in an unconstrained
optimization cost function.

Identification of Muscle Synergies From
Static Optimization
To extract a synergy structure from the SO results, we used NMF
to decompose the 43 muscles activations estimated by SO:

a∗ =

n
∑

i=1

(Wi ×Hi) (3)

where a∗ is the vector of the reconstructed muscular activations,
Hi is the single time-varying synergy activation, and Wi is the
corresponding time-invariant synergy vector for each of the n
synergies (n = 2 through 6). MATLAB nnmf was modified to
constrain the norm-1 of each synergy vector to one to have
the same constraint as SynO. Finally, using the rigid tendon

Hill-type muscle model, the reconstructed muscle forces and
corresponding intersegmental joint moments were derived from
a∗. This approach was called SO-NMF in this work.

In what follows, it will be first checked that muscles
produce acceptable joint moments, and then the three different
approaches will be evaluated by comparing the predicted muscle
activations obtained with experimental EMG data.

RESULTS

The joint moments obtained from SynO using two through
six synergies matched the inverse-dynamics joint moments well
(Table 1, Figure 3). The worst match was produced when using
only two synergies, although the model was still able to match
the inverse-dynamics joint moments closely (mean VAF of 85%).
With three synergies, the mean VAF obtained was higher than

FIGURE 5 | Normalized muscle activations obtained for one subject from SynO and n synergies (n = 2 through 6) vs. normalized EMG.
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TABLE 2 | Mean across subjects correlation coefficient r values between EMG measurements and (i) muscular activations from SynO, (ii) muscular activations from NMF

with SO, for n synergies (n = 2 through 6) of the five subjects (r < 0.4, in red, is considered poor, and r ≥ 0.6, in green, is considered good).

Pearson correlation coefficient r between across-subject mean EMG vs. muscle activations

Two synergies Three synergies Four synergies Five synergies Six synergies SO

SynO SO-NMF SynO SO-NMF SynO SO-NMF SynO SO-NMF SynO SO-NMF

R. tibialis anterior 0.58 0.52 0.59 0.75 0.56 0.75 0.56 0.74 0.69 0.76 0.69

R. vastus medialis 0.84 0.74 0.61 0.84 0.68 0.74 0.68 0.75 0.73 0.76 0.71

R. rectus femoris 0.53 −0.07 0.52 −0.09 0.25 −0.02 0.08 −0.06 0.16 −0.05 −0.04

R. vastus lateralis 0.72 0.74 0.75 0.82 0.65 0.80 0.54 0.78 0.73 0.79 0.74

R. adductor magnus middle 0.48 0.54 0.43 0.71 0.52 0.51 0.57 0.56 0.57 0.56 0.52

R. gastrocnemius medial 0.72 0.80 0.87 0.71 0.77 0.67 0.70 0.69 0.75 0.67 0.60

R. gastrocnemius lateral 0.57 0.72 0.76 0.77 0.67 0.66 0.70 0.70 0.64 0.71 0.57

R. semitendinosus 0.36 0.73 0.58 0.89 0.53 0.66 0.66 0.67 0.50 0.60 0.57

R. biceps femoris long head 0.72 0.69 0.57 0.85 0.51 0.79 0.50 0.80 0.54 0.86 0.84

R. gluteus maximus middle 0.74 0.71 0.71 0.86 0.71 0.90 0.84 0.92 0.87 0.92 0.91

R. gluteus medius middle 0.25 0.39 0.45 0.41 0.36 0.40 0.48 0.42 0.38 0.43 0.44

Mean 0.59 0.60 0.62 0.68 0.56 0.62 0.57 0.64 0.59 0.64 0.60

TABLE 3 | Mean correlation coefficient R2-values between muscular activations

calculated by SO and SO-NMF for n synergies (n = 2 through 6).

r2 Mean values between SO and SO-NMF

Two

synergies

Three

synergies

Four

synergies

Five

synergies

Six

synergies

a vs. a* 0.44 0.56 0.75 0.83 0.87

96% for all the subjects. Between four and six synergies, VAF
values were 98% or higher.

While SO exactly reproduced the inverse-dynamics joint
moments through its equality constraints, SO-NMF’s muscular
activations with two through six synergies matched the
experimental inverse-dynamics joint moments poorly (Table 1,
Figure 4). With two and three synergies, matches for some joint
moments were worse than 50% VAF, and the mean match was
lower than 70%. Between four and six synergies, mean VAF
values were between 76% (with four synergies) and 90% (with six
synergies), and some joint moments remained <80%.

Comparison of muscle activations estimated using SynO with
experimental EMGmeasurements showed significant differences
when the number of synergies was increased (example in
Figure 5 for one of the subjects). Activations estimated by SynO
became more similar to those estimated by SO as the number
of synergies was increased. However, the mean correlations
r between estimated muscle activations and measured EMG
patterns for the five subjects did not present such differences
(Table 2). Mean values of the different approaches were close,
between 0.56 (four synergies) and 0.62 (six synergies) for SynO
and 0.60 for SO.

Reconstructed muscle activations obtained using SO-NMF
poorly matched the activations estimated using SO (Table 3,
Figure 6). Using only two synergies, a mean r2 correlation

of 0.44 was obtained for the 43 muscles, and a maximum
correlation of 0.87 was obtained with six synergies. However,
while reconstructed muscle activations and reconstructed
joint moments showed low correlations with SO results,
correlations between experimental EMG patterns and the newly
reconstructed activations showed better mean values. The best
correlations were obtained using three synergies, with a mean
value of 68%. From two to six synergies, the correlations varied
between 60 and 68%, giving similar or better results than those
obtained using SO estimated activations.

The extracted synergies were significantly different between
SynO and SO-NMF. With a reduced number of synergies, the
SO-NMF method poorly reproduced the muscle activations
calculated by SO (Table 3) by prioritizing muscles with higher
activations, whereas SynO offered a better correlation and more
homogenous solution.

Finally, the computational efficiency of the different
approaches studied in this work was compared in Table 4. All
calculations were performed on an Intel R© CoreTM i7-6700K
processing running at 4.00 GHz with 16 GB of RAM, and all
functions (except the objective function of SynO programmed in
amex file) were programmed inMATLAB using the optimization
function fmincon without parallelization. Computation time
increased significantly with the number of synergies and with SO
clearly being the fastest method, requiring a mean duration of 2 s
to solve a complete gait cycle of∼1 s. The NMF analysis required
∼1 s in MATLAB.

DISCUSSION

This work analyzed whether a recent synergy-based approach
used to solve the muscle force sharing problem, called SynO
(Shourijeh and Fregly, 2020), can improve estimation of muscle
activations during gait. In addition to comparing the correlations
between estimated activations obtained by SO and SynO for
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FIGURE 6 | Normalized muscle activations obtained for one subject from SO and NMF with n synergies (n = 2 through 6) vs. normalized EMG.

five healthy subjects, we explored the reliability of predicting
muscle activations by applying NMF to SO’s muscle activations.
Increasing the number of synergies from two until six in
SynO had minimal influence on the model’s ability to match
inverse-dynamics joint moments closely. On the other hand,
reconstructed joint moments from SO combined with NMF
matched inverse-dynamics joint moments poorly, because unlike
SynO, NMF does not take into account any joint moment
information. Consequently, the resulting joint moments would
produce a new motion, different from the original one.

Muscle activations obtained from SynO using two through
six synergies exhibited visually different shapes, as reported

previously by Shourijeh and Fregly (2020). Increasing the
number of synergies implies increasing the number of design
variables, thus allowing more freedom in the behavior of muscle
activations. For this reason, SO presented results closer to SynO
with six synergies. The same observations can bemade with NMF
when varying the number of synergies (Figure 6).

The highest muscle activations were observed for two
synergies (blue line), which generated higher co-contraction
when seeking to match the intersegmental moments, which
would likely produce higher joint stiffness (Shourijeh and Fregly,
2020). Individuals with neurological disorders such as stroke or
Parkinson’s disease often use a lower number of muscle synergies
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TABLE 4 | Mean computational time for SO and SynO with n synergies (n = 2

through 6) of the five subjects.

SynO2 SynO3 SynO4 SynO5 SynO6 SO

Computational time (s) 80 115 196 317 587 2

than do healthy individuals (Clark et al., 2009; Rodriguez
et al., 2013). Consequently, individuals with these disorders may
generate higher stiffness to maintain stability and reject walking
disturbances (Rinalduzzi et al., 2015; Kitatani et al., 2016).

Correlations observed in Table 2 are reasonable in general,
with mean r values for the five subjects varying between 0.56
and 0.68. Surprisingly, no significant differences were observed
for different numbers of synergies. The poorest results were
obtained for the rectus femoris and the gluteus medius. Crosstalk
(Jungtäubl et al., 2018) may explain the low correlation for these
muscles, especially rectus femoris. Comparing the rectus femoris
EMG signal with the vastus intermedius (muscle located under
the rectus femoris) estimated activation resulted in a higher
correlation (from 0.25 to 0.61). Furthermore, EMG correlations
produced by SynO (two through six synergies) were essentially
the same as than those produced by SO. Despite its higher
dimensional control space, SO produced a mean correlation
coefficient of 0.60, whereas SynO correlations ranged from 0.56
to 0.62.

Strangely, the reconstructed activations from SO-NMF
matched EMG better than did the original activations from
SO. However, the reconstructed inverse-dynamics joint moments
showed a poor correlation VAF (between 56 and 85%), thus
producing an inconsistent actuation. This might have been
caused by the use of a reduced number of components when
obtaining the synergy information through NMF for a large
number of muscles.

Synergy optimization constructs the activation from
optimized synergy activations (C) and synergy weights vectors
(V) (Equation 1), whereas NMF, by definition, decomposes a
signal into C and V. Consequently, the extracted synergies and
reconstructed activations were significantly different between
SynO and SO-NMF.

For SynO as well as for SO-NMF, the best correlations with
experimental EMG patterns were obtained using three synergies.
As mean intersegmental moment matching with three synergies
was good using SynO (96.1% in Table 1, although the matching
of the internal/external rotation moment at the ankle was only
92.0%), it appears that the CNS could control one leg during gait
using only three synergies. Olree and Vaughan (1995) recorded
EMG signals bilaterally from eight leg muscles and also showed
that three basic patterns could account for the locomotion
activity of these muscles. However, based on EMG activity
analysis of 16 unilateral leg muscles (Winter and Yack, 1987),
Davis and Vaughan (1993) and Ivanenko et al. (2004) concluded,
respectively, that four and five patterns could be necessary. As
explained in Banks et al. (2017) and Steele et al. (2013), variations
in methodological choices, as unilateral or bilateral analysis,
selected muscles, EMG processing, or computational method,

may generate different results. Therefore, it is difficult to conclude
what number of synergies is used by the CNS during gait. In this
work, although only one leg was studied, it would be interesting
to explore how many bilateral synergies would be found using
SynO when studying both legs together, especially in the case of
unilateral stroke (Sainburg et al., 2013; Coscia et al., 2015).

In conclusion, this study evaluated the ability of the
SynO approach to predict muscle activations obtained from
experimental EMG measurements during gait and found that
three synergies are theoretically enough to control leg muscles
during gait. However, no significant differences in ability to
predict experimental EMG patterns were found between SynO
with n synergies (n = 2 through 6) and SO; thus, neither
approach can be considered preferable for this purpose. While
SO is computationally faster and requires muscle forces to
match inverse-dynamics joint moments through constraints,
extraction of synergies by NMF from SO’s results generated new
intersegmental joint moments that were inconsistent with the
experimental jointmoments. Because the use of synergy structure
does not show improvements with respect to the commonly
used SO, observations made by Kutch and Valero-Cuevas (2012)
could explain our results. The SynO approach offers reasonable
prediction of muscle activations using an imposed synergy
structure and reduced dimensional control space and could be
useful for applications such as functional electrical stimulation
and motion control and prediction.
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