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Normative models of neural computation offer simplified yet lucid mathematical

descriptions of murky biological phenomena. Previously, online Principal Component

Analysis (PCA) was used to model a network of single-compartment neurons

accounting for weighted summation of upstream neural activity in the soma and

Hebbian/anti-Hebbian synaptic learning rules. However, synaptic plasticity in biological

neurons often depends on the integration of synaptic currents over a dendritic

compartment rather than total current in the soma. Motivated by this observation,

we model a pyramidal neuronal network using online Canonical Correlation Analysis

(CCA). Given two related datasets represented by distal and proximal dendritic inputs,

CCA projects them onto the subspace which maximizes the correlation between their

projections. First, adopting a normative approach and starting from a single-channel

CCA objective function, we derive an online gradient-based optimization algorithmwhose

steps can be interpreted as the operation of a pyramidal neuron. To model networks

of pyramidal neurons, we introduce a novel multi-channel CCA objective function, and

derive from it an online gradient-based optimization algorithm whose steps can be

interpreted as the operation of a pyramidal neuron network including its architecture,

dynamics, and synaptic learning rules. Next, we model a neuron with more than two

dendritic compartments by deriving its operation from a known objective function for

multi-view CCA. Finally, we confirm the functionality of our networks via numerical

simulations. Overall, our work presents a simplified but informative abstraction of learning

in a pyramidal neuron network, and demonstrates how such networks can integrate

multiple sources of inputs.

Keywords: neural networks, Canonical Correlation Analysis (CCA), Hebbian plasticity, pyramidal neuron,

biologically plausible learning

1. INTRODUCTION

As neural networks evolved for competitive behaviorally-relevant tasks, it is natural to model them
using a normative approach, where one starts from a principled objective function and derives
an online optimization algorithm that models an operation of a neural system. Such approach
often leads to simplified and interpretable models for complex biological phenomena. Perhaps,
the most famous example of this is modeling a neuron as an online PCA algorithm (Oja, 1982).
This model accounts for the weighted summation of synaptic inputs in a single, linear, point
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(single-compartment) neuron and Hebbian synaptic plasticity
(synaptic weight is proportional to the correlation of pre- and
post-synaptic activity). Recently, Oja’s model of a single neuron
has been extended to a network of neurons by deriving it from
a multi-channel-PCA objective function (Pehlevan et al., 2015).
In addition to the phenomena explained by the Oja model, the
extension (Pehlevan et al., 2015) accounted for the anti-Hebbian
learning rules of the lateral synaptic connections (synaptic
weight is proportional to the negative of the correlation between
pre- and post-synaptic activity). Because of their analytical
tractability, the output of such network models can be predicted
for any input.

However, there is mounting experimental evidence that a
point neuron is an extreme oversimplification. Many neurons
contain multiple segregated dendritic compartments which
integrate synaptic inputs separately and can each have a
membrane potential different from that of the soma (Poirazi
and Mel, 2001; Polsky et al., 2004). Neuronal firing often
requires coincident input onto distal and proximal dendrites
(Larkum et al., 2009; Larkum, 2013). Moreover, synaptic
plasticity is the function of the neuronal output (spiking)
and membrane potential in the corresponding compartment
(Bittner et al., 2015).

Multiple influential, biophysically grounded models have
been proposed to describe the computational role of dendritic
compartmentalization and nonlinearities (Poirazi and Mel, 2001;
Poirazi et al., 2003; Polsky et al., 2004; Jadi et al., 2014; Urbanczik
and Senn, 2014; Alemi et al., 2017; Guerguiev et al., 2017;
Haga and Fukai, 2017). These models provide mechanistic and
computational descriptions of the active membrane processes
that account for experimental observations.

In this paper, we start from computational principles first and
apply a normative approach to networks of multi-compartment
neurons to derive algorithmic descriptions of their function.
Specifically, we propose to model information processing in
pyramidal neurons as online CCA algorithms (Hotelling, 1992;
Yang et al., 2019). Because we derive these models from
principled objective functions, we can predict the output of the
network for any input analytically.

CCA is a natural choice for extending the normative modeling
of point-neuron networks as PCA algorithms (Oja, 1982, 1992;
Földiak, 1989; Rubner and Tavan, 1989; Sanger, 1989; Pehlevan
et al., 2015) to multi-compartment neuron networks. In such
neurons different dendritic compartments receive inputs from
different sources, for example, top-down and bottom-up inputs,
or inputs from multiple modalities. Information from these
multiple sources can be integrated using CCA by linearly
projecting each of the datasets onto low dimensional subspaces
with maximal cross-correlation (Parise and Ernst, 2016). For
Gaussian data, CCA can be optimal for various objectives such
as, for example, mutual information (Chechik et al., 2005), but
its utility extends to real-world applications as well (Painsky and
Tishby, 2017).

Previous work on neural network implementations of CCA
include (Lai and Fyfe, 1999; Pezeshki et al., 2003; Vía et al.,
2007; Haga and Fukai, 2017), all of which use point neurons
and non-local learning rules. In biology, synaptic learning rules

must be local i.e., depend only on the information available in
the corresponding pre- and post-synaptic neurons. In Lai and
Fyfe (1999), there are two or three output neurons, and the
synapses that innervate one of them need to have access to the
activity of another neuron to update their strength. In Pezeshki
et al. (2003), an estimate for the covariance matrix of the data
needs to be stored and be globally available to all neurons.
In Vía et al. (2007), update rules again involve numerous
nonlocal computations.

We make the following contributions:

1. We interpret an existing online algorithm for single-channel
CCA, as the operation of a two-compartment pyramidal
neuron.

2. We derive a pyramidal neuron network from a novel objective
function for multi-channel CCA.

3. We derive a model of a neuron with more than two dendritic
compartments from an objective function for a single-channel
multi-view CCA.

The rest of the paper is organized as follows. In section 2,
we derive an online algorithm from the single-channel CCA
objective function and map it onto the operation of a pyramidal
neuron. In section 3, we explain why the standard objective
function for multi-channel CCA yields a biologically implausible
network of pyramidal neurons. In section 4, we propose a novel
objective function for multi-channel CCA from which we derive
a biologically plausible network of pyramidal neurons. In section
5, we derive a model of a neuron with more than two dendritic
compartments from a single-channel multi-view CCA objective
function. In section 6, we provide numerical simulation results
for these neuronal algorithms.

2. A PYRAMIDAL NEURON AS AN ONLINE
SINGLE-CHANNEL CCA ALGORITHM

Given two datasets with the same number of data points but in
different subspaces, a single-channel CCA projects them onto
a common line so that the two unit-variance projections are
maximally correlated. Let us represent each pair of data points as
xt ∈ R

n and yt ∈ R
m, t = 1, . . . ,T. The CCA objective function

has the following form:

max
a∈Rn ,b∈Rm

1

T

T
∑

t=1

(

a⊤xt
) (

b⊤yt
)

,

s.t.
1

T

T
∑

t=1

(

a⊤xt
)2

= 1,
1

T

T
∑

t=1

(

b⊤yt
)2

= 1. (1)

In Supplementary Information A, we provide CCA’s analytical
solutions and their various properties for completeness.

We would like to rewrite (1) in a form amenable to a
biologically plausible online algorithm. One way of doing so is
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by completing a square with constant terms (see constraints):

argmax
a,b

1

T

T
∑

t=1

(

a⊤xt
) (

b⊤yt
)

= argmax
a,b

1

T

T
∑

t=1

[(

a⊤xt
) (

b⊤yt
)

+
1

2

(

a⊤xt
)2

+
1

2

(

b⊤yt
)2
]

= argmax
a,b

1

2T

T
∑

t=1

(a⊤xt + b⊤yt)
2

s.t.
1

T

T
∑

t=1

(

a⊤xt
)2

= 1,
1

T

T
∑

t=1

(

b⊤yt
)2

= 1. (2)

Next, we introduce the constraints into the objective using the
method of Lagrange multipliers and regroup the terms:

max
a,b

min
α,β

1

2T

T
∑

t=1

(a⊤xt + b⊤yt)
2 −

α

2

(

1

T

T
∑

t=1

(

a⊤xt
)2

− 1

)

−
β

2

(

1

T

T
∑

t=1

(

b⊤yt
)2

− 1

)

= max
a,b

min
α,β

1

2T

T
∑

t=1

[

(a⊤xt + b⊤yt)
2 − α

(

(

a⊤xt
)2

− 1

)

−β

(

(

b⊤yt
)2

− 1

)]

. (3)

To simplify the notation below we define the following variables:

cat : = a⊤xt , cbt : = b⊤yt , ct : = cat + cbt . (4)

We solve (3) using stochastic gradient ascent/descent with
respect to a, b, α, and β .

at+1 = at + ηa(ctxt − αtc
a
t xt), bt+1 = bt + ηb(ctyt − βtc

b
t yt),

αt+1 = αt +
ηα

2

(

(

cat
)2 − 1

)

, βt+1 = βt +
ηβ

2

(

(

cbt

)2
− 1

)

.

(5)

We can interpret this algorithm as the operation of a pyramidal
neuron. Here, cbt and cat are proximal and distal dendritic
currents, ct is the output of the pyramidal neuron, bt is a vector
of proximal synaptic weights, at is a vector of distal synaptic
weights, and αt and βt are scalar variables confined to proximal
and distal dendrites respectively, and ηs are learning rates
(Figure 1). The fixed point of this Algorithm corresponds to the
solution of Equation (1) (see Supplementary Information B).

To see how these learning rules can be implemented
biologically, we note that they can be expressed solely in terms
of total output, c, signaled by backpropagating spikes (Stuart
et al., 1997) and the distal dendritic current, ca, signaled by the
calcium plateau potentials. The key to this is the relationship
c = ca + cb in Equation (4) which allows expressing the learning
rules only in terms of the two available signals. Remarkably, such

FIGURE 1 | A CCA model of a pyramidal neuron. One set of inputs innervate

proximal dendrites, another—distal. The neuron outputs the sum of projections

onto a common line. Subscripts in this figure denote indices of vector

elements.

non-Hebbian plasticity rules have been reported experimentally
(Golding et al., 2002; Bittner et al., 2017; Magee and Grienberger,
2020).

Although algorithm (5) can be found in Lai and Fyfe (1999)
(up to a redefinition of variables αt and βt) it was interpreted
there as the learning dynamics of a network with two point
neurons and non-local learning rules. Our interpretation of the
algorithm as operation of a pyramidal neuron will allow us to
generalize it to multi-channel CCA implemented by a network
of neurons.

3. THE STANDARD MULTI-CHANNEL CCA
REQUIRES BIOLOGICALLY IMPLAUSIBLE
INTERACTIONS

Given two datasets with the same number of data points but
in different vector spaces, a multi-channel CCA projects them
onto a common vector space so that the different components
of the same projection are uncorrelated but the corresponding
components of the two projections are maximally correlated.
Given the success of our approach in the previous section, one
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may want to derive a network of neurons from the standard
multi-channel CCA cost function:

max
a1 ,...,ad ,
b1 ,...,bd

1

T

d
∑

i=1

T
∑

t=1

(a⊤i xt)(b
⊤
i yt),

s.t.
1

T

T
∑

t=1

(a⊤i xt)(a
⊤
j xt) = δij,

1

T

T
∑

t=1

(b⊤i yt)(b
⊤
j yt) = δij, i, j = 1, . . . , d. (6)

Following the same derivation procedure as in section 2, we
complete the squares and use the method of Lagrange multipliers
to arrive at:

max
a1 ,...,ad ,
b1 ,...,bd

min
α1 ,...,αd ,
β1 ,...,βd

min
Aij ,Bij ,

i,j=1,...,d, i6=j

1

2T

d
∑

i=1

T
∑

t=1

[

(

a⊤i xt + b⊤i yt
)2

−αi

(

(

a⊤i xt
)2

− 1

)

− βi

(

(

b⊤i yt
)2

− 1

)]

−
1

2T

d
∑

i=1

d
∑

j=1,
j 6=i

Aij

T
∑

t=1

(a⊤i xt)(a
⊤
j xt)

−
1

T

d
∑

i=1

d
∑

j=1,
j 6=i

Bij

T
∑

t=1

(b⊤i yt)(b
⊤
j yt). (7)

The first two lines of (7) has d copies of the Lagrangian
formulation for a single-channel CCA (3) suggesting that
its online optimization can correspond to the operation
of d pyramidal neurons. However, the interactions between
these neurons given by d(d − 1) constraints in the third
and fourth lines of (7) lead to a biologically implausible
algorithm (see Supplementary Information C). Indeed, the
decorrelation of proximal (as well as distal) currents among
different neurons requires neurons to communicate information
about such currents to each other. Yet, biological neurons
do not output proximal or distal currents separately, only
their sum.

To solve this problem, in the next section, we present a new
objective function for CCA where the constraints are formulated
in terms of neural outputs.

4. A NETWORK OF PYRAMIDAL NEURONS
DERIVED FROM A NOVEL
MULTI-CHANNEL CCA OBJECTIVE

To derive a biologically plausible multi-channel CCA algorithm
we resort to deflation: assuming we know the top d − 1
canonical variable pairs we find the dth canonical variable pair.
We formulate a CCA objective with constraints expressed in
terms of neural outputs accessible to other neurons based on the
following proposition.

Proposition 1. Given the top d − 1 canonical variable pairs,
a1, . . . , ad−1 and b1, . . . , bd−1, the solution to the following
optimization problem gives the dth pair of canonical variables:

max
a∈Rn ,b∈Rm

1

T

T
∑

t=1

(

a⊤xt
) (

b⊤yt
)

,

s.t.
1

T

T
∑

t=1

(

a⊤xt
)2

= 1,
1

T

T
∑

t=1

(

b⊤yt
)2

= 1,

1

T

T
∑

t=1

(

a⊤xt + b⊤yt
) (

a⊤i xt + b⊤i yt
)

= 0, i = 1, . . . , d − 1. (8)

Proof: See Supplementary Information D.

Starting from the optimization problem (8) and following the
steps that lead to (5), one can derive an online algorithm for
the dth canonical variable pair. The optimization problem in the
Lagrange multiplier formulation has the following form:

max
a,b

min
α,β ,mi

1

T

T
∑

t=1





1

2
(a⊤xt + b⊤yt)

2 −
α

2

(

(a⊤xt)
2 − 1

)

−
β

2

(

(b⊤yt)
2 − 1

)

−
d−1
∑

i=1

mi(a
⊤
i xt + b⊤i yt)(a

⊤xt + b⊤yt)



 (9)

We define the following variables

cad,t : = a⊤t xt , cbd,t : = b⊤t yt ,

ci,t : = a⊤i,txt + b⊤i,tyt , i = 1, . . . , d − 1,

cd,t : = cad,t + cbd,t −
d−1
∑

i=1

mi,tci,t , (10)

and optimize using stochastic gradient/ascent:

ad,t+1 = ad,t + ηa(cd,txt − αd,tc
a
d,txt),

bd,t+1 = bd,t + ηb(cd,tyt − βd,tc
b
d,tyt),

mi,t+1 = mi,t + ηm(c
a
d,t + cbd,t)ci,t , i = 1, . . . , d − 1,

αd,t+1 = αd,t +
ηα

2

(

(

cad,t

)2
− 1

)

,

βt+1 = βt +
ηβ

2

(

(

cbd,t

)2
− 1

)

. (11)

In addition, we replace ca
d,t

+ cb
d,t

with cd,t to make the algorithm
biologically plausible. Our modification to learning rule formi is:

mi,t+1 = mi,t + ηm(c
a
d,t + cbd,t)ci,t

changes to mi,t+1 = mi,t + ηmcd,tci,t . (12)

To see why the modified rule works, assume that the weight
updates converged to a stationary state, i.e. 0 = 〈1mi〉 =
〈

(ca
d
+ cb

d
)ci

〉

− mi, where we used
〈

cicj
〉

= δij (Supplementary

Information A) and the brackets denote an average over the
inputs. The desired CCA solution for the dth canonical variable

pair, i.e., mi = 0 and
〈

(ca
d
+ cb

d
)ci

〉

= 0 satisfies this condition.
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Even though other solutions exist, in simulations (section 6), we
see that the algorithm converges to only the desired one.

The resulting algorithm can be implemented by pyramidal
neurons. As before, we interpret ca

d,t
, cb

d,t
, and cd,t as distal,

proximal, and total output currents, respectively, ad,t , bd,t , as
distal and proximal synaptic weight vectors, αd,t , βd,t as distal and
proximal dendritic variables. We interpret ci,t as the outputs of
neurons that were trained to extract ith (i < d) pair of canonical
variables and mdi are lateral weights from those neurons. Note
that these lateral weight updates are anti-Hebbian.

The above derivation assumed that all i = 1, · · · , d − 1
canonical components are already extracted successfully, each by
a different pyramidal neuron. To compute CCA from scratch,
one way is to extract the d components sequentially: ith neuron
has to wait for the result of (i − 1)th neuron. Once the distal
and proximal weights of the (i− 1)th neuron converges, they are
frozen and one moves to the next neuron. A subtle point here
is about the lateral connections. Algorithm defined by (10) and
(11) omits lateral connections between previous neurons in the
sequence, suggesting that lateral connections should be removed
once a neuron’s weights converges. Such removal naturally
happens because lateral weights decay to zero at the fixed point
of the algorithm.

However, it is also possible, and more biologically plausible, to
train all pyramidal neurons simultaneously using an asymmetric
network architecture (Figure 2). This is akin to the asymmetric
lateral connectivity in the Generalized Hebbian Network (Sanger,
1989) and APEX (Diamantaras and Kung, 1996) network for
PCA. The resulting algorithm is given in Algorithm 1.

Algorithm 1 CCA network

Input: Parameters d, ηa, ηb, ηα , ηβ and ηm. Initial α1, . . . ,αd and

β1, . . . ,βd. Initial synaptic weights A ∈ R
n×d, B ∈ R

m×d, and
M ∈ R

d×d.Mij = 0 for j ≥ i.
for t = 1, 2, 3, . . . ,T do

// Neural activity
Receive inputs xt and yt
for i = 1, . . . , d do
Calculate proximal and distal dendritic currents: cai,t =
∑n

j=1 Aji,txj,t , caj,t =
∑m

j=1 Bji,tyj,t ,

Calculate pyramidal neuron outputs: ci,t = cai,t + cbi,t −
∑i−1

j=1 Mij,tcj,t
end for

// Synaptic and homeostatic plasticity
Update synaptic weights:

Aij,t+1 = Aij,t + ηa

(

cj,txi,t − αj,tc
a
j,txi,t

)

,

i = 1, . . . , n, j = 1, . . . , d

Bij,t+1 = Bij,t + ηb

(

cj,tyi,t − βj,tc
b
j,tyi,t

)

,

i = 1, . . . ,m, j = 1, . . . , d
Mij,t+1 = Mij,t + ηmci,tcj,t , i = 1, . . . , d, j < i

Update dendritic variables:

αi,t+1 = αi,t + ηα

2

(

(

cai,t
)2 − 1

)

, i = 1, . . . , d

βi,t+1 = βi,t +
ηβ

2

(

(

cbi,t

)2
− 1

)

, i = 1, . . . , d

end for

FIGURE 2 | A pyramidal neuron network that implements multi-channel CCA.

Lateral connections are anti-Hebbian and asymmetric. Subscripts in this figure

denote indices of vector elements.

5. NEURONS WITH MULTIPLE DENDRITIC
BRANCHES AS MULTIVIEW CANONICAL
CORRELATION ANALYZERS

In this section, we return to the model of a single pyramidal
neuron and extend it to neurons with more than two dendritic
compartments using a multiview single-channel CCA, i.e., CCA
on multiple sets of variables (Kettenring, 1971). There are
multiple ways to generalize CCA to multiple sets of variables; the
version we are using here is “SUMCOR” (sum of correlations):

given a dataset with k views, {x(i)t ∈ R
n(i), t = 1, . . . ,T, i =

1, . . . , k}, the SUMCOR version of multiview CCA projects each
dataset on the common line that maximizes the sum of pairwise
correlations between them. Formally, we consider the following
SUMCOR objective function (Kettenring, 1971):

max
a(1) ,a(2) ,··· ,a(k)

1

T

∑

i<j

T
∑

t=1

(a(i)
⊤
x
(i)
t )(a(j)

⊤
x
(j)
t ),

s.t.
1

T

T
∑

t=1

(a(i)
⊤
x
(i)
t )2 = 1, i = 1, 2, · · · , k (13)

From now on, the SUMCOR version of multiview CCA is simply
referred to as multiview CCA.

In order to derive a neural algorithm for multiview CCA, as
before we complete the square in the objective and introduce
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Lagrange multipliers:

max
a(1) ,a(2) ,··· ,a(k)

min
α(1) ,α(2) ,··· ,α(k)

1

2T

T
∑

t=1





k
∑

i=1

a(i)
⊤
x
(i)
t





2

−
k
∑

i=1

α(i)

2

(

1

T

T
∑

t=1

(a(i)
⊤
x
(i)
t )2 − 1

)

(14)

Defining

c
(i)
t : = a

(i)
t

⊤
x
(i)
t , ct : =

k
∑

i=1

c
(i)
t (15)

We optimize this objective by gradient descent/ascent:

a
(i)
t+1 = a

(i)
t +η(i)a

(

ct − α
(i)
t c

(i)
t

)

x
(i)
t , α

(i)
t+1 = α

(i)
t +

η
(i)
α

2

(

c
(i)2
t − 1

)

(16)
This algorithm can be implemented by a neuron with k dendritic
compartments. The neural structure is depicted in Figure 3, and
the pseudocode—in Algorithm 2. As a generalization of the
neuron shown in Figure 1, the soma is summing all k inputs
instead of just two, and each branch of dendrites is carrying out
exactly the same learning operations as Figure 1.

Algorithm 2Multiview CCA neuron

Input: Parameters η
(i)
a and η

(i)
α for i = 1, 2, . . . , k. Initial

dendritic variables α(i) and initial synaptic weights a(i) ∈ R
n(i)

i = 1, 2, . . . , k.
for t = 1, 2, 3, . . . ,T do

// Neural activity
Receive inputs x

(i)
t for i = 1, 2, . . . , k

Calculate dendritic currents for all k compartments: c
(i)
t : =

a
(i)
t

⊤
x
(i)
t , i = 1, 2, . . . , k

Calculate neuronal output: ct : =
∑k

i=1 c
(i)
t

// Synaptic and homeostatic plasticity

Update synaptic weights: a
(i)
t+1 = a

(i)
t +η

(i)
a

(

ct − α
(i)
t c

(i)
t

)

x
(i)
t ,

i = 1, 2, . . . , k

Update dendritic variables: α
(i)
t+1 = α

(i)
t + η

(i)
α

2

(

(

c
(i)
t

)2
− 1

)

,

i = 1, 2, . . . , k
end for

6. NUMERICAL SIMULATIONS

In this section, we provide numerical simulations of
our algorithms.

6.1. Multichannel CCA Algorithm
We simulated our CCA network (Algorithm 1) and several other
algorithms on various datasets.

FIGURE 3 | A neuron with k dendritic compartments can implement k-view

CCA. Here the soma sums the currents from all k compartments, which are

indexed by superscripts. Subscripts in this figure denote indices of vector

elements.

6.1.1. Datasets
We use two 5-dimensional inputs, i.e., xt , yt ∈ R

5, and
three datasets, whose samples are generated according to the
following procedures:

1. gaussian: We draw xt and yt jointly from a 10-dimensional
Gaussian distribution with random covariance matrices
A⊤A/100, where elements of the square matrix A are
independently drawn from a standard Gaussian distribution.

2. mnist: We generated a synthetic dataset from the training
portion of the MNIST dataset (LeCun, 1998). We took the
15th row of 28-by-28 MNIST images, and set xt to be the 10th
to 14th pixels of this row, and yt to be the 15th to 19th pixels
of this row (Figure 4).

3. mediamill: We used the Mediamill dataset (Snoek et al.,
2006) 1, which contains 101 textual features and 120 visual
features of multiple TV frames. We let xt be the 5 textual
features with highest frequency of occurrence, while yt is set
to be the first 5 visual features in the dataset.

1downloaded from http://isis-data.science.uva.nl/cgmsnoek/mediamill/

mediamill-challenge.tar.gz/
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FIGURE 4 | Illustration of mnist datasets. xt and yt corresponds to red and

blue pixels, respectively.

All of the above datasets are centered such that the mean of
xt ∈ R

5 and yt ∈ R
5 are zero. We generate 10,000 samples

in advance, and take xt and yt from these samples randomly
during each training step. We extract the top d = 3 canonical
components for all datasets.

6.1.2. Metrics of Performance
Next, we define the performance metrics for comparisons
between different algorithms.

• Normalized objective: The first metric we used is the value
of objective function during training divided by the optimal
objective f (A,B)/f (Acca,Bcca) where f is defined as:

f (A,B)=
1
T

∑d
i=1

∑T
t=1(a

⊤
i xt)(b

⊤
i yt)

[

1
T

∑d
i=1

∑T
t=1(a

⊤
i xt)

2
]1/2 [

1
T

∑d
i=1

∑T
t=1(b

⊤
i yt)

2
]1/2

(17)
Here A and B are synaptic weights, as in Algorithm 1, and
ai (or bi) is the ith column of A (or B). Acca and Bcca are
the correct solution of CCA; therefore, normalized objective
should converge to one if the algorithm is successful. The
numerator is the objective of (6), while the denominator
corresponds to the constraints. We include the denominator
because during the optimization process the constraints
are not always fulfilled, potentially causing a misleading
normalized objective. Note that this measure can take values
above 1 again due to constraints being not satisfied.

• Angular error:We used a metric from Ge et al. (2016) defined
as:

arccos







1
T

∑d
i=1

∑T
t=1[(a

⊤
i xt)(a

⊤
cca,ixt)+ (b⊤i yt)(b

⊤
cca,iyt)]

{

1
T

∑d
i=1

∑T
t=1[(a

⊤
i xt)

2 + (b⊤i yt)
2]
}1/2 {

1
T

∑d
i=1

∑T
t=1[(a

⊤
cca,ixt)

2 + (b⊤cca,iyt)
2]
}1/2






(18)

where subscript, cca, denotes correct solution of CCA. Angular
error is zero when the algorithm finds the correct solution
of CCA. This metric measures the cosine of the angles
between (A,B) and (Acca,Bcca) based on the following
inner product:

〈(A,B), (Acca,Bcca)〉 =
d
∑

i=1

[

a⊤i

(

1

T

T
∑

t=1

xtx
⊤
t

)

acca,i

+b⊤i

(

1

T

T
∑

t=1

yty
⊤
t

)

bcca,i

]

, (19)

which gives higher weight to synapses whose input has
higher variance.

6.1.3. Simulated Algorithms
We simulated four algorithms:

1. proposed: CCA network (Algorithm 1) with linearly
decaying learning rates. We set η = ηa = ηb = ηα =
ηβ = ηm, and η(t) = 0.02 × max(1 − αt, 0.1), where
α = 5 × 10−6. We also tried other learning rate decay
schemes such as η(t) ∝ 1/t or 1/

√
t, but found them to

be performing worse. We initialized all weights randomly by
drawing each of their elements independently from a standard
gaussian distribution.

2. nondecay: CCA network(Algorithm 1) with constant
learning rate. We used the same parametrization as above but
with α = 0.

3. nonlocal: The nonlocal (biologically implausible)
algorithm (Algorithm 3). The initialization of weights
and initial learning rates are exactly the same as Algorithm 1,
with constant learning rate during training.

4. MSG-CCA: A non-neural online algorithm “Matrix Stochastic
Gradient for CCA” described in Arora et al. (2017). As
suggested by Arora et al. (2017), we used learning rate decay
scheme ηt = 0.1√

t
. This algorithm requires an auxiliary training

data, i.e., it has to take some samples in advance and learn
on them in an offline manner. We chose this sample size to
be 100.

6.1.4. Results
The performances of all four algorithms [pyramidal,
nonlocal, nondecay, MSG-CCA] on the three datasets
are shown in Figure 5. The angular error of MSG-CCA algorithm
is not calculated because the algorithm does not produce a
deterministic and explicit estimate of the canonical variables
(Arora et al., 2012), however calculating normalized objective
is possible. All algorithms have similar performance except the
nonlocal algorithm which does not converge at all. Note that
the normalized objective can go over 1 because the constraint
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of CCA may not be satisfied. The proposed and nondecay
algorithms only differ in their learning rate scheme, and we can
see that the proposed algorithm with learning rate decay has a
better performance.

6.2. Multiview CCA Algorithm
Next, we simulated our Algorithm 2 for multiview CCA. We

set constant learning rates η
(i)
a = η

(i)
α = 0.005 for all

i = 1, 2, · · · , k, and initialize all network weights according to
standard gaussian distribution.

6.2.1. Datasets
Since multiview CCA does not have an analytical solution
(Kettenring, 1971), and is computationally intractable (Rupnik
and Shawe-Taylor, 2010), we choose datasets to which we know
or approximately know the solution. The following two datasets
are used:

1. mnist4X: Here we set x
(1)
t , x

(2)
t , x

(3)
t , x

(4)
t to be four quarters

of the t’th MNIST image (Figure 6A). The closer two pixels
are, the higher the correlation between them is, so our
generalized CCA would extract pixels closest to each other.
In this case, it would approximately be the four pixels at the
center of the whole image. Like before, instead of drawing a
sample at every training step, we take 10000 MNIST images

and generate from them 10,000 samples of x
(1)
t , x

(2)
t , x

(3)
t , x

(4)
t

in advance, and randomly draw a sample of these at each
training step.

2. svd-max: We used singular value decomposition (SVD)
to construct a dataset such that all pairs of dendritic
currents (that is c(i), i = 1, 2, · · · , k) have a correlation
coefficient of one, i.e. maximally correlated. Specifically, we let

(x
(i)
1 , x

(i)
2 , · · · , x(i)T ) = X(i) = U(i)S(i)V(i)⊤, where columns of

U(i) ∈ R
n(i)×n(i) (and also V(i) ∈ R

T×n(i) ) are orthonormal

to each other, and S(i) ∈ R
n(i)×n(i) is diagonal. For all i =

1, 2, · · · , k, diagonal elements of S(i) are independently drawn
from Uniform([0.1, 1]), and then sorted in descending order.
For all i = 1, 2, · · · , k, U(i) is constructed by perfroming
SVD on a standard gaussian distributed matrix of the same
size. The first column of V(1),V(2), · · · ,V(k) are set to be the
same, and all the other columns of all these k matrices are
set to be orthonormal to each other: this is done by first

constructing aT×
(

∑k
i=1 n

(i) − k+ 1
)

matrix whose columns

are orthonormal to each other, and then slicing this matrix to
yield V(1),V(2), · · · ,V(k). The weights that optimize objective

function (13) is a(i) = 1

s
(i)
1

u
(i)
1 , where s

(i)
1 is the first element

of S(i), and u
(i)
1 is the first column of U(i). For the simulation

below, we set k = 3, n(1) = 4, n(2) = 5, n(3) = 6,T = 10, 000.

6.2.2. Metrics of Performance
As before, we have to define the metrics for performance of
multiview CCA algorithm.

• Absolute objective:

2

k(k− 1)

k
∑

i=1

k
∑

j=i+1

1
T

∑T
t=1(a

(i)⊤xt)(a(j)
⊤
xt)

[

1
T

∑T
t=1(a

(i)⊤xt)2
]1/2 [

1
T

∑T
t=1(a

(j)⊤xt)2
]1/2

,

(20)
which is strictly between−1 and 1.

• Angular error:

arccos











1
T

∑T
t=1

∑k
i=1(a

(i)⊤xt)(a
(i)
cca

⊤
xt)

[

1
T

∑T
t=1

∑k
i=1(a

(i)⊤xt)2
]1/2

[

1
T

∑T
t=1

∑d
i=1(a

(i)
cca

⊤
xt)2

]1/2











,

(21)
where cca denotes correct solution to CCA.

6.2.3. Results
The performance of the algorithm on the mnist4X dataset
is shown in Figures 6A–D. We visualize the learned weights
on the mnist4X dataset (Figure 6B) and observe that all the
weights cluster in the center of the MNIST image. Absolute
objective and angular error are shown in Figures 6C,D. To
calculate a groundtruth value of optimal weights, we ran the
offline version of algorithm 2 on mnist4X dataset. We used
the offline weights to approximate the groundtruth weights, and
calculated an approximated angular error (Figure 6D). Training
results on svd-max dataset is shown in Figures 6E,F. Note that
for this dataset the analytical solution is available, so we could
calculate angular error precisely.

7. CONCLUSION

In this paper, we propose mathematically tractable
multicompartment neuron models that capture more biological
features than previous such models. A multichannel CCA
algorithm is implemented by an asymmetric network of two-
compartment pyramidal neurons. A neuron with more than two
dendritic compartments may implement an online multiview
CCA algorithm.

Naturally, our model is a drastic simplification of a real
biological pyramidal neuron. We assumed that the activities
of neurons are linear, continuous and deterministic, instead
of nonlinear, spiking and stochastic. The two-compartment
structure is the most prominent feature of pyramidal neuron’s
dendritic structure, which is well-captured by our model, but
this is also a simplification of actual dendritic integration, which
depends on more complex dendritic morphology (Spruston,
2008). In our model, distal and proximal compartments have
symmetric status in driving neuronal activity and learning
rules, since the two input vectors have symmetric status in
CCA. However, in a biological pyramidal neuron, these two
compartments are asymmetric: their sizes are different, and,
for example, their excitability might also be different (Spruston,
2008). Dendritic and synaptic nonlinearities which we ignored
can endow a neuron with a rich computational repertoire
(Poirazi and Mel, 2001; Poirazi et al., 2003; Polsky et al., 2004;
Larkum, 2013; Jadi et al., 2014; Haga and Fukai, 2017). Temporal
dynamics and synaptic activity delays are other aspects not
captured by our model.
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FIGURE 5 | Four algorithms [pyramidal, nonlocal, nondecay, MSG-CCA] run on three datasets [gaussian(A,B), mnist(C,D), mediamill(E,F)].

Performance is measured by normalized objective (A,C,E) and angular error (B,D,F) All algorithms are run 10 times except MSG-CCA because of computational

constraints. Solid lines show mean value over 10 simulations. Shaded regions of the same color show standard deviation over 10 simulations. Both mean and

standard deviation are smoothed along the time course of training.

Pyramidal neurons have been proposed to integrate
feedback stimulation in the distal dendrite and feedforward
information in the proximal dendrite (Spratling and Johnson,
2004). Since our model of pyramidal neurons performs
CCA on distal and proximal inputs, it provides a new
interpretation of the computation performed on feedforward
and feedback inputs. Some recent work (Guerguiev et al.,
2017; Sacramento et al., 2018) proposes that top-down
dendritic input may be instructively gating plasticity in
feedforward synapses, implementing approximately the
backpropagation algorithm. Our model may provide an

alternative mechanism for credit assignment, where a correlation
between error related feedback signals and feedforward signals
are learned.

It has been proposed that multisensory integration requires
correlation detection among different sensory modalities (Parise
and Ernst, 2016), and that such integration could happen
on a single neuron (Stein and Stanford, 2008). The multi-
compartmental version of our algorithm that performsmultiview
CCA can be useful for modeling such a neuron, which takes
signals from different modalities as inputs and extracts a
component from each input that are maximally correlated with
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FIGURE 6 | Multiview CCA algorithm 2 is trained on mnist4X dataset (A–D) and svd-max dataset (E,F). (A) This figure shows how MNIST dataset is split, where

red, green, blue, and yellow parts of the image correspond to x
(1)
t , x

(2)
t , x

(3)
t , and x

(4)
t , respectively. (B) The synaptic weights after training, which are measured by

variance contribution, match our expectation for groundtruth. The variance contribution is calculated by ui = 1
T

∑T
t=1(aixi,t )

2 where i is the index of image pixel. In this

visualization, these ui are positioned according to the positions of their corresponding pixel and their values are indicated by the colorbars. (C) Absolute objective for

both online and offline version of Algorithm 2 increases during training and converge to near 0.8. (D) Approximate angular error decreases and then fluctuate above

zero during online training. (E) Objective function increases during training and converge to one—the largest possible correlation value. (F) Angular error decreases

during training and eventually fluctuate around zero.

each other. One experimental observation that may fit such
interpretation is that correlated sensory and motor information
has been shown to be detected by pyramidal neurons through
dendritic integration (Xu et al., 2012).

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

Frontiers in Computational Neuroscience | www.frontiersin.org 10 June 2020 | Volume 14 | Article 55

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Pehlevan et al. Neurons as Canonical Correlation Analyzers

AUTHOR CONTRIBUTIONS

All authors designed the study. CP, XZ, and DC contributed to
the analytical results and wrote the manuscript. XZ performed
the numerical simulations.

FUNDING

CP received funding from the Intel Corporation for
this study. The funder was not involved in the study

design, collection, analysis, interpretation of data, the
writing of this article or the decision to submit it
for publication.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2020.00055/full#supplementary-material

REFERENCES

Alemi, A., Machens, C., Denéve, S., and Slotine, J.-J. (2017). Learning arbitrary

dynamics in efficient, balanced spiking networks using local plasticity rules.

arXiv preprint arXiv:1705.08026.

Arora, R., Cotter, A., Livescu, K., and Srebro, N. (2012). “Stochastic

optimization for PCA and PLS,” in Allerton Conference on Communication,

Control, and Computing, 861–868. doi: 10.1109/Allerton.2012.

6483308

Arora, R., Marinov, T. V., Mianjy, P., and Srebro, N. (2017). “Stochastic

approximation for canonical correlation analysis,” in Advances in Neural

Information Processing Systems, 4775–4784.

Bittner, K. C., Grienberger, C., Vaidya, S. P., Milstein, A. D., Macklin, J. J.,

Suh, J., et al. (2015). Conjunctive input processing drives feature selectivity

in hippocampal CA1 neurons. Nat. Neurosci. 18:1133. doi: 10.1038/nn.

4062

Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S., and Magee, J. C. (2017).

Behavioral time scale synaptic plasticity underlies ca1 place fields. Science 357,

1033–1036. doi: 10.1126/science.aan3846

Chechik, G., Globerson, A., Tishby, N., and Weiss, Y. (2005). Information

bottleneck for Gaussian variables. J. Mach. Learn. Res. 6, 165–188.

Diamantaras, K., and Kung, S. (1996). Principal Component Neural Networks:

Theory and Applications. New York, NY: John Wiley & Sons, Inc.

Földiak, P. (1989). “Adaptive network for optimal linear feature extraction,”

in International Joint Conference on Neural Networks, 401–405.

doi: 10.1109/IJCNN.1989.118615

Ge, R., Jin, C., Netrapalli, P., Sidford, A., et al. (2016). “Efficient algorithms

for large-scale generalized eigenvector computation and canonical correlation

analysis,” in International Conference on Machine Learning, 2741–2750.

Golding, N. L., Staff, N. P., and Spruston, N. (2002). Dendritic spikes as a

mechanism for cooperative long-term potentiation. Nature 418, 326–331.

doi: 10.1038/nature00854

Guerguiev, J., Lillicrap, T. P., and Richards, B. A. (2017). Towards deep learning

with segregated dendrites. eLife 6:e22901. doi: 10.7554/eLife.22901.027

Haga, T., and Fukai, T. (2017). Dendritic processing of spontaneous neuronal

sequences for one-shot learning. bioRxiv 165613. doi: 10.1101/165613

Horn, R. A., and Johnson, C. R. (1991). Topics in Matrix Analysis. Cambridge:

Cambridge University Press. doi: 10.1017/CBO9780511840371

Hotelling, H. (1992). “Relations between two sets of variates,” in Breakthroughs

in Statistics. Springer Series in Statistics (Perspectives in Statistics),

eds S. Kotz and N. L. Johnson (New York, NY: Springer), 162–190.

doi: 10.1007/978-1-4612-4380-9_14

Jadi, M. P., Behabadi, B. F., Poleg-Polsky, A., Schiller, J., and Mel, B. W.

(2014). An augmented two-layer model captures nonlinear analog spatial

integration effects in pyramidal neuron dendrites. Proc. IEEE 102, 782–798.

doi: 10.1109/JPROC.2014.2312671

Kettenring, J. R. (1971). Canonical analysis of several sets of variables. Biometrika

58, 433–451. doi: 10.1093/biomet/58.3.433

Kushner, H. J., and Clark, D. S. (1978). Stochastic Approximation Methods for

Constrained and Unconstrained Systems. New York, NY: Springer-Verlag.

doi: 10.1007/978-1-4684-9352-8

Lai, P. L. and Fyfe, C. (1999). A neural implementation of canonical correlation

analysis. Neural Netw. 12, 1391–1397. doi: 10.1016/S0893-6080(99)00075-1

Larkum, M. (2013). A cellular mechanism for cortical associations: an

organizing principle for the cerebral cortex. Trends Neurosci. 36, 141–151.

doi: 10.1016/j.tins.2012.11.006

Larkum, M. E., Nevian, T., Sandler, M., Polsky, A., and Schiller, J. (2009). Synaptic

integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying

principle. Science 325, 756–760. doi: 10.1126/science.1171958

LeCun, Y. (1998). The MNIST Database of Handwritten Digits. Available online at:

http://yann.lecun.com/exdb/mnist/

Magee, J. C., and Grienberger, C. (2020). Synaptic plasticity forms and functions.

Annu. Rev. Neurosci. 43, 95–117. doi: 10.1146/annurev-neuro-090919-022842

Oja, E. (1982). Simplified neuron model as a principal component analyzer. J.

Math. Biol. 15, 267–273. doi: 10.1007/BF00275687

Oja, E. (1992). Principal components, minor components, and linear neural

networks. Neural Netw. 5, 927–935. doi: 10.1016/S0893-6080(05)80089-9

Painsky, A., and Tishby, N. (2017). Gaussian lower bound for the information

bottleneck limit. J. Mach. Learn. Res. 18, 7908–7936.

Parise, C. V., and Ernst, M. O. (2016). Correlation detection as a general

mechanism for multisensory integration. Nat. Commun. 7:11543.

doi: 10.1038/ncomms11543

Pehlevan, C., Hu, T., and Chklovskii, D. B. (2015). A hebbian/anti-

hebbian neural network for linear subspace learning: a derivation from

multidimensional scaling of streaming data. Neural Comput. 27, 1461–1495.

doi: 10.1162/NECO_a_00745

Pezeshki, A., Azimi-Sadjadi, M. R., and Scharf, L. L. (2003). A network for

recursive extraction of canonical coordinates. Neural Netw. 16, 801–808.

doi: 10.1016/S0893-6080(03)00112-6

Poirazi, P., Brannon, T., and Mel, B. W. (2003). Pyramidal neuron as two-layer

neural network. Neuron 37, 989–999. doi: 10.1016/S0896-6273(03)00149-1

Poirazi, P., and Mel, B. W. (2001). Impact of active dendrites and structural

plasticity on the memory capacity of neural tissue. Neuron 29, 779–796.

doi: 10.1016/S0896-6273(01)00252-5

Polsky, A., Mel, B. W., and Schiller, J. (2004). Computational subunits in thin

dendrites of pyramidal cells. Nat. Neurosci. 7:621. doi: 10.1038/nn1253

Rubner, J., and Tavan, P. (1989). A self-organizing network for principal-

component analysis. EPL 10:693. doi: 10.1209/0295-5075/10/7/015

Rupnik, J., and Shawe-Taylor, J. (2010). “Multi-view canonical correlation

analysis,” in Conference on Data Mining and Data Warehouses (SiKDD 2010),

1–4.

Sacramento, J., Costa, R. P., Bengio, Y., and Senn, W. (2018). “Dendritic cortical

microcircuits approximate the backpropagation algorithm,” in Advances in

Neural Information Processing Systems, 8721–8732.

Sanger, T. (1989). Optimal unsupervised learning in a single-layer

linear feedforward neural network. Neural Netw. 2, 459–473.

doi: 10.1016/0893-6080(89)90044-0

Snoek, C. G., Worring, M., Van Gemert, J. C., Geusebroek, J.-M., and Smeulders,

A. W. (2006). “The challenge problem for automated detection of 101 semantic

concepts in multimedia,” in Proceedings of the 14th ACM International

Conference on Multimedia (ACM), 421–430. doi: 10.1145/1180639.

1180727

Spratling, M.W., and Johnson, M. H. (2004). A feedback model of visual attention.

J. Cogn. Neurosci. 16, 219–237. doi: 10.1162/089892904322984526

Spruston, N. (2008). Pyramidal neurons: dendritic structure and synaptic

integration. Nat. Rev. Neurosci. 9:206. doi: 10.1038/nrn2286

Frontiers in Computational Neuroscience | www.frontiersin.org 11 June 2020 | Volume 14 | Article 55

https://www.frontiersin.org/articles/10.3389/fncom.2020.00055/full#supplementary-material
https://doi.org/10.1109/Allerton.2012.6483308
https://doi.org/10.1038/nn.4062
https://doi.org/10.1126/science.aan3846
https://doi.org/10.1109/IJCNN.1989.118615
https://doi.org/10.1038/nature00854
https://doi.org/10.7554/eLife.22901.027
https://doi.org/10.1101/165613
https://doi.org/10.1017/CBO9780511840371
https://doi.org/10.1007/978-1-4612-4380-9_14
https://doi.org/10.1109/JPROC.2014.2312671
https://doi.org/10.1093/biomet/58.3.433
https://doi.org/10.1007/978-1-4684-9352-8
https://doi.org/10.1016/S0893-6080(99)00075-1
https://doi.org/10.1016/j.tins.2012.11.006
https://doi.org/10.1126/science.1171958
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1146/annurev-neuro-090919-022842
https://doi.org/10.1007/BF00275687
https://doi.org/10.1016/S0893-6080(05)80089-9
https://doi.org/10.1038/ncomms11543
https://doi.org/10.1162/NECO_a_00745
https://doi.org/10.1016/S0893-6080(03)00112-6
https://doi.org/10.1016/S0896-6273(03)00149-1
https://doi.org/10.1016/S0896-6273(01)00252-5
https://doi.org/10.1038/nn1253
https://doi.org/10.1209/0295-5075/10/7/015
https://doi.org/10.1016/0893-6080(89)90044-0
https://doi.org/10.1145/1180639.1180727
https://doi.org/10.1162/089892904322984526
https://doi.org/10.1038/nrn2286
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Pehlevan et al. Neurons as Canonical Correlation Analyzers

Stein, B. E., and Stanford, T. R. (2008). Multisensory integration: current

issues from the perspective of the single neuron. Nat. Rev. Neurosci. 9:255.

doi: 10.1038/nrn2331

Stuart, G., Spruston, N., Sakmann, B., and Häusser, M. (1997). Action

potential initiation and backpropagation in neurons of the mammalian

CNS. Trends Neurosci. 20, 125–131. doi: 10.1016/S0166-2236(96)

10075-8

Urbanczik, R., and Senn, W. (2014). Learning by the dendritic prediction of

somatic spiking. Neuron 81, 521–528. doi: 10.1016/j.neuron.2013.11.030

Vía, J., Santamaría, I., and Pérez, J. (2007). A learning algorithm for adaptive

canonical correlation analysis of several data sets. Neural Netw. 20, 139–152.

doi: 10.1016/j.neunet.2006.09.011

Xu, N.-l., Harnett, M. T., Williams, S. R., Huber, D., O’Connor, D. H., Svoboda, K.,

et al. (2012). Nonlinear dendritic integration of sensory andmotor input during

an active sensing task. Nature 492:247. doi: 10.1038/nature11601

Yang, X., Weifeng, L., Liu, W., and Tao, D. (2019). A survey on

canonical correlation analysis. IEEE Trans. Knowl. Data Eng.

doi: 10.1109/TKDE.2019.2958342

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Pehlevan, Zhao, Sengupta and Chklovskii. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 12 June 2020 | Volume 14 | Article 55

https://doi.org/10.1038/nrn2331
https://doi.org/10.1016/S0166-2236(96)10075-8
https://doi.org/10.1016/j.neuron.2013.11.030
https://doi.org/10.1016/j.neunet.2006.09.011
https://doi.org/10.1038/nature11601
https://doi.org/10.1109/TKDE.2019.2958342
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Neurons as Canonical Correlation Analyzers
	1. Introduction
	2. A Pyramidal Neuron as an Online Single-Channel CCA Algorithm
	3. The Standard Multi-Channel CCA Requires Biologically Implausible Interactions
	4. A Network of Pyramidal Neurons Derived From a Novel Multi-Channel CCA Objective
	5. Neurons With Multiple Dendritic Branches as Multiview Canonical Correlation Analyzers
	6. Numerical Simulations
	6.1. Multichannel CCA Algorithm
	6.1.1. Datasets
	6.1.2. Metrics of Performance
	6.1.3. Simulated Algorithms
	6.1.4. Results

	6.2. Multiview CCA Algorithm
	6.2.1. Datasets
	6.2.2. Metrics of Performance
	6.2.3. Results


	7. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


