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Humans organize sequences of events into a single overall experience, and evaluate

the aggregated experience as a whole, such as a generally pleasant dinner, movie,

or trip. However, such evaluations are potentially computationally taxing, and so our

brains must employ heuristics (i.e., approximations). For example, the peak-end rule

hypothesis suggests that we average the peaks and end of a sequential event vs.

integrating every moment. However, there is no general model to test viable hypotheses

quantitatively. Here, we propose a general model and test among multiple specific

ones, while also examining the role of working memory. The models were tested with

a novel picture-rating task. We first compared averaging across entire sequences vs. the

peak-end heuristic. Correlation tests indicated that averaging prevailed, with peak and

end both still having significant prediction power. Given this, we developed generalized

order-dependent and relative-preference-dependent models to subsume averaging,

peak and end. The combined model improved the prediction power. However, based

on limitations of relative-preference—including imposing a potentially arbitrary ranking

among preferences—we introduced an absolute-preference-dependent model, which

successfully explained the remembered utilities. Yet, because using all experiences

in a sequence requires too much memory as real-world settings scale, we then

tested “windowed” models, i.e., evaluation within a specified window. The windowed

(absolute) preference-dependent (WP) model explained the empirical data with long

sequences better than without windowing. However, because fixed-windowed models

harbor their own limitations—including an inability to capture peak-event influences

beyond a fixed window—we then developed discounting models. With (absolute)

preference-dependence added to the discounting rate, the results showed that the

discounting model reflected the actual working memory of the participants, and that

the preference-dependent discounting (PD) model described different features from the

WPmodel. Taken together, we propose a combined WP-PD model as a means by which

people evaluate experiences, suggesting preference-dependent working-memory as a

significant factor underlying our evaluations.
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INTRODUCTION

Cognitive psychologists and behavioral economists have
uncovered various heuristics (i.e., approximations) that the
human brain uses to resolve the curse of dimensionality (i.e.,
too much information in the natural world to process fully).
Heuristics are akin to visual illusions that provide a window into
how the brain actually processes information. One of the noted
problems studied is how people evaluate sequences of events,
such as the overall pleasantness of a dinner, movie, or trip. This
organization of singular moments into larger events is perhaps
deceptively simple, yet is one of the fundamental capabilities
underpinning human higher cognition (e.g., learning, memory
and decision-making). For example, in decision-making, what
we experience influences future choices, as we attempt to
pursue good experiences (based on expected value learned and
remembered from previous experiences) and avoid bad ones.
How we evaluate these experiences thus critically influences
future decision-making. And yet the evaluation of aggregated
experiences is not simple, for it could entail integrating the
pleasure across every moment of the experience, which is not
normally feasible.

How then does the human brain evaluate past experiences?
The overall assessment would be expected to lie somewhere
between the highest and lowest values of the individual moments
of the experience, but there are many possibilities, and so we
may ask, which of them does the brain actually use? That is,
does it have a preferred approach? Indeed, it has been shown
that people appear to focus more on the peaks of a sequential
event, such as the pain of an aversive experience, as opposed
to its duration, leading to a bias in which reducing the peak of
the pain is preferred to lessening the duration of pain, resulting
in duration neglect (Varey and Kahneman, 1992; Fredrickson
and Kahneman, 1993). For example, when choosing between one
option of holding one’s hand in a bucket of freezing cold water
for a particular duration, e.g., 14◦C for 60 s, and another option
of 14◦C for 60 s plus an additional 30 s at 15◦C, i.e., slightly less
cold, people prefer the latter option, even though it results in
50% more pain (90 vs. 60 s). The experience-evaluation model
proposed for such phenomena has been presented as a peak-

end rule, which suggests that the peak of an experience and the
most recent experience make the greatest contribution to the
experience assessment (Kahneman et al., 1993).

Since discovering this phenomenon, there has been active
interest in examining sequence evaluation and determining
exactly when and if the peak-end rule is in fact utilized, withmany
studies testing the evaluation model under various conditions
(Langer et al., 2005; Rode et al., 2007; Do et al., 2008; Kemp
et al., 2008; Liersch and McKenzie, 2009; Legg and Sweeny,
2013; Xiaowei et al., 2013). The peak-end rule has been found to
hold for some cases, but not for others. For example, it appears
to hold for studies with material goods (Do et al., 2008) and
a news-giving situation (Legg and Sweeny, 2013). In a meal
study, however, duration neglect and a preference for patterns
rising in likeability were found even if the peak-end bias was
not (Rode et al., 2007). A survey study of vacationing as a
several-day-scale experience showed that the peak-end rule was

not an outstandingly good estimator (Kemp et al., 2008). Other
studies have tried to determine the conditions under which the
peak-end rule holds (Langer et al., 2005; Liersch and McKenzie,
2009; Xiaowei et al., 2013). In one study, the peak-end bias
disappeared when the stimulus was simply presented without any
distraction (Langer et al., 2005). In another, a numerical stimulus
showed peak-end bias but a graphical stimulus did not (Liersch
and McKenzie, 2009). Moreover, both Langer et al. (2005) and
Liersch and McKenzie (2009) showed that in easy tasks, without
distractions or need for high memory capacity, performance did
not follow the peak-end rule. The evaluation rule also changed
based on the timescale of the experience, only seeming to hold
for short retention intervals (Xiaowei et al., 2013). These results
suggest a potentially significant role played by working memory
in the sequence-evaluation process (Miller, 1956; Cowan, 2001).
There were also studies of the peak-end rule with non-human
primates, but the results were mixed (Xu et al., 2011; Jung and
Kralik, 2013; Blanchard et al., 2014).

Experience evaluation patterns have been examined in other
fields that require decision making based on evaluation of a
series. In a study on dynamic pricing problems, the peak-end rule
was assumed to estimate the reference price for a pricing model
(Nasiry and Popescu, 2011). In a study on learning experiences,
the researchers tried to determine the type of study experience
that makes it easier to learn and found that the peak-end rule held
in the experiment (Hoogerheide and Paas, 2012). Such diverse
possible applications of the rule have spawned many reviews that
attempt to define the problem and suggest evaluation models
and experimental designs (Kahneman et al., 1997; Ariely and
Carmon, 2000; Fredrickson, 2000; Kahneman, 2000).

Defining utilities with respect to experiences, peak-end
evaluation is understood as a rule to predict remembered
utility, as distinguished from decision utility or total utility
(Kahneman et al., 1997). Remembered utility is obtained from
subjective survey after the event of interest (e.g., after the entire
series composing the event is experienced), and total utility
is a theoretical value computed from a series of experiences,
assuming a model to compute the representative of the series.
The peak-end rule is a kind of evaluation by moments, with
the idea of “judgment by prototype” moment(s) (Kahneman,
2000). It says that an evaluation is determined primarily by some
representative samples. Peak and end are interpreted as carriers
of meaning, and experience evaluation is extraction of meaning
(Fredrickson, 2000). Nonetheless, peak and end may not be the
only characteristics in experiences that could be representative
features (Ariely and Carmon, 2000). And even then it can
be difficult to differentiate among possible representative
characteristics in a given setting. For example, a study showed
that the peak-end rule and simple averaging of experiences
coincide if themoment utility model has individual heterogeneity
and perceptual persistence (Cojuharenco and Ryvkin, 2008).
Moreover, there are methodological considerations yet to be
fully addressed, such as types of experiences, positivity/negativity
of experiences, timescale of experiences, quantitative/qualitative
experiences, and real/virtual experiences. Selective attention and
memory mechanisms are also proposed as possible encoding-
based explanations (Ariely and Carmon, 2000), although the
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correlation between the peak-end rule and working memory
remains unclear.

To address these myriad outstanding issues, it will require
a comprehensive quantitative assessment, and yet to our
knowledge, to date there is no precise experience evaluation
model to do so. For example, how much do peak and end truly
contribute to the evaluation? What about the second peak or just
before “end”? The current study was designed to address this
general limitation.

In particular, there were two main goals of the current
study. The first was to develop an evaluation model that
best represents the specific mechanisms underlying sequence
evaluations; and the second was to determine how working
memory is involved in the evaluations. For these purposes,
we also designed experiments that measure the pattern of
experience evaluation and the working memory ability involved
in experience evaluation.

To determine how sequences are evaluated, and more
specifically, how the temporal length of experience affects
evaluation, certain types of experimental data are needed. We
therefore conducted several behavioral experiments: a picture-
rating task, a sequence-rating task of four and seven pictures
with a simultaneous working memory task, and a sequence-rating-
continued–version task for 100 pictures. The first three tasks
(and data collected) were also utilized in a related study in our
laboratory that focused on a different phenomenon in decision
dynamics known as serial choice: how people decide which
sequence of items they will choose in the future, e.g., whether
we prefer selecting the best items first or save them for last
(Yoon et al., 2019). In that study, the experimental question was
focusing on serial choice and comparing it to several other related
phenomena like delay discounting, sequence rating and working
memory to determine the extent to which serial choice was a
separable phenomenon in its own right. The sequence rating and
working memory task data were only examined in that study
to test whether they correlated with serial choice, which they
did not. The current study on experience evaluation addressed
an entirely different set of questions, focusing on computational
modeling to uncover the specific factors underlying sequence
rating, as well as its potential relation to working memory. Again,
the current study also used a novel sequence-rating-continued-
version task to measure longer sequences of unspecified lengths.

After completion of the empirical experiments (i.e., the set
of tasks), we then proposed four basic models including a
peak-end model and averaging model (averaging all experiences
for total evaluation), as well as peak alone and end alone,
to test whether the peak-end rule hypothesis held or not,
and the extent to which each element may underlie the
sequence evaluations. The averaging model actually proved most
effective, though the results also provided evidence for multiple
influences, leading us to develop a more general model that
examined averaging in combination with order and preference
dependence. The subsequent model successfully correlated with
the experimental results, but ultimately proves infeasible in
that it requires all experiences to be remembered regardless of
sequence length. Inspired by these initial results, yet in pursuit
of a more plausible account with greater generalizability, we

then introduced windowed-evaluation models (i.e., evaluation of
events within a specified time window from the last experienced
moment into the past) that highly correlated with the empirical
results. These models, however, still left significant variance
unaccounted for, likely stemming from inherent weaknesses
of window-based models, such as ignoring potential lasting
effects of particularly salient individual events outside of the
evaluation window. We then introduced discounting models to
account for these longer-lasting effects, which indeed appeared to
capture these effects. In addition, a comparison of the temporal-
discounting rates with the working-memory data showed that the
working-memory capacity of individual participants correlated
with temporal discounting, providing validation for temporal
discounting underlying the sequence ratings, and evidence for
preference-dependent working-memory as a significant factor
underlying our evaluations. Given that a windowed preference-
dependent model as well as a discounting preference-dependent
model each appeared to account for different characteristics of
the data, we ultimately found that a combination of the two
models together provided both the highest explanatory power
as well as greatest flexibility to capture individual differences
in retrospective evaluation. Finally, we emphasize that it is
important to report this systematic progression from the initial
hypotheses (e.g., testing the peak-end rule) to the best-fitting
model, to clarify exactly what factors and to what degree they
successfully explain the sequence evaluations, as well as the extent
to which other components fall short.

EXPERIMENTS

As an experience to be properly evaluated, it was critical to use
a real and immediately consumable reward, that maintained a
reliable, sustained effect across the entire study. Faces and images
of people are easily recognized and remembered, particularly for
those of the opposite gender. In addition, there is neuroimaging
evidence that facial expressions affect the reward system of the
brain (O’Doherty et al., 2003; Mühlberger et al., 2010). Moreover,
evolutionary considerations validated by multiple studies based
on both behavioral and neurobiological assays have shown that
visual images of the opposite gender are rewarding; and this
is especially so for heterosexual men viewing women (Aharon
et al., 2001; Hamann et al., 2004; Hayden et al., 2007; Rupp
and Wallen, 2007; Cloutier et al., 2008; Stevens and Hamann,
2012). And as such, we would expect that findings based on
attractiveness would generalize to other types of reward. Also, as
image data, pictures are more easily classified and standardized
by size, color, brightness, and so on, as well as accessed and
searched for as publicly available data. For all these reasons, we
tested male participants with pictures of the opposite gender
(female) as the experimental stimuli to achieve our research aims.
Once the paradigm were established, a comparable study with
female participants could then be conducted.

The Institutional Review Board (IRB) of KAIST approved
all experimental procedures for this study. We tested 66 male
participants (self-reported heterosexual, age 23.42 ± 3.06) in a
3 day experiment. Informed written consent was obtained from
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all participants. On the first day, the picture-rating task was
performed to measure preferences for a set of pictures to be
used in later tasks. In addition, participants also performed the
“sequence-rating-continued-version task.” On the second day,
the picture-rating task was performed again to produce robust
and reliable picture-rating data for the subsequent experiments.
On the third day, the sequence-rating and working-memory
combined task with four pictures was conducted. After that, the
same sequence-rating and working-memory task was conducted
with seven pictures in a sequence.

As noted above, the data from the picture-rating, sequence-
rating, and working-memory tasks were also used in a different
study by our laboratory that focused on serial choice, i.e.,
the preferred order people have when choosing a sequence
of items, whether, for example, preferring to experience their
favorite first or last (Yoon et al., 2019). That study found
no correlation between serial choice and the retrospective
evaluations, suggesting that both were separate phenomena. The
current study focuses on the specific mechanisms underlying
retrospective evaluation. In the descriptions below, all text
displayed to the participants was in Korean (translated here
in English).

Preparing Picture Set
To isolate attractiveness as best as possible, we collected images
from Google image search (https://images.google.com/) with
keywords “Asian,” “woman,” “girl,” “bikini,” though many had
various types of clothing. We selected pictures containing only
a single subject with a clearly visible face and eye gaze. We
excluded pictures with texts, animals or any emotionally salient
objects like food, weapons, or luxury items. Pictures which were
small or blurry or had a clear expression of negative emotion or
appeared to be younger than 19 years old were also excluded.
By this process, we collected a robust set of pictures (shared
with Yoon et al., 2019) that should have provided a range of
attractiveness levels of the women (from this evolutionarymating
systems perspective).

Even though the attractiveness ratings might be expected
to be similar across participants (agreeing on which images
were more and less attractive), we wish to emphasize that any
similarity across participants was not necessary for our study.
That is, our study focused on how one’s individual preferences for
experiences—the specific pictures—are related to the preferences
for a sequence of pictures. Thus, it in fact did not matter whether
preferences were shared among the participants, only whether we
could obtain reliable preferences within participants, which we
did, as described next.

Picture Rating
It was first critical to validate our novel experimental paradigm
by obtaining reliable ratings of pictures that reflected actual
rewarding experiences. We used the picture-rating task to do so
(in both the current study and in Yoon et al., 2019). A prepared
set of 500 pictures was divided into 10 subsets, 50 pictures each,
where each subset corresponded to one session of the picture-
rating task. One session consisted of 50 trials that first present
a picture for 1.3 s then asks the preference of that picture. The

query to “Evaluate the attractiveness of the picture” was displayed
on the screen (in Korean) along with a horizontal 1–9 range
scale bar below the text. If the participant pressed a number key
on the keyboard, that number on the scale bar was changed to
blue. If he pressed the enter key, the evaluation was confirmed.
Before pressing the enter key, he could freely change the active
(blue) number on the scale bar without a time limit. Response
time for answers was 2.5395 s on average, with standard deviation
0.9513 s. After the attractiveness evaluation, the participant was
asked the familiarity of the picture. Prior to the start of the task,
the initial instruction “If you know the person in the picture or
you have seen the picture, check yes. Otherwise check no.” was
given. During the task, the question “Did you know the person
in the picture?” was displayed on the screen with yes/no choices
for each picture. The participant could check yes/no by using the
left/right arrow keys. After each trial finished, there was a 1–3 s
inter-trial interval.

The task was performed twice with a 1 week interval.
On the second day, the picture-rating task only queried
attractiveness since familiarity was determined on the first day.
Upon completion of the second day session, each picture had
two evaluations (attractiveness in 1–9 range) and familiarity
(whether he knows the person or has seen the picture). To
avoid using familiar pictures, only those with familiarity “no”
were subsequently used for the remainder of the study. The two
evaluations were then averaged for representative attractiveness,
and thus the “picture rating.” Averaging two integers (1–9)
produced picture ratings in the 1–9 range with 0.5 interval:
1, 1.5, 2, 2.5, . . . , 8.5, 9. The first and second day ratings
were correlated with Pearson correlation 0.7458 on average with
standard deviation 0.0782.

The picture-rating task generated a set of pictures for each
participant, smaller than or equal to 500, with corresponding
ratings. The pictures were sorted by their ratings and split into
seven partitions for each participant, with boundaries determined
by counting pictures for each rating value to make each partition
evenly allocated. Partitions were labeled “1,” “1.5 star,” . . . , “3.5,”
“4 star.” Furthermore, when generating partitions, the pictures
for the half intervals (“1.5,” “2.5,” “3.5 star”) were assigned as
small as possible, and the sizes of the full intervals (“1” – “4
star”) were made similar. The four integer groups “1” – “4
star” were used in all tasks, whereas the additional three groups
“1.5 star” – “3.5 star” were used in later tasks with sequence
length seven only. We minimized the use of these intermediate
groups, to promote larger differences across the groups. The
sizes of the seven partitions were 84.3182 ± 14.5223, 39.9394
± 15.1352, 91.6061 ± 17.6686, 44.1212 ± 14.6639, 91.3788 ±

17.2785, 42.0758 ± 13.7060, 86.1970 ± 16.2426, respectively,
averaging for participants± standard deviations.

From the picture-rating task, the rating for each picture was
defined as the subjective rating of the participants. Pictures with
similar preferences were grouped together as described above.
The individual picture ratings themselves were used by the
models as independent variables, while the grouping was used
only in measuring the preference-dependent working memory
ability in section Discounting Models (Discounting rates and
working memory).
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Sequence Rating and Working Memory
The experimental procedure (consisting of both the sequence-
rating and working-memory tasks) consisted of 10 sessions (9
sessions of 15 trials and one session of 11 trials) to obtain 96
trials for sequence ratings and working-memory queries. The
inter-trial interval was 2–5 s. In each trial, the instruction “Four
pictures will appear soon. Look at the pictures carefully.” was
displayed on the computer screen for 2 s and then four pictures
were presented sequentially for 1.3 s each. The query “Evaluate
your overall satisfaction of the four pictures.” was then displayed
on the screen with the same scale bar as the picture-rating task.
The procedure for entering numbers and using the enter key was
also the same as the picture-rating task.

Then, for the working-memory task component, one of the
previous four pictures appeared with the following question
below it: “In which position of the sequence was this picture?,”
along with a scale bar indicating from “1st” to “4th,” with the
participants using the 1–4 number keys. This second query
appeared at least 5 s after the previous four pictures were
shown, to prevent the participant from not answering the first
question carefully.

In addition, the same type of task with a sequence length of
seven was conducted with 36 trials. For the sequence-rating tasks,
the sequence rating for each sequence containing four or seven
pictures was defined as the subjective rating of the sequence by
the participants, with the sequence length defined as 4 or 7.

As described, the working-memory task was interleaved
with the sequence-rating task with sequence of length 4, as
participants were required to remember the position of each
of the four pictures in the sequence. With only four images in
the sequence, one might question whether the task sufficiently
tested working memory, especially in light of well-established
findings that suggest four and seven items should be comfortably
within our short-term memory capacity (Miller, 1956; Cowan,
2001). Nonetheless, our results showed the participants’ working
memories were challenged by our task. As reported below (and in
Yoon et al., 2019), their accuracy rate was between 0.55 and 0.95,
meaning that for many participants it was not easy to maintain
four pictures in working memory in the simultaneous sequence-
rating setting. In fact, we originally piloted the working-
memory task to verify that participants’ working memory was
sufficiently taxed.

Sequence Rating Continued Version
For the sequence-rating and working-memory tasks, one could
potentially memorize the entire sequence in a trial. This would
often not be usual in real life and thus might unrealistically
influence sequence ratings and diminish working-memory effects
in the study. To avoid it, we also conducted a sequence-rating task
with sequences of 100 pictures, which could not be memorized.

This task consisted of five sessions, 10 trials each. One
hundred pictures were presented on the screen one by one in
each session, and the participants performed a total satisfaction
evaluation at random intervals of 8 to 13 pictures, making 10
pictures on average and a total of 100 pictures with 10 trials.
For each trial, the participants entered the total satisfaction of
all pictures the participant viewed from the beginning of the

session to that time. For example, a participant might see 10
initial pictures, then be asked to evaluate the 10-picture sequence;
then the participant observes eight more, then again is asked to
rate the entire 18-picture sequence, and so on. It was made clear
by instruction that the answer (i.e., satisfaction evaluation) on the
last trial was an evaluation of all 100 pictures. Each picture was
shown for 1.3 s, and participants entered a number ranging from
1 to 9.

From the sequence-rating-continued-version task, the
sequence rating for each sequence of different lengths across the
task was defined as the subjective rating of the participants. The
sequence length was 8 at minimum (the earliest we could have
queried them) and 100 at maximum (the final time we queried
them), indicating the number of pictures participants had seen
before rating.

In sum, we utilized two types of sequence-rating tasks: the
sequence-rating task proper and the sequence-rating-continued-
version task. The sequence-rating task, which was conducted
simultaneously with the working-memory task, used two fixed
lengths of sequences: lengths of 4 and 7. The sequence-rating-
continued-version task used sequences without a fixed length.
In this task, 100 pictures were sequentially presented, with the
participants providing their current running evaluation of the
entire sequence each time we queried them in 8–13 picture
intervals. The final objective sequence length then was 100
pictures, whereas their subjective sequences (i.e., the actual
number of pictures participants used to make their evaluation)
could have been much shorter.

Data Acquisition
In the picture-rating task, the average preference score of
the two responses from each session was obtained for each
picture. Only the pictures without familiarity were used in the
subsequent tasks (i.e., assessed and removed for each participant
individually), to exclude, for example, differences in memory due
to familiarity in the working-memory task. The sequence-rating
task asked two questions. The first measured the satisfaction
evaluation corresponding to each sequence composed of four
or seven pictures. The second question tested whether the
participants could remember the correct order of a particular
queried picture (i.e., position of the picture in the presented
sequence), and we computed correct answer rates in three
types: order-dependent, preference-dependent, and total correct
rates. The sequence-rating-continued-version task measured
the satisfaction evaluation corresponding to each sequence
composed of 8 to 100 pictures. Note that the length of the
sequence was not fixed in this case.

MODELS

In this section, we explain the mathematical framework of our
models and analyses. We attempted to use the simplest models
possible to test the hypothesized factors underlying sequence
rating, and we then progressively built additional models based
on the results (i.e., the tests of the models against the empirical
data). Here, we define the components of the evaluation models
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including stimulus, sequence and utilities, and the evaluation
model itself. We also describe how the models were tested.

Stimulus st at time t represents the picture displayed at that
moment. The participant then converts it into moment utility
xt , which has a real number. When the participant is asked to
evaluate whole experiences, the total utility is defined as y(t) =

U(x1, x2, · · · , xt). No persistency effect (i.e., the effect of previous
pictures on current picture ratings) is assumed in the picture-
rating task and xt is directly taken from the picture-rating task.
To reduce any persistency effect, the picture-rating task was
conducted twice for each picture, on separate days (roughly 7
days apart), in different order, and then averaged together. From
this task, we obtained reliable picture ratings that we used as
the picture rating values for xt , i.e., the moment utilities, of the
pictures making up a sequence viewed in the sequence-rating
tasks. Total utility y(t) is the output of the model to predict
the rating of the sequence (remembered utility, explained in
the Introduction), the value that the participant chose for the
sequential experience in the corresponding sequence-rating task.
The goal of the models in this study, then, is to generate total
utility y(t) that matches the sequence ratings of the participants
measured in the tasks.

Total Utility Models
In the description above, the function from a sequence {xi} to the
total utility y (t) is the evaluation model in this study:

y (t) = f (x1, x2, · · · , xt) (1)

Evaluation models are independent of the remembered
(empirical) utilities and they can be any kind of functions
generating their own total utilities. The main goal of our study
was to find an evaluation model that generates total utilities
similar to the remembered utilities of the participants, thereby
using it to understand how people evaluate experiences.

All models in this study have the above form of Equation (1),
including the peak-end, windowed-evaluation and discounting
models. Some example cases are introduced here, but detailed
analyses are in the later sections. The simplest version is taking
the average of the entire sequence:

yavg(t) =
1

t

∑

1≤i≤t

xi (2)

We also tested the peak-end rule with the form:

yPE (t) =
1

2

[

max
1≤i≤t

{xi} + xt

]

(3)

TEST FOR TOTAL UTILITY MODELS

To test how well each model accounts for the experimental data,
we used Pearson’s correlation analysis:

ρmodel = corr(ymodel, y) (4)

It has a value between−1 and 1 with a high correlation obviously
meaning the model prediction is similar to the responses in the

experiment. The variable y is the actual remembered utility of
the participants: i.e., the rating of a sequence viewed in the two
types of sequence-rating tasks (sequence-rating and sequence-
rating-continued-version tasks). The variable ymodel is the total
utility of a sequence as computed by the sequence evaluation
models: i.e., the prediction of the participants subjective ratings
(actual remembered utility). The variable ρmodel measures how
closely the model’s prediction matches the actual participants’
remembered utility.

For model parameter optimization, there are several measures
to potentially use: a distance measure like mean squared
errors (MSE), correlation measures like Pearson’s correlation,
Spearman correlation and Kendall correlation, and distributional
divergence like Kullback-Leibler divergence (KL divergence).
This study used Pearson’s correlation as the criterion for
optimization for several reasons.

First, we are solving the regression problem in a continuous
target domain, and we are not assuming probabilistic
distributions on evaluation or estimation. To use KL divergence
in our problem, the target (remembered utility) must be assumed
as a distribution (sharp Gaussian, for example) and we need to
construct a robust histogram of all possible sequences. We would
need additional hyper-parameters of the Gaussian variance
of the target values and the number and size of bins to build
the histograms. This is not feasible in our setting because the
domain of the histogram has dimension of the number of
independent variables, and it is the length of the sequence, 100,
in the sequence-rating-continued-version task. Moreover, the
distributional loss in the regression problem helps to reduce
the steps for optimization rather than preventing overfitting
or improving the representation (Imani and White, 2018). We
did not have any convergence or learning speed problem in
the study, so we did not use the KL-divergence as a criterion
for optimization.

Second, correlation measures are scale-free measures of loss.
In our experimental design, independent variables are picture
ratings and the dependent variable is the sequence rating.
In principle, the two types of ratings are in different units.
Sequence ratings and picture ratings were measured in different
experiments by subjective ratings. The two experiments are
independent and each utility can be defined by other means
(not ratings): For example, we can define the remembered
utility by EEG signals rather than subjective ratings where y
has a unit of Volt. The two variables are thus in different
domains, and the total utility predicted by the evaluation
model, which should be compared to the remembered utility,
is computed on the domain of moment utilities. For example,
if a model predicted sequence ratings “0.5, 1, 1.5, 2” for four
different sequences, if the participant rated the sequences as
“1, 2, 3, 4,” then the model provides a perfect prediction
as an experience-evaluation model. Moreover, in the scale-
free situation, minimizing MSE of the re-scaled prediction is
equivalent tomaximizing the absolute Pearson’s correlation. That
is, if the model can be written as y = f (x; r), with parameter
set r, then minimizing MSE (yi, a • f (xi; r) + b) over a, b, and
r is equivalent to maximizing

∣

∣corr (yi, f (xi; r))
∣

∣ over r. This is
because when we minimize the MSE, we can first determine a
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and b as functions of xi, yi and r by simple linear regression
since there are no interaction terms between a, b, and r. Then
MSE can be expressed only by xi, yi,, and r, and it gives the
relation MSE

s2y
= 1 − corr2, where s2y is the variance of yi. If

we minimize MSE of a re-scaled prediction, then the absolute
correlation is also maximized. Because of these reasons, we used
Pearson’s correlation as the criteria for the optimization. Linear
models, the preference-dependent model and the windowed
models satisfied the condition so their re-scaled MSEs are also
minimized. Discounting models, which should be understood
as f(x;r) in the above notation, actually optimized MSE between
the target and re-scaled model prediction. Therefore, we are
consistently minimizing MSE of the re-scalable models. Thus,
we used Pearson’s correlation as the representative measure
for optimization.

Third and finally, correlation measures like Spearman and
Kendall correlations test only for the monotonicity of the
relation. For this study, we were interested in a more rigorous
test of the models against the actual sequence ratings of the
participants by providing the best fits that actually minimized
MSE of the re-scaled predictions. Nonetheless, additional
measures help validate the robustness of the results, and thus we
also computed Spearman and Kendall correlations together with
Pearson’s correlation to examine the robustness of our findings.
A comparison of the correlations showed that the results did not
change based on the correlation used. We thus only report the
computed Spearman and Kendall correlations for representative
models in the final results section rather than using them as
additional criteria of optimization.

The Specific Models in the Study
Since our study sought to determine exactly how the human
brain evaluates sequences of events as one integrated unit, we
considered several models based on the weighted sum formula,
y =

∑

wixi. We started from the four models—Peak, End, Peak-
End, andAveraging—to test the hypothesis that the peak-end rule
predicts better than averaging all events in the sequence. These
simple models have no parameters, thus no need to be learned,
and use different weightings wi for each event in the sequence. As
reported in the following section, the results on sequences with
length four and seven show that not only does Averaging better
explain the actual sequence ratings than does Peak-End, but they
also show that the participants are doingmore than just averaging
all of the moment utilities. Based on this finding, in section
Relative-Preference-Dependent and Order-Dependent Models
we next attempted to generalize the four models to multivariate
linear models, where Peak and End receive different indexing
for xi. We compared two weights with the different indexing—
relative-preference-dependent and order-dependent weights—
which are generalizations of the Peak and End, respectively; and
we combined them as a generalized Peak-End-Averaging model.
As shown in section Relative-Preference-Dependent and Order-
Dependent Models, the results show a greater degree of matching
with the empirical results (i.e., higher correlation).

Although the model in section Relative-Preference-
Dependent and Order-Dependent Models showed a significantly

high correlation with the actual sequence ratings of the
participants, it nonetheless has a fundamental limitation: it
parametrizes all weights corresponding to the moment utilities,
with the number of parameters the same as the length of
the sequence. It can be applied to the sequences with length
four or seven, but cannot be applied to sequences in the
sequence-rating-continued-version task, whose lengths are
not fixed and up to 100. A different form of parametrization
was thus required to solve this problem. First, in section
Absolute-Preference-Dependent Model we found that an
absolute-preference-dependent model successfully replaced
the relative-preference-dependent model. We note that this
change made the model non-linear due to the dependence of
weights wi on the moment utilities xi; and thus, the models in
sections “Absolute-Preference-Dependent Model,” “Windowed
Evaluation,” and “Discounting Models” are non-linear. Second,
to further address the scaling problem, in section Windowed
Evaluation we tested windowed models (i.e., evaluation of
events within a fixed time window) and found evidence for
the use of such windows in the participant ratings. At the
same time, a fixed window of sequence evaluation appeared to
miss some aspects of the results: in particular, the influence of
particularly salient events that fall outside of the window. In
section Discounting Models, then, we tested Discounting models
to potentially capture this effect, and found evidence that they
in fact did so. Finally, also in section Discounting Models, after
further examination of the results in light of the Windowed and
Discounting model fits, it appeared that both models were indeed
capturing different aspects of the data. This was then confirmed
by the increased performance of our final model, a combination
of both the absolute-preference-dependent windowed model
and the absolute-preference-dependent discounting models to
capture order dependence together.

To be clear, for parameter fitting of the models, we note that
every model parameter (if the model had any parameter) was
determined by an optimization process, normally via maximizing
the Pearson’s correlation. For example, the averaging and peak-
end models have no parameter so they can be directly applied
to predict sequence ratings. The order- and relative-preference-
dependent models have 4 parameters with sequence length
4, so the four parameters are determined by maximizing the
Pearson’s correlation (technicallyminimizingMSE based on their
linearity). Parameters for the other models were also determined
in the same way, and this consistent criterion does not impair
earlier model settings. Moreover, the optimization was not only
performed for parameter assignments of the linear models. For
optimization of the non-linear models, the windowed models
used a parameter sweep when determining the window sizes, and
the discounting models used gradient descent to determine the
discounting rates. Optimization was thus used throughout the
entire study, with models sometimes requiring different means
of optimization.

In the next section, we begin with the simplest models
and examine how they describe the experimental data for
the various sequence-rating tasks. Across sections “The Four
Initial Models: Peak, End, Peak-End (PE), and Average,”
“Relative-Preference-Dependent and Order-Dependent
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models,” “Absolute-Preference-Dependent Model,” “Windowed
Evaluation,” and “Discounting Models,” we found that the
experience evaluation model requires (1) more than just
averaging; (2) a robustness to scale that predicts sequence
ratings for sequences of arbitrary size; (3) a flexibility to capture
both local evaluation within a given window of time, as well
as more global evaluation of particularly salient experienced
events; and (4) model parameters that significantly correlate with
preference-dependent working memory.

THE FOUR INITIAL MODELS: PEAK, END,
PEAK-END (PE) AND AVERAGE

The peak-end rule suggests that the total evaluation is based on
the peak and end components of the experience. Therefore, we
first analyzed Peak and End as separate estimators, as well as the
Peak-End estimator, enabling us to examine how each appears to
contribute to the evaluation compared to an estimator based on
the average of the sequence.

Model Description
The Peak, End, PE, and Average estimators are written in
the forms

ypeak(t) = max
1≤i≤t

{xi} (5)

yend (t) = xt , (6)

yPE (t) =
1

2

(

ypeak (t) + yend (t)
)

(7)

yavg(t) =
1

t

∑

1≤i≤t

xi (8)

where xi is the individual sequence-event utility (i.e., each
picture’s preference rating) of the ith position in the sequence
and t is the total number of events in the sequence. These
estimators have no parameters and can be used immediately
without any learning algorithms. By comparing these four
estimators, particularly PE and Average, we measured how
much the peak-end bias contributed to the evaluation of the
experience. Correlation tests were used to compare the predictive
performance of each estimator.

Model Results for Sequence-Rating
Findings
We conducted a statistical analysis to compare the four
estimators in the sequence-rating task with length four, length
seven, and the sequence-rating-continued-version task. In the
sequence-rating task with length four, the four estimators
correlated with the participant ratings in the order Average >

Peak-End > Peak > End (Figure 1A). All comparisons between
estimators were significant to at least p < 0.01 (for Peak-
End > Peak). Analyzing by sequence type—i.e., increasing,
decreasing, zigzag, and peak position 1–4 in the sequence—the
mean correlation test for Average was always the highest; indeed,
the sign test with null hypothesis “all four estimators have the
same correlation value” and cases of “Average showing a better

correlation test result (p < 0.05 in t-test) than at least two other
estimators of three” as the positive occurrences for the sign test
support that the Average estimator was the best of the four,
with p =(¼)5 = 0. 0009766 < 0.001 significance. After Average,
the Peak-End estimator was the second best, whereas Peak and
End assessment depended on the sequence type (Figure 1B). By
definition of the estimators and the sequence types, Peak and
End estimators have the same value as the Peak-End estimator
in increasing and peak-4 type sequences, because the highest
preference appears at the last of the sequence. For increasing and
peak-4 type sequences, we thus have only two real estimators,
Averaging and Peak-End (with the latter the same as Peak and
End). For this reason, peak-4 type sequences show different
behavior from the peak-1–3 sequences in Figure 1B.

The results thus consistently show that the Average estimator
was the best of the four estimators. Not only was the finding
clear with Average being highest in Figure 1, there was further
evidence that the estimator closer to the Average showed a better
correlation-test result. In decreasing sequences, Peak indicates
the first experience and the experiences gradually change from
the highest first to the lowest last. Therefore, the Peak-End
estimator, which computes (Peak+End)/2, can be understood as
an approximation of the average of the sequence. This is why
Average and Peak-End did not show a significant difference.
Because the Average estimator showed a better correlation, we
can say that the Peak-End estimator was a weaker imitation of
the Average. In peak-1–3 type sequences, the Peak estimator had
lower scores than the other estimators. In the peak-1–3 type
sequences, the pictures in the three sequence positions except
for the peak had similar preference values, and so the non-peak
values were all closer to the average; consequently, the peak value
was farther from the average, while the end value was closer to
the average. In the peak-4 type sequences, i.e., the peak at the
end, the three estimators except Average all collapsed to the same,
resulting in the Peak, End, and Peak-End estimators all being
farther from the average, again supporting that the estimator
closer to the Average performs better.

Even while providing further evidence that Average was the
best estimator of the four, the results for the peak-1–3 type
sequences provide additional evidence for other effects as well.
To see this, imagine setting the peak preference to 1 and all
non-peaks to 0, then the Average estimator evaluates as 0.25,
End evaluates as 0, Peak evaluates 1, and PE evaluates 0.5.
Distance from the Average can be seen as the same for End
and PE at 0.25. However, Figure 1B shows that PE had a higher
correlation-test value than End. This result cannot be explained
if Average is the only true estimator. The result implies that the
remembered utilities are not completely explained by Average
even with Average being the best of the four estimators, and thus
there might be better models than Average alone that also contain
some biases toward Peak-End.

The results of the sequence-rating task with length seven
were generally the same as that for length four above. The
four estimators again showed Average > Peak-End > End,
and Average > Peak-End > Peak (Figure 2A). Thus, averaging
of the entire experience always captured the results better.
Analyzing by sequence types, we show results for sequence
types of peak-1,-3,-5,-7 in Figure 2B. We again find that
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FIGURE 1 | Correlation tests in sequence-rating task with length four. (A) Correlation tests for the four sequence-rating estimators. The “Average” had the highest

correlation, and the “End” the lowest. (B) Correlation tests for the four estimators in seven types of sequences: increasing, decreasing, zigzag, and peak position 1–4

in the sequence. Zigzag sequences were difficult to estimate, suggesting that the estimation occurred at the end of the sequence (rather than making a running

estimation throughout the sequence), while the average estimator had the highest correlation for all types. P-values of t-test: *p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 2 | Correlation tests in sequence-rating task with length seven. (A) Correlation tests for the four sequence-rating estimators. Again, the average had the

highest correlation. (B) Correlation tests for the four estimators in the four peak-type sequences. P-values of t-test: **p < 0.01; ***p < 0.001.

Average is the best of the four estimators for sequence
length seven.

Again examining the specific sequences provides additional
evidence for the Average estimator, with the other estimators
improving as they approach the average. Because the sequences
of length seven are all peak-type, we can compare the correlation
tests of length four and seven for peak-type sequences in
Figure 1B (peak-1,-2,-3) and Figure 2B (peak-1,-3,-5). For peak-
type sequences, the End estimator is closer to the Average than
the Peak is, as explained above (i.e., with therefore end and
other non-peak sequence positions being comparable and lower
than peak). This similarity becomes greater as the sequence

becomes longer (with the irregular peak experience constituting
a smaller portion of the longer sequence). Thus, for peak type
sequences, End is closer to Average in the length seven case than
for length four. Correspondingly, the correlation test of End was
significantly smaller than that of Average for peak-1,-2, and−3
type sequences in the length four case, but indistinguishable (t-
test, p ≥ 0.05) to that of Average for peak-1,-3-, and−5 type
sequences in the length seven case, as End becomes closer to
Average. Moreover, the correlation test of End was significantly
greater than that of Peak only for peak 1 type sequences of the
three peak types 1, 2, and 3 for the sequence length four case,
but was significantly greater than for Peak for all three peak types
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FIGURE 3 | Correlation tests in the sequence-rating-continued-version task.

Correlation tests for the four sequence rating estimators. The average again

had the highest correlation, and the peak had the lowest. P-values of t-test:

***p < 0.001.

1, 3, and 5 for sequence length seven. For some cases (peak 3
and 5) for sequence length seven, the correlation test of End
was even higher than the correlation of the Peak-End estimator.
Taken together, these results show that the estimator closer to the
Average works better, again indicating that Average was the best
of the four estimators.

With the result that the Average estimator is the best among
the four, two critical issues are raised: (1) whether the sequences
are actually being evaluated by the participants retrospectively,
or whether the sequence is evaluated and updated along the
way; and (2) even if evaluated retrospectively as a sequence, the
extent to which these findings scale to longer sequences—that is,
whether averaging would still prevail.

Regarding the first issue, whether participants were actually
performing retrospective evaluations, the results for the zigzag
sequences provide fairly strong evidence that they were. As seen
in Figure 1B, the correlations are much smaller for the zigzag
sequences than the others (monotonic- and peak-type). Since
there should be no extra difficulty evaluating the zigzag patterned
sequence picture-by-picture, the results suggest that participants
were not in fact evaluating the sequence via a running rating
after each experience. The difficulty with zigzag then suggests
that the participants were indeed evaluating the sequences at the
end, with apparently some need for a pattern in the sequence to
assist the evaluation. That is, this difference in the correlation
tests of the four estimators between simpler (monotonic, peak
types) and more complex patterns (zigzag type) suggests that the
participants’ underlying cognitive-memory mechanisms actually
used the patterns themselves as means to organize, categorize
or “chunk” the individual experiences into a sequence. In any
event, we can say that the participants were properly viewing and
evaluating the four and seven experiences as a sequence.

For the second critical issue, whether sequence lengths four
and seven would not scale to longer lengths perhaps more

naturally realistic, it is interesting that the results for the
sequence-rating-continued-version task were similar to those for
sequence length four and seven, which are shown in Figure 3.
With the longer sequence, the power of Peak became even
much worse and End and Peak-End were indistinguishable with
Average > Peak-End= End > Peak order.

In conclusion, averaging all the ratings of the pictures in
a sequence provided a better fit to the sequence ratings in all
tasks. In addition, the longer the sequence, the stronger the end
estimator, and the weaker the peak estimator. From the results
broken down by sequence types, the closeness to averaging held
a decisive influence on the performance of the estimators.

However, given that all of the estimators (Peak, End, PE,
Average) showed significant individual correlations with the
participant data (Figure 1A), it suggests that averaging, being
the best of the four estimators, might be improved with
parametric models that combine its explanatory power with that
of the Peak and End estimators. We examine this possibility
in the next section, using relative-preference-dependent and
order-dependent models as generalizations of the Peak and
End estimators.

RELATIVE-PREFERENCE-DEPENDENT
AND ORDER-DEPENDENT MODELS

We studied four basic models related to the peak-end hypothesis
in the previous section. Such models based on averaging, picking
one specific moment (peak or end), or averaging those specific
moments (like PE) are all linear models, which can be expressed
as linear combinations of the given sequence. In this section,
generalized versions of these linear models are introduced.
Specifically, this section aims to find the best linear model
to capture the participant results in light of the results from
the previous section that multiple components of the sequence
appear to influence the sequence ratings.

Weighting Moment Utilities in the Four
Models
To start, Average, Peak, End, and PE estimators, as linear models,
are specified by the weights in linear combination:

Average : wi =
1

n
(9)

Peak : wi =

{

1, i indicates peak
0 otherwise

(10)

End : wi =

{

1, i indicates end
0, otherwise

(11)

PE : wi =

{

0.5, i indicates peak or end
0, otherwise

(12)

Weights for the Average estimator are constant and independent
of the sequence elements, indexed as i, meaning that there is no
assumption on the weights and the weights are unbiased and
uniformly distributed.

However, the Peak estimator is dependent on the sequence
position, i.e., the index i, particularly at the point in the sequence
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that is most preferred. In other words, the weight is dependent
on the position with the highest relative preference. Similarly, the
End estimator is dependent on the position index indicating the
latest one, i.e., last in the order.

To try to capture all of these effects together in a generalized
model, or in fact find even better models than simply combining
these four effects (peak, end, peak-end, and averaging), we may
simply allow the weights to have other values rather than from
the four original models. For example, we can give weights 0.9
for the peak and 0.1 for the second peak to form another model,
similar to but different from the Peak estimator, as we consider in
the next section.

Order-Dependent and
Relative-Preference-Dependent Models
Specified
In this section, we look to take the best current estimator, the
Average, and improve upon it. We propose two assumptions
on the weights in this section for the generalization of the End
and Peak models, respectively, to be combined with the Average
estimator. These two assumptions are related to the general
problem of how best to index the event sequence in summation—
that is, as a weighted sum across the set that best captures the
sequence effects.

The first one is an order-dependent assumption wo:

wi =
1

n
+ wo,i (13)

where wo,i is the weight for the ith position in the sequence,
where i = 1 corresponds to the earliest experience, and i = n
corresponds to the latest one. Thus, the weighting is meant to
capture not only the average, but any order-dependent effects in
the results as well. The second assumption is a relative-preference
dependent assumption wp:

wi =
1

n
+ wp,i (14)

where wp,i is the weight for the ith rank in terms of relative
preference, where i = 1 corresponds to the least-preferred
experience, and i = n corresponds to the most-preferred
experience. Thus, the weighting is meant to capture not only
the average, but any additional relative-preference effects in
the results as well (generalizing the Peak estimator to relative
preference more broadly). An additional assumption is having
zero mean to maintain the sum of the weights to be one.

To determine the weights, we computed those that maximize
the correlation tests. Because these are linear models, minimizing
the mean squared errors (MSE) guarantees that the correlation
is maximized (see section “Experiments, ‘Test for total utility
models’” for more detail). We first computed the weights from
multivariate linear regression. Then we divided the weights by
the sum of the weights, to guarantee that they sum to one, and
subtracted by 1

n to isolate the effects of the two dependencies over
just averaging.

TABLE 1 | Order-dependent best fit linear model, compared to End and Average

estimators.

w1 w2 w3 w4 Corr.

End 0 0 0 1 0.4331

Ord. dep. 0.2325 0.2224 0.2665 0.2786 0.7424

Average 0.25 0.25 0.25 0.25 0.7216

TABLE 2 | Relative-preference-dependent best-fit linear model, compared to

Peak and Average estimators.

w1 w2 w3 w4 Corr.

Peak 0 0 0 1 0.5105

Rel. pref. dep. 0.1781 0.1697 0.2762 0.3760 0.7450

Average 0.25 0.25 0.25 0.25 0.7216

Results for the Order-Dependent and
Relative-Preference-Dependent Linear
Models
Minimizing MSE, we found the best-fit models with the order-
dependent and relative-preference-dependent assumptions. The
results with the order-dependent assumption are shown in
Table 1. The weights (second row) are not changed much from
unbiased (Average) weights, yet we can see that the sequence is
biased to the latest indices and less on the previous sequence
events. We can also see a small primacy effect w1 > w2.
From the result w4 = 0.2786 > 0.25, it can be concluded
that End helps Averaging improve the correlation. However,
the fact that averaging dominates experience evaluation does
not change because the order-dependent correlation is not
statistically distinguishable from that of the Average estimator
with p= 0.1833.

The results for the relative-preference-dependent assumption
are shown in Table 2. The weights (second row) were fit to the
relative preference of the images in the sequence from lowest to
highest. Again, relative-preference dependence helps averaging
improve the correlation, but the Average estimator nonetheless
still dominates the evaluation, giving an undistinguishable
difference in correlation values between Average and Relative-
preference (p= 0.1291).

Thus, we found that both order dependence and relative-
preference dependence did improve the evaluation model in
terms of increasing the correlation value. The two models have
correlations of 0.7424 and 0.7450, which are almost the same with
p= 0.8597. The next issue is whether they are essentially the same
estimators, or different estimators capturing different factors
with similar prediction performance. We therefore examined
the potential differences in their explanatory power for the
specific sequence types. We evaluated the Pearson’s correlations
between total utilities generated from the order-dependent and
relative-preference-dependent models, computed by types of
sequences (Supplementary Table 1). In peak-type sequences, the
predictions of the two models were all correlated above 0.8.
However, we found that their correlation was relatively low

Frontiers in Computational Neuroscience | www.frontiersin.org 11 September 2020 | Volume 14 | Article 65

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Lim et al. Retrospective Evaluation of Sequential Events

FIGURE 4 | Correlation tests in the sequence-rating task with length four for

zigzag sequences. Correlation tests for Average, Relative-preference

dependence, Order-dependence, and Combined models. The Combined

model produced a 0.7238 correlation. The Order-dependent model produced

a better correlation than the Relative-preference-dependent model. P-values

of t-test: *p < 0.05; **p < 0.01; ***p < 0.001.

(0.4305) in the zigzag-type sequences, suggesting that they are in
fact distinct factors.

Because we found evidence for both order and preference-
dependence effects, we next considered a combinedmodel, which
can be understood as a generalization of the PE estimator using
both the wo and wp assumptions for weights:

wi =
1

n
+ λwo,i + (1− λ)wp,i (15)

where wo,i and wp,i are from the previous best fit models,
λ = 1 corresponds to the order-dependent best fit model, and
λ = 0 corresponds to the relative-preference-dependent best fit
model. It would have been best to re-compute all eight weights
independently, but the two sets of sequence-event utilities {xi}
with different indexes have high autocorrelation so optimization
does not work well. Using partially optimized weights as an
approximation for the combined model, however, was enough to
compare how each assumption contributes.

To evaluate the combined model properly, in which separable
contributions of each component (order dependence and
relative-preference dependence) are clearly made, we focused on
the zigzag sequences, and correlation tests of each model for
zigzag sequences are shown in Figure 4. The combined model
was the best and Average the worst, because Average is a special
case of the others and the combined model is a generalization
of the others. The Order-dependent model also showed a higher
correlation than the Relative-preference-dependent model. We
next examined the composition ratio of the combined model, λ,
for all participants (Supplementary Figure 1 histogram). Most
participants showed a mixed effect of average, order and relative-
preference dependence. At the same time, individual differences
were apparent, including multiple participants at the extreme
λ = 1 and λ = 0. There also were more participants with λ = 1

FIGURE 5 | Correlation tests in the sequence-rating task with length four for

zigzag sequences. Correlation tests for the Relative-preference-dependent,

Order-dependent, Absolute-preference-dependent, and two combined

models. The combined model of the Order-dependent and

Absolute-preference-dependent models had the largest correlation of 0.7437.

Left three bars are the same as those in Figure 4. P-values of t-test: *p <

0.05; **p < 0.01; ***p < 0.001.

than with λ = 0, which explains the correlations in Figure 4—
i.e., that the order-dependent model produces a better correlation
than the relative-preference-dependent model.

Models in this section are linear models with n weights to
be determined. We examined sequences with length four, but if
sequences become longer, more weight parameters are needed to
be determined requiring more trials in the experiment. However,
the number of trials we can test decreases as the sequence length
increases, because longer sequences lead to greater fatigue in
the participants. Our sample number was chosen to maintain
participant attention and alertness, which was not enough to
further analyze the sequences with length seven and for the
continued-version task.

Taken together, then, we found evidence that for most
participants their retrospective sequence evaluations appeared
to be based on preference averaging, the sequence order, and
an additional preference-dependence weighting. With respect
to preference dependence, however, in the relative-preference-
dependent model, the experiences were indexed so that the
most preferred moment, 2nd preferred, and so on have their
own weights. However, if the most preferred sequence event
has utility equal to 9, for example, and the second preferred
event in the sequence has utility 8.99, these two events have
almost the same utility but yet are differently weighted based
on the relative preferences, i.e., their ranks. Thus, if the actual
preference structure were [1 1.01 8.99 9], there would really
be only two kinds of preferences, and yet the four events are
weighted by [w1 w2 w3 w4] in the relative-preference-dependent
model with w1 6= w2 and w3 6= w4. As a second example, if
there were no strongly preferred peak, like [1 1 1.5 1], would
participants actually weight 1.5 as a peak? In the next section, we
therefore examine another type of preference-dependent model
that weights absolute preference (rather than relative) to address
these issues.
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ABSOLUTE-PREFERENCE-DEPENDENT
MODEL

To examine preference-dependent effects in the sequence, we
sorted the individual sequence event utilities in the previous
section and indexed them as themost preferred, second preferred
and so on—and thus based on their relative preference. A
potential issue here is that such ranking could misrepresent
actual preference, if minor preference differences exist across the
sequence items, with the relative weighting artificially magnifying
the differences, at least for some participants. We therefore
next develop a model with weights again based on preference,
however, with events in the sequence with the same basic
preference now having the same weight.

Model Description
Here, weights are dependent on the utility of each event in the
sequence, which can be understood as an absolute preference:

wi =
1

n
+ f (xi) (16)

where xi again is the individual sequence-event utility, and n
is the total number of sequence events. Note that this is not a
linear model because the weight is dependent on the individual
sequence-event utility xi and is multiplied to each event’s utility
xi again. There can be an arbitrary dependence by parametrizing
the weights wi freely making the model highly generalized and
non-linear. The sum of weights is not fixed for a given sequence,
so it cannot be controlled to be summed to 1 like linear models.

To compare the absolute-preference-dependent model with
the linear models, we analyzed the sequence-rating task with
length four. For fair comparisons, we used four parameters as in
the order-dependent and relative-preference-dependent models.
The range of the individual sequence-event utility values were
divided into four partitions. If theminimumwas 1 andmaximum
9, the range was partitioned to 1–3, 3–5, 5–7, 7–9. The weight
for each sequence event was determined by which partition the
utility value was included. Weight w was w1 for 1 ≤ x < 3, w2

for 3 ≤ x < 5, w3 for 5 ≤ x < 7, and w4 for 7 ≤ x < 9.

Results for the
Absolute-Preference-Dependent Model
The best-fit absolute-preference-dependent model had a mean
0.7430 correlation value with 0.0861 standard deviation,
indistinguishable (p = 0.9696 and 0.8901 in t-test) from
the order-dependent (0.7424) and relative-preference-
dependent (0.7450) models. To determine if the models
were truly indistinguishable, we next examined the correlations
between the predictions of the absolute-preference-dependent
model and the two linear models (i.e., the order-dependent
and relative-preference-dependent models) by sequence
types (Supplementary Table 2). The correlations in zigzag
sequences were 0.3749 and 0.3093 between the absolute-
preference-dependent model and the order-dependent
and relative-preference-dependent models, respectively,
showing that, although all three models produced virtually
indistinguishable correlations with the overall sequence ratings,

FIGURE 6 | Correlation tests in the sequence-rating-continued-version task.

Correlation tests for PE, Average, and Preference-dependent estimators. The

Preference-dependent estimator had the highest correlation. Left two bars are

the same as those in Figure 3. P-values of t-test: ***p < 0.001.

the absolute-preference-dependent model nonetheless uses
different features from the two other models.

Correlation tests for the order-dependent, relative-preference-
dependent, and absolute-preference-dependent models, together
with combinations, are shown in Figure 5 for the zigzag
type sequences. The combined model of order-dependent
and absolute-preference-dependent models (in yellow) had the
highest correlation value of 0.7437, although this value was
not significantly different from the correlation (0.7238) of the
combined model of order-dependence and relative-preference-
dependence (in white) (t-test, p= 0.5058).

The results thus show that both relative and absolute
preference dependence (as well as order and average) appear to
influence retrospective sequence evaluations. However, there is
an important practical difference between relative and absolute
preference dependent models. The relative-preference model
parameterizes weights such that the number of parameters is
the length of the sequence. It thus quickly becomes infeasible as
the sequence becomes long (e.g., sequence length 100 requires
100 parameters). In contrast, the absolute-preference model
parameterizes weights such that the parameters are defined on
the range of the moment utilities, and the number of parameters
is thus smaller than that of the relative model. Here, we use 17
levels of preference values, which then is the maximum number
of parameters for the absolute model. Even this number is indeed
large, but better than for the relative model.

Because of these difficulties for the relative-preference-
dependent assumption, we do not use relative-preference
dependence in examining the sequence-rating-continued-
version task; the term “preference,” then, refers to absolute
preference for the remainder of the study. The same problem of
too many parameters also occurs for order dependence, which is
considered in the next section.

For the sequence-rating-continued-version task, then, we can
find the best-fit absolute-preference-dependent model, where
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the length of sequence is not fixed with 100 as maximum.
The results are shown in Figure 6. The absolute-preference-
dependent model, based on both averaging and absolute-
preference (see Equation 16), produces a better correlation than
Average alone, indicating again that the actual preferences for the
images had an amplified effect on sequence ratings.

Order and Preference Dependent Models
To this point, we have examined models with weights for each
sequence event depending on its temporal order and individual
utility (preference), without interaction, potentially still missing
important effects. In the remainder of the study, we focus on the
effects of temporal order and preference with their interactions
included. The general form of the models can be written thus:

w = f (x, t) (17)

To have enough temporal dynamics with long sequences, this
model analyzes the sequence-rating-continued-version task. We
parameterized preference dependence with linear interpolation
of 5 independent variables to determine 17 levels of preferences:
[1, 1.5, 2, 2.5, . . . , 8.5, 9]. For temporal dependence, because the
length of sequences was not fixed and with a maximum of 100
in the task, it was hard to parameterize without assumptions.
Moreover, our aim was to develop a model with the potential to
generalize and scale to every possible length of sequences. Such
a model requires an assumption on temporal dependence in a
closed form of the equation.

From the results thus far, participants appeared to evaluate
the sequences by averaging the individual events within the
sequence, with additional influences of order and relative
or absolute preference dependence. In the sequence-rating
tasks with lengths four and seven it would not seem
particularly difficult to memorize 4–7 pictures. However,
in the sequence-rating-continued-version, participants would
potentially have to memorize up to 100 pictures. This seems
highly unlikely; and thus, it does not appear that the
participants actually computed averages of 100 pictures. This
in turn suggests that the order-dependent assumption should
contain working-memory features to handle this memory
issue. Therefore, the next two sections use two different
temporal assumptions to build more realistic order and
preference dependent models. The first assumption simply cuts
and reduces the sequence to be evaluated by assuming an
optimal temporal window, and then within this, computes
and compares the four original models (Peak, End, Peak-End,
and Average), along with the preference-dependent model in
the reduced sequence. The second model assumes that the
weights are temporally discounted, with the discounting ratio
preference dependent.

WINDOWED EVALUATION

In the previous sections, we found that the models that
weighted averaging of the entire sequence, along with additional
dependencies (order, preference), explain sequence ratings

reasonably well. However, these models assume that the
participants remember the entire sequence to be evaluated, e.g.,
up to 100 pictures in the sequence-rating-continued-version task,
which would be very difficult to do. Therefore, we next examined
more realistic models that limit the calculation of the mean
and maximum values to a partial sequence—i.e., an evaluation
window—of the sequence. In these types of models, the length of
the evaluation window functions as a model parameter. It may
also reflect working memory ability: “how many pictures are you
using in the evaluation?”

Model Description
Three suggested new estimators are the following:

Windowed PE :

wi =

{

0.5, i is peak or end in t − L+ 1 ≤ i ≤ t range
0, otherwise

(18)

Windowed Average :

wi =

{

1
L , i in t − L+ 1 ≤ i ≤ t range
0, otherwise

(19)

Windowed Preference−dependent :

wi =

{

wi(x), i in t − L+ 1 ≤ i ≤ t range
0, otherwise

(20)

These three models are variations of previous estimators, only
using the last L terms in the sequence. This class of model does
not require memorizing the entire sequence. The size of window
L is set to maximize the correlation-test value:

L = argmax
k

corr
(

yk, y
)

(21)

Figure 7 illustrates how we determined the size of the window
L for the windowed-average estimator. More specifically, the
argument of the right term corr

(

yk, y
)

was computed for all
possible window sizes 1 ≤ k ≤ 100. When computing
the correlation, the samples (i.e., trials) were bootstrapped
by removing one element (i.e., trial) from the samples, and
correlations were computed from the bootstrapped samples.
Bootstrapped correlations (one for each trial removed) were
then averaged to obtain the final value corr

(

yk, y
)

. Because
the preference-dependent model requires linear regression, we
skipped the computation when the number of samples was <30.
The maximum tested value of k by this process was 49. For fair
comparison, the Average and Peak-End models also skipped the
same cases. If the bootstrapped mean correlations were under the
threshold correlation to achieve p < 0.05 significance, the value
was not used in the argmax function. To find the maximum value
(i.e., of the bootstrapped correlations), we chose the correlation
that had the most number of other correlations significantly (p <

0.05) less than it.
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FIGURE 7 | Windowed estimator. Finding the best estimator using only recent pictures. The number of pictures used in estimation becomes the size of the window.

Results for the Windowed-Evaluation
Models
Figure 8A shows the correlation tests for the Windowed Peak-
End, Windowed Average, and Windowed Preference-dependent
models, along with the not-windowed Preference-dependent
model from the previous section for comparison. TheWindowed
Preference-dependent model produced a correlation of 0.6529,
the best correlation test of the four models in Figure 8A, with
significant differences compared to the other three models in t-
test. Moreover, the correlation test of the Windowed Preference-
dependent model was close to the correlation test of the
preference-dependent model in the sequence-rating task with
length four (0.6201, see Figure 5), suggesting that the windowed
model can explain the remembered utilities for long sequences
as well as short sequences, which was not feasible for not-
windowed models.

We next compared the two window sizes derived from
the Windowed Average and Windowed Preference-dependent
models. Figure 8B shows the correlation between the two
window sizes. They are highly correlated with correlation 0.4394
and p-value of 2.2346e-04. This similarity of the derived window
sizes suggests that there is indeed a meaningful evaluation
window for each participant, independent from how it is
estimated (average or preference-dependent). At the same time,
however, the window size for the Windowed Average estimator
clustered at 10, the mean period of participant evaluations
in the task (i.e., how often the evaluation of the current
running sequence was queried), while the window size for the
Windowed preference-dependent model did not. This difference
indicates that the window size for the Preference-dependent
model is relatively free from the period of evaluation and
can have large values while that of Averaging is locked with
the period.

The result in Figure 8B provides clues about the memory
mechanisms underlying the two windowed models. Window
sizes for Windowed Average are clustered at the period of
evaluation: 10. It implies that there is a memory mechanism
that deals with a piece of memory composed of one period of
evaluation that theWindowed Averagemodel captures. However,
window sizes for the Windowed Preference-dependent model
can be larger than the period of evaluation and spread out.
This suggests that the Windowed Preference-dependent model
is not restricted to local memory of one period and that

participants can use a global memory composed of more than
one period of evaluation. The model results together suggest that
the participants are not evaluating only for any one particular
period, but for multiple periods in an attempt to cover the
entire sequence in our SRC task paradigm. In other words,
the difference in distribution of window sizes for the two
models implies that there are two general levels of memory—a
local memory of one period and a global memory of multiple
periods—and that the Windowed Preference-dependent model
works on a higher memory level than Windowed Average. We
will not deal further with this potentially fascinating suggested
finding, as our experiment was not designed to address it (not
allowing us to model it further), though we will return to it briefly
in the Discussion.

In this section, we investigated how windowed models fit the
empirical data, and found that the Windowed Preference-
dependent model successfully explained the results of
the sequence-rating-continued-version task. Nonetheless,
windowed models have some inherent limitations, most
notably three:

• Primacy effect problem. A primacy effect in experience
evaluation for some cases has been well-established; and it
is not hard to imagine that one gets a strong impression
from the first picture of a sequence. Windowed evaluation
cannot readily account for the primacy effect because it is not
concerned with the first experience in evaluation, which is
often out of the evaluation window.

• Extreme peak problem. If one has a particularly meaningful
or intensive experience anywhere in the sequence, it would be
expected to affect the experience evaluation, regardless of the
sequence length. But if that experience is out of the evaluation
window, it is entirely neglected.

• Boundary cliff problem. In windowed evaluation, an
experience just before the window border has no effect at all,
while an experience just after the boundary has full effect. It is
hard to accept that the two experiences of the neighbors have
such extremely different effects.

The class of models in the next section was introduced to resolve
these problems. Inspired by problem 3 (boundary cliff), we
attempted to smooth the window boundary, using a continuous
function on the entire sequence as the function domain, leading
to a discounting model. To address problem 2 (extreme peak),
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FIGURE 8 | Results on Windowed models. (A) Correlation tests for the sequence-rating-continued-version task with Windowed estimators. For long sequences with

length up to 100, the Windowed Preference-dependent estimator produced a 0.6529 correlation, while only 0.4594 was achieved without windowing. P-values of

t-test: ***p < 0.001. (B) Plot of the window sizes of the Windowed Average and Preference-dependent estimators. The correlation between them was 0.4394 with

p-value 2.2346e-04.

we added preference dependency in the discounting rate. Finally,
given a sufficiently flexible discounting model, primacy effects
can also potentially be captured, as described next.

DISCOUNTING MODELS

To deal with the three main problems (primacy effect, extreme
peak, boundary cliff) raised at the end of the previous section
for windowed evaluation, as well as capture order effects more
generally, we introduce discounting models in this section.
Discounting is a common way to describe the limitations of
memory, and thus forgetting, multiplying a discount factor step
by step in time to capture the loss of the effect of events as they
pass farther into the past. In addition, because our results suggest
significant preference-dependent effects in experience evaluation,
we added preference dependency to the discounting rate of a
second discounting model.

With discounting, the weighting for the specific moments in
the sequence evaluation is a continuous function, and so there
is no boundary-cliff problem. In addition, if the discounting rate
is sufficiently high for any given highly preferred experience, an
extreme peak can affect evaluation with non-zero weight. Finally,
if the discounting rates for early pictures are also sufficiently high,
a primacy effect can be captured.

We next introduce specific discounting models with and
without preference dependency in the discounting rate and
examine their ability to account for the empirical data.

Model Description
The simple discounting (SD) model and the preference-
dependent discounting (PD) model are defined in these forms:

ySD (t) =
∑

1≤k≤t

rt−kxk (22)

yPD (t) =
∑

1≤k≤t

r(xk)
t−kxk (23)

where r is the rate of forgetting, which connects to the concept of
working memory; t is the total sequence length; k is the position
in the sequence; and xk is again the utility (i.e., preference
rating) of sequence event k. The difference between the SD and
PD models is that the r value of the PD model depends on
the corresponding x value, while the r value of the SD model
is constant.

The SD model becomes the Average estimator when r =

1, and the End estimator when r = 0. And since this
model reduces the weight of x as the experience moves
into the past, windowed average can also be simulated.
However, the peak and windowed peak cannot be explained
because the peaks in the past may have higher weights
than the weights of more recent events in the Peak and
Windowed peak models, whereas this cannot occur in the SD
model whose weights are a decreasing function of time into
the past.

The PD model is a generalization that completely
encompasses the SD model, and for some values of r and
x, the weights may in fact increase as they move into the
past. Thus, if the preference of a picture viewed in the past
is high and the corresponding r value is large enough, the
peak can contribute to the evaluation even if it is not a
recent experience. Block diagrams of the models are shown in
Figure 9.

To simplify the block diagram in Figure 9B for the PDmodel,
the equation can be translated in another way, as shown in
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FIGURE 9 | Block diagrams of the discounting models. (A) Depicts the simple discounting model. The model transforms the stimulus into the moment utility x and the

moment utility is then added to the discounting node h, which has negative feedback (discounting) r to generate total utility y. (B,C) Show two ways of depicting the

preference-dependent discounting model. Compared to (A), the PD model has multiple nodes in (B) to produce different discounting effects for different preference

levels. In the equivalent diagram (C), the need for stimulus classification by their preference is removed and the preference can be defined as a summation weight at

the last layer, as a result of the variety in weights of multiple nodes, described in more detail in the text.

Figure 9C:

yPD (t) =
∑

1≤k≤t

r (xk)
t−kxk =

∑

x : preference



x •
∑

1≤k≤t,xk=x

r(x)t−k



(24)

Equation 24 is a form of recurrent network with recurrent hidden
state h:

hi,t = rihi,t−1 + gi,t (25)

yt =
∑

xihi,t (26)

where xi is a preference index for node i and gi,t is 0 or 1
activation from the visual perception layer. In this case, the SD
model is a special case with only one recurrent node. The block
diagram has three layers. The first layer can be understood as a
winner-take-all network. It takes a visual stimulus and performs
unsupervised classification (clustering) to activate one respective
unit, corresponding to a preference level. At the second layer,
each node has its own discounting rate to be discounted by time.
The third layer is a weighted sum from signals generated by the
second layer. In this explanation, it does not require preference
information at the first layer. Preference is determined at the
third layer (Equation 26) as the weight of summation xi.

This interpretation can explain the origin of preference
dependency. Without any assumptions on preference, this model
can assign preferences by itself. The node in the second layer
with the highest summation weight to the third layer is the node
with the highest preference. Pictures classified to this node are
the most preferred pictures. The summation weights have natural
variances, and they generate the preference levels. If the total
utility generated by the recurrent network without preference
information is evolved to be correlated with the experiential
reward (for survival, mating, quality of life, or anything), then
it naturally occurs that the summation weights in the third layer

(Equation 26) encode preference levels and the first layer classifies
the stimulus by its helpfulness, which the individual feels as a
preference. In this study, the first layer is fixed to classify the
pictures by its preference and the total utility is proportional to
the remembered utility to learn the second and third layers.

Algorithm
To find model parameters r (x), a gradient descent algorithm
was used. To maximize the correlation test of the discounting
models, we minimized the sum of squared errors of the re-scaled
predictions, which is mathematically equivalent as described in
section “Models, ‘Test for total utility models’”. The learning
rate was 0.0001. Using SSE rather than Pearson’s correlation, two
more parameters for scaling were needed:

yPD,t = a •





∑

1≤k≤t

r (xk)
t−kxk



 + b (27)

Because a large parameter set can cause overfitting, only a few
parameters were set to be free and the others were dependent
parameters. The a and b values could be determined by a
simple linear regression formula. Only five r-values were free and
the others were determined by linear interpolation of the free
parameters. These computations are illustrated in the flow chart
in Supplementary Figure 2.

Results With Correlation Test
To evaluate the two discounting models, we computed
correlations as in the previous sections. Because we maximized
the correlation test (by minimizing SSE), and the SD model is
a special case of the PD model, the correlation test of the PD
model must be higher than the correlation test of the SDmodel if
gradient-descent optimization was successful.

Simulation results using the sequence-rating-continued-
version task data showed that the correlation of the PD
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model was significantly higher than for the SD model
(Supplementary Figure 3), which means that the PD model’s
explanatory power is better than the SD’s in correlation. The
result confirmed that GD optimization worked well (by the PD
model giving better prediction), and the correlation test of PD
was 0.5269± 0.0180 (mean± standard error).

The result that the PD model predicts better than the SD
model is not surprising because the PD model has many more
parameters and the SD model is a special case of the PD model.
What we need to determine is whether the PD model actually
used additional degrees of freedom for the implementation of the
working-memory ability as described in the model description.
Put differently, it is important to test whether the discounting
rate is actually related to working-memory ability, which we next
did by examining the correlation of preference dependence in
the working-memory task to the preference dependence modeled
by the discounting rate. To measure preference dependence in
the working-memory task, we first calculated each participant’s
preference-dependent accuracy score as a vector of length four.
For example, [0.9, 0.8, 0.6, 0.7] would mean that the accuracy rate
was 0.9 for preference group star 1, 0.8 for preference group star
2, 0.6 for preference group star 3, and 0.7 for preference group
star 4. We then computed the variance of this vector (preference-
dependent working-memory accuracy rate) to measure how their
working-memory accuracy was affected by preference. If the
preference-dependent working-memory accuracy rate were [0.5
0.5 0.5 0.5] or [0.9 0.9 0.9 0.9], for example, then the variance
would be exactly zero and their working-memory accuracy would
not depend on preference. If the variance were high, working-
memory accuracy would highly depend on preference.

Based on the variance, six groups were created ranging from
low to high variance, and thus with preference dependence from
low to high. If the PD model actually reflected working-memory
ability in relation to preference dependence, as the group number
increases, it should show better explanatory power over the SD
model. Figure 10 shows this relationship. The y-axis of the graph
is the absolute value of the rate of change of the SSE of the
PD model from the SD model: i.e., | [(SSE of PD model) -
(SSE of SD model)]/(SSE of SD model) |. As the group number
increased, the explanatory power of the PD model was superior
to that of the SD model, meaning that the higher the dependence
of working memory on preference, the better the performance
of the PD model compared to the SD model. Indeed, group
number (1–6), representing the preference-dependency in the
working-memory accuracy rate in sequences with length four,
was highly correlated with the rate of change in SSE (i.e., the
improvement from the SD model to PD model) (r = 0.9478,
p = 0.0040; fitting line in Figure 10). This strong correlation,
then, shows that the preference-dependent discounting rate in
the PD model successfully captures the preference-dependent
working-memory ability.

In sum, the results in this section show that (1) the PD model
can explain the remembered utility in retrospective evaluation,
and (2) the preference dependence in the PD model captures the
preference-dependent working-memory ability. Thus, preference
dependence is not a redundant assumption possibly overfitting
with the use of the PD model: that is, the improvement from

FIGURE 10 | SSE changes from the SD to the PD model in six groups with

different degrees of preference dependency in the working-memory task. For

x-axis, preference dependency in the working-memory task was measured

(see main text), and participants were divided into six groups based on their

relative preference dependency from low to high. The y-axis then measures

the extent to which the PD model captures this preference dependency, using

| [(SSE of PD model) - (SSE of SD model)]/(SSE of SD model) |. Participants

whose working-memory performance reflected a low degree of preference

dependence (Group 1) showed little performance difference between the PD

and SD models, while participants whose working-memory performance

reflected a high degree of preference dependence (Group 6) required the PD

rather than the SD model to describe their remembered utility. The group index

(1–6) was strongly correlated with the improvement from the SD to PD models

(r = 0.9478, p = 0.0040), as illustrated by the fitting line. The result shows that

the additional degree of freedom of the PD model was necessary to capture

preference-dependent working-memory effects.

SD to PD is not mathematically trivial, with the preference-
dependency assumption actually reflecting preference-dependent
working memory of the participants.

In this section we focused on the preference-dependence
assumption of the PDmodel, and we now turn to the discounting
rates in the PD model to determine if they capture other non-
obvious working-memory features.

Discounting Rates and Working Memory
In the previous section, we found that the preference dependency
is not a redundant assumption in the PD model as it explains
the preference dependency found in the working-memory
performance of the participants, which could not be captured
by the simpler SD model. At the same time, the discounting
rates were introduced to capture working-memory effects more
generally, with the discounting rates being determined by
maximizing the correlation test, using the empirical data of the
sequence-rating tasks. Yet if the discounting rates themselves
also reflected working memory, we would expect them also to
be correlated with the working-memory ability measured in
the working-memory task, which we therefore investigated in
this section.

Frontiers in Computational Neuroscience | www.frontiersin.org 18 September 2020 | Volume 14 | Article 65

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Lim et al. Retrospective Evaluation of Sequential Events

We again used the preference-dependent accuracy rates from
the working-memory tasks with length four and seven, yielding
4- or 7-dim vectors defined for each participant. For example,
the 4-dim vector [0.9, 0.8, 0.6, 0.7] would mean that the
accuracy rate was 0.9 for the highest preference category (star
1), 0.8 for the second (star 2), and so on. We then used
multivariate linear regression with PCA for the preference-
dependent accuracy rates:

r =
∑

1≤i≤D

aiwi + b+ ǫ (28)

whereD is sequence length (4 or 7), andwi is the accuracy rate for
preference group i of the image being queried (i.e., “How many
pictures had you seen before this picture?”). Before regression, we
used PCA on the vectors {wi}, and used components that give the
most significant regression (F-statistic).

The SD model yields one r-value, and the PD model five
r-values. A multivariate regression analysis was performed to
see how well these r-values could be explained by preference-
dependent working memory (Supplementary Tables 3, 4). The
working-memory task with sequence length seven did not
provide a significant explanation for the discounting rates, with
only one discount rate, r17 of the PD model, significantly
explained (p = 0.0329). However, in the working-memory
task with sequence length four, preference-dependent working-
memory performance could explain r1, r5, and r9 of the
PD model, even with a “simultaneous” t-test, meaning the
sum of the p-values being under the 0.05 threshold. Thus,
three of the five discounting rates for the PD model were
correlated with the preference-dependent accuracy rates in the
working-memory task with length four. This finding indicates
that there was a correlation between the discounting rates
and preference-dependent working-memory ability. As in the
previous section, we again found that the preference-dependent
discounting rates directly link to preference-dependent working-
memory performance, suggesting that one’s working-memory
ability contributes to the discount rate of preference.

In Combination With the Windowed
Preference-Dependent Model
Finally, because we found the Preference-dependent discounting
(PD) model and the Windowed preference-dependent (WP)
model to be the best performing and most realistic models, we
consider them together here to determine the extent they may
explain the same underlying phenomena, and whether there is
value in their combination.

First, Figure 11A directly compares the correlation-test
results of the two models. The correlation test of the PD model
was significantly smaller than the correlation of the Windowed
Preference-dependent model (0.5269 vs. 0.6529, p = 3.3292e-
07), suggesting either that the Windowed Preference-dependent
model performed better than the Preference-dependent model in
capturing the same phenomena or that the models each capture
different factors, with the Windowed Preference-dependent
model focusing on the more dominant factors. To test this,
Figure 11B shows that for all 66 participants, the PD and WP

models were correlated with r = 0.4381, p = 2.3455e-04. Even
though there appears to be significant overlap between the two
models, this level correlation nonetheless suggests that the two
models describe the empirical data in different ways. Indeed, as
we discussed in the beginning of section “Discounting Models,”
the PD model was considered in part because it could account
for major weaknesses inherent in the window-based models. This
suggests that perhaps the two models could be combined to
generate the best model in combination.

The combined WP-PD model (Equation 29) can be described
as a linear combination of the Windowed Preference-dependent
model and the Preference-dependent discounting model:

y = λyWP + (1− λ)yPD (29)

where λ = 1 corresponds to the WP model and λ = 0
corresponds to the PD model. Correlation tests comparing
the combined WP-PD model with the individual models are
shown in Figure 12. The combined WP-PD model yielded the
highest correlation, the Windowed Preference-dependent model
the second highest, and the Preference-dependent discounting
model the third, with the latter being significantly smaller than
the other two.

Because the WP model yielded a significantly better
correlation-test than the PD model, λ is distributed near
λ = 1 (Figure 13A), meaning that most participants were
dominantly influenced by the Windowed Preference-dependent
factors in evaluation. At the same time, it is clear that the
participants could be divided into two groups. Group 1 is
classified by λ > 0.9 with participants who mostly utilized
Windowed preference-dependent model in evaluation. Group 2
is classified by λ ≤ 0.9 with participants who more strongly
used both Windowed Preference-dependent and Preference-
dependent discounting factors. Finally, correlation tests of the
PD, WP, and combined WP-PD models for the two groups are
shown in Figure 13B. For participants who clearly used both
models (Group 2), the combined WP-PD model significantly
improved the correlation test over the other two models. For
participants who predominantly used Windowed Preference-
dependent factors, the combined WP-PD model improved the
correlation test very little.

In sum, 22.7% of the participants (Group 2) utilized an
evaluation pattern that can best be explained by a combination
of both the Windowed preference-dependent model and the
Preference-dependent discountingmodel. The other 77.3% of the
participants (Group 1) showed an evaluation pattern dominated
by the Windowed preference-dependent model. Thus, the
combined WP-PD model was able to capture the evaluation
patterns of all the participants.

Examining the Robustness of Pearson’s
Correlation to Evaluate the Models
Pearson’s correlation was used as the main criterion for
evaluating the models through the study. To examine how robust
this criterion was, we also computed Spearman and Kendall
correlations to evaluate the models. The results showed that
the type of correlation does not change the conclusions. For

Frontiers in Computational Neuroscience | www.frontiersin.org 19 September 2020 | Volume 14 | Article 65

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Lim et al. Retrospective Evaluation of Sequential Events

FIGURE 11 | Comparison of the Preference-dependent Discounting model and the Windowed Preference-dependent model. (A) The correlation test of the

Windowed Preference-dependent model yielded a significantly higher correlation than that of the Preference-dependent model. (B) Correlation tests of the two

models for each participant are themselves correlated with r = 0.4381, p = 2.3455e-04, suggesting that the two models describe the empirical data using different

factors. P-values of t-test: ***p < 0.001.

example, for the WP model, which gave a Pearson’s correlation
of 0.6529 ± 0.1221, the Spearman correlation was 0.6428 ±

0.1196 and the Kendall correlation was 0.5124 ± 0.1058. For
the PD model, whose Pearson’s correlation was 0.5269 ± 0.1459,
the Spearman correlation was 0.5160 ± 0.1442 and the Kendall
0.3992 ± 0.1159. Thus, the different correlation measures do not
change the fact that WPmodel predicts better than the PDmodel
on average. Moreover, the combined WP-PD model predicted
the remembered utility with correlations of Pearson 0.7359 ±

0.0574, Spearman 0.7238± 0.0707, and Kendall 0.5858± 0.0657
for Group 2. Thus, again the other types of correlations also
indicate that the combined WP-PD model performs better than
theWPmodel alone, as also found with the Pearson’s correlation.
These comparisons show that the models were robust and not
dependent on the measure used to evaluate them.

DISCUSSION

The organization of singular moments into larger event
sequences constitutes a fundamental human high-level cognitive
ability (Jeong et al., 2014; Jung et al., 2014; Jang et al.,
2017), yet how the human brain actually constructs these
sequences and remembers them remains unclear. Evidence
suggests that heuristics are used to remember key moments
of the sequence, such as the peak-end rule, though findings
are mixed (Langer et al., 2005; Rode et al., 2007; Do et al.,
2008; Kemp et al., 2008; Liersch and McKenzie, 2009; Legg
and Sweeny, 2013; Xiaowei et al., 2013). Therefore, the aims
of the current study were to develop an evaluation model to
help identify the mechanisms underlying sequence evaluations,
and to determine how working memory is involved in the
evaluations. To reach these aims, we designed experiments to
enable a comprehensive quantitative examination of experience
evaluation across different conditions, and to measure the
working memory involved in the experience evaluation.

FIGURE 12 | Correlation-tests of the Preference-dependent Discounting

model, Windowed Preference-dependent model, and combined WP-PD

model. The combined WP-PD model yields the highest correlation, the

Windowed Preference-dependent model the second highest, and the

Preference-dependent discounting model the third, with the latter being

significantly smaller than the other two in t-test. ***p < 0.001.

Given that the peak-end rule has received significant attention
with supporting evidence (Langer et al., 2005; Do et al., 2008;
Liersch and McKenzie, 2009; Legg and Sweeny, 2013; Xiaowei
et al., 2013) as a heuristic for retrospective evaluation, we tested it
here (alongwith peak and end individually, and general averaging
of all sequence-event preferences). However, our evidence
strongly pointed to averaging as the dominant evaluation
strategy. At the same time, all initial models (representing
peak, end, peak-end, and averaging) nonetheless significantly
correlated with the empirical data, suggesting that, although
averaging being most prominent, aspects of each may have
influenced the retrospective evaluations.
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FIGURE 13 | (A) Histogram of the ratio of the WP and PD models in the combined WP-PD model, representing the degree to which each model contributes to each

participant’s evaluations. Participants were divided into two groups with 0.9 cutline. (B) Correlation tests of the PD, WP, and combined WP-PD models for the two

groups. Participants who clearly used both models (Group 2) showed significant improvements in the correlation test of the combined WP-PD model over the other

two models. Fifty-one participants were classified in Group 1 and 15 participants in Group 2. P-values of t-test: *p < 0.05; ***p < 0.001.

Inspired by the success of the models we sought to develop
and test a more general one that potentially captured all of
these elements in combination. Indeed, temporal (i.e., order) and
relative-preference dependent assumptions on the weights of the
sequence-event utilities showed that participants were actually
being influence by more than just the average.

Although the relative-preference dependent assumption in
particular successfully accounted for participant results, it suffers
from important limitations, including forcing a ranking among
the individual sequence experiences, and thus perhaps an
unnecessarily excessive separation among them, as well as its
inability to feasibly scale with larger sequences, as it requires
more and more parameterization. We therefore next tested an
absolute-preference-dependent model in its place, which does
not suffer from the same limitations, and found comparable
results between the two types of preference dependency.

Nonetheless, averaging and order-dependency also included
in the models continue to make them realistically untenable
as they still assume memorization of complete sequences,
which at some point is implausible as sequences grow. We
next, therefore, examined absolute-preference dependency
along with a temporal model based on windowed evaluations
(i.e., evaluations conducted within a circumscribed window of
time into the past), which can be applied to arbitrary-length
sequences. The window-based models successfully explained
the retrospective-evaluation results in our experiments, with
a combined window evaluation and absolute-preference
dependency model performing best.

However, the window-based models would also be expected
to have limited generalizability, with three particularly important
limitations of their own: an inability to capture (1) primacy
effects, or (2) extreme peaks outside of the window (that remain
prominent in memory), and (3) having an arbitrary discontinuity
at the window boundary. A preference-dependent discounting
(PD) model was therefore proposed to compensate for these

problems, although by itself, the PD model did not perform as
well as the windowed preference-dependent (WP) model. And
yet when we compared the models in more detail, we found
that they each captured different sequence characteristics (such
as the factors the WP cannot explain). We therefore considered
a combined WP and PD model and found that it performed
better than the individual models alone, although barely beating
the WP model (and not significantly). Finally, however, we
found that model performance was dependent on the individual
differences among the participants. That is, for roughly a quarter
of the participants, the combined WP-PD model outperformed
the individual ones—and thus with a weighted combined model
(Equation 29) needed to subsume all participants.

Of course, with the more sophisticated models, such as the
combined WP-PD model, one must consider the extent to
which the better performance results from a larger number of
parameters, and thus it was important to determine exactly
what the PD model contributed to the combined model,
which we did by examining whether it in fact reflected actual
working memory. First, compared to the simple discounting
model, the preference-dependent discounting model showed
higher explanatory power particularly for participants with high
preference dependency in working memory. This indicates that
the model actually simulates the preference-dependent working-
memory mechanism in the evaluations. Second, focusing on the
discounting rates themselves, we found them to be correlated
with the preference-dependent accuracy rates in the working-
memory task with length four, simultaneously in three preference
levels of the five total in the PD model. Thus, parameters in
the PD model, which were meant to represent working memory,
actually correlated with preference-dependent working-memory
performance of the participants, suggesting that the PD model
reflects working-memory features. At the same time, although
the results suggest that one’s working-memory ability contributes
to the discount rate of preference, they do not imply that the
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preference works exactly like working memory or completely
captures it. In any case, correlations between working-memory
ability and model parameters are consistent with results of
other studies showing that the peak-end rule fails with easy
tasks, without distractions or need for high memory capacity,
implicating contributions of working memory to the experience
evaluation (Langer et al., 2005; Liersch andMcKenzie, 2009) (We
also note again that the Preference-dependent discounting model
can be interpreted as a recurrent network combined with an
unsupervised image classification system. In this interpretation,
preference-dependence of working-memory ability naturally
occurs as a result of variances in weights of summation).

Taken together, the success of the combined WP-PD model
shows that, even within our experimental paradigm, multiple
features of experienced sequences influence retrospective
evaluation. These include having a predominantly window-
based evaluation that is also preference-dependent (i.e., most
preferred experiences remembered better), with additional
effects (e.g., preference-dependence, primacy) outside the main
evaluation window. At the same time, our results show that
significant individual differences exist in exactly how people
evaluate sequences of their experiences retrospectively.

With respect to the individual differences in the study,
although we were indeed able to leverage it to evaluate and
develop our models, we note that the empirical data nonetheless
yielded averages with relatively low standard error, and thus
reflected features shared across the participants. Moreover, our
major finding showed that we could split the participants into
two groups: (1) 22.7% of the participants whose behavior was
dominated by windowed evaluation, and (2) the other 77.3%
whose behavior required both windowed and discountingmodels
to be explained. Thus, even the individual differences could be
classified into two groups, with each group explained well by
our models.

The general finding of multiple effects on retrospective
evaluation (from specific sequence characteristics to individual
differences) shows that comprehensive quantitative analyses
are needed to elucidate the factors and the conditions under
which they influence retrospective evaluation. We hope our
experimental paradigm and mathematical framework help show
the success of this approach and how it can be undertaken.
As discussed in section “Experiments,” human attractiveness as
observed in images is a real and immediately consumable reward,
with extensive theoretical and empirical evidence supporting this;
and thus we expect our basic findings to generalize to other
types of pleasurable stimuli. Future studies are needed to test this
prediction. And even though we suspect that the basic findings
will generalize from the men to women as well when using a
comparable consummatory real-time reward (such as images of
men), female participants also need to be tested in the future to
verify this.

Future work is indeed necessary on a range of
different conditions (Ariely and Carmon, 2000), including
types of experiences (besides images of attractiveness),
positivity/negativity of experiences, timescale of experiences
(Xiaowei et al., 2013), quantitative/qualitative experiences,
real/virtual experiences, and individual differences factors such

as gender and personality traits (Yoon et al., 2019). Future work
is also needed to examine the role of selective attention and other
memory mechanisms in retrospective evaluation (Jung et al.,
2019).

With respect to the timescale of experience, we designed our
tasks in as wide a time range as possible for a highly controlled
laboratory situation. We tested sequences that ranged from four
to 100 pictures, which we consider a strength of our study. These
experiences thus range from seconds to minutes timescales. To
test experiences beyond this, like hours or days, it is difficult
to provide controlled stimuli and reliable testing conditions to
measure the responses quantitatively in the laboratory. In any
case, this does imply that studies with such larger timescales
are needed for further validation of our model. Indeed, another
strength of our computational study was the development of a
flexible, robust, and scalable model that should be able to capture
these larger timescales.

At the same time, future work can extend ours by dealing
with shortcomings that we encountered. These include some
limitations in statistical power, such that more participants and
trials would help more firmly establish the results. For the
windowed evaluation model, many window sizes accumulated
near 10, obviously because of the experimental design, in
that the sequence-rating-continued-version task queried their
sequence ratings with 8–13 intervals, averaging around 10.
Future experiments can vary the rating intervals to attempt
to decouple actual evaluation windows from the specific task
demands (although this also requires more trials, and thus
potential fatigue must be monitored). It would be interesting
to determine the extent to which the evaluation window
(and thus underlying working memory) is affected by external
factors, including its pliability based on task demands. Beyond
this, the different window-size distributions for the Windowed
Average and Windowed Preference-dependent models that we
obtained (Figure 8B) suggests that memory works at multiple
levels hierarchically (Sakai et al., 2003; Huntley et al., 2011),
with each level focusing on a particular sequence size: e.g.,
level one, of say period 10, whose units are individual events
(such as our pictures); level two, whose units consist of each
period at the lower level (i.e., sequences of 10 images), and so
on. In our paradigm, only two levels of memory were easily
captured across all participants (one picture and a period of 8–
13 pictures). A future experiment with more participants and
a design focused on studying multiple memory levels could
attempt to characterize these levels quantitatively; and then
the evaluation rule used at each level could also be examined.
For example, one could test a model of nested windowed
averaging, which averages within each period (lower window),
and then takes recent several periods (higher window) to
average them a la our current Windowed Averaging model.
Moreover, one could develop a model that uses utilities of
chunks (average of period) for past memories, and utilities
of individual events for recent memories. Parameterizing the
temporal cutline of past and recent, one could potentially find
when the memory chunks are formed. Regarding potential
evaluation rules at each memory level, one might imagine
that a peak-end type heuristic may be more suitable when
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evaluating sequences in which their unit events are nested
sequences themselves.

The highest correlation-test result in our study was 0.74,
in the combined WP-PD model for Group 2 (Figure 13B).
Therefore, in principle, roughly 0.26 of correlation value (46% of
variance unaccounted for) remains to be explained. Other factors
might include other kinds and components of memory, selective
attention, and so forth (Ariely and Carmon, 2000).

Brain electrophysiological and imaging experiments can
also be conducted using our experimental paradigm and
mathematical framework. For example, one could not
only test the hypothesis that working memory underlies
experience evaluation, but more specifically how it does so, by
examining correlations of regional brain activity with specific
model parameters.

Finally, comprehensive evaluation models that capture
individual retrospective evaluation patterns could potentially
be applied in many real-world settings (Nasiry and Popescu,
2011; Hoogerheide and Paas, 2012), helping to improve the
quality of life. If we can predict how people evaluate their
sequential experience—such as having longer or shorter
evaluation windows, the degree of preference dependence,
the most impactful order position of peaks—we can design
their experience order to optimize their satisfaction. For
example, by knowing or being able to predict individual
experience-evaluation functions, many real-world cases of
sequential events, such as education practices, newspaper
articles, television programming, streaming services, shopping
venues, websites, trip tour recommendations, and so on could
in principle be tailored to optimize sequence preferences.
A quantitative characterization of retrospective sequence
evaluation might also help to localize dysfunction and
design tailored treatments in important relevant cases,
ranging from natural aging to addiction. We hope our

general paradigm and research findings help point toward
these ends.
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