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Significant progress has been made toward model-based prediction of neral tissue

activation in response to extracellular electrical stimulation, but challenges remain in

the accurate and efficient estimation of distributed local field potentials (LFP). Analytical

methods of estimating electric fields are a first-order approximation that may be suitable

for model validation, but they are computationally expensive and cannot accurately

capture boundary conditions in heterogeneous tissue. While there are many appropriate

numerical methods of solving electric fields in neural tissue models, there isn’t an

established standard for mesh geometry nor a well-known rule for handling anymismatch

in spatial resolution. Moreover, the challenge of misalignment between current sources

andmesh nodes in a finite-element or resistor-networkmethod volume conductionmodel

needs to be further investigated. Therefore, using a previously published and validated

multi-scale model of the hippocampus, the authors have formulated an algorithm for

LFP estimation, and by extension, bidirectional communication between discretized and

numerically solved volume conduction models and biologically detailed neural circuit

models constructed in NEURON. Development of this algorithm required that we assess

meshes of (i) unstructured tetrahedral and grid-based hexahedral geometries as well as

(ii) differing approaches for managing the spatial misalignment of current sources and

mesh nodes. The resulting algorithm is validated through the comparison of Admittance

Method predicted evoked potentials with analytically estimated LFPs. Establishing this

method is a critical step toward closed-loop integration of volume conductor and

NEURON models that could lead to substantial improvement of the predictive power of

multi-scale stimulation models of cortical tissue. These models may be used to deepen

our understanding of hippocampal pathologies and the identification of efficacious

electroceutical treatments.

Keywords: neural network, finite-element (FE), local field potential (LFP), multi-scale, numerical algorithm, volume
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INTRODUCTION

Encouraged by advances in computation, new multi-scale neural
network models have demonstrated the ability to predict
spatiotemporal patterns of activity in complex neural tissue
systems when activated by detailed models of stimulating
electrodes (Cline et al., 2015; Gilbert et al., 2015; Bingham et al.,
2016, 2018a,b). Linking neuronal and tissue volume-conductor
scales has previously been performed by estimating interactions
between extracellular electric fields induced by stimulating
impulses and neural processes which lie within affected volumes.
These tissue models conduct electricity both passively and
actively yet do so only in a feedforward manner. However, neural
tissue systems behave simultaneously as a volume conductor and
as a network of spiking neurons with these two domains of tissue
interacting bidirectionally. Active conductance through neural
networks, occurring through changes in ion concentrations
across cell membranes, results in measurable currents in the
extracellular space that may entrain or reinforce oscillatory
behavior in neural networks (Whittington et al., 1997; Fries,
2005; Anastassiou and Koch, 2015). These measurements, called
local field potentials (LFPs), are critical indicators of living
tissue system behavior. Despite the sophistication of feedforward
modeling approaches, there remain doubts regarding the best
method of calculating LFPs. Analytical methods, which have a
strong theoretical basis, have been used successfully for many
years (Clark and Plonsey, 1968, 1970; Holt and Koch, 1999;
Lindén et al., 2011, 2014). However, analytical field estimation
methods fail to capture the heterogeneous nature of neural
tissue. For very complex and highly segmented volumes, both
heterogeneous resistivity and anisotropy have been demonstrated
to create important boundary conditions during tissue volume
conduction (Nowak and Bullier, 1996; Grill, 1999; McIntyre and
Grill, 1999; Bossetti et al., 2008; McIntyre, 2009; Miocinovic
et al., 2009; Bazhenov et al., 2011; Joucla and Yvert, 2012; Howell
and McIntyre, 2016). Thus, numerical approaches, including
the finite-element and finite-volume methods, have become
favored over analytical methods for two reasons: numerical
methods allow (i) more efficient parallel/simultaneous estimation
of multiple locations within an electric field and (ii) superior
ability to capture various dielectric heterogeneities of complex
nervous tissue systems. Therefore, it is warranted that numerical
methods be extended to incorporate transmembrane currents
into dynamic estimates of extracellular electric fields generated
within complex neural tissue systems.

Simulation of neural tissue systems, through large-scale
computational modeling, has become possible through dramatic
improvements in computation over the past decade, namely:
parallel computation through either graphic-processor or more
traditional CPU cluster computing. When combined with
numerical estimations of electromagnetic fields, computational
models of neurons have demonstrated utility as a method of
optimizing neurostimulating or recording arrays of electrodes
(Geddes, 1997; Johnson and McIntyre, 2008; Rattay et al., 2012;
Agudelo-Torom and Neef, 2013; Howell and Grill, 2014; Howell
et al., 2015; Bingham et al., 2018a; Buccino et al., 2019). With
respect to LFP estimation, numerical methods have already been
used with some success, however no thorough analysis of the

theoretical foundations of the approach has been performed
(Fernández-Ruiz et al., 2013). Despite advancements in these
modeling approaches, there remain significant limitations in
numerical methodologies for incorporation of endogenous
currents into estimations of local field potentials (LFP) or evoked
potentials (EP) for use in analyzing the stimulus-responses of
neurological tissue systems. Barriers to be overcome, include
proving the unestablished theoretical protocols for tetrahedral
or hexahedral approximation of a line-source or point-source
within a conductive volume and designing a feasible process for
tackling the great computational burden presented by the task.
Such a theoretical solution would ideally allow currents to give
rise to roughly toroidal or spherical electric fields generated by
line or point-sources, respectively, in an infinite homogeneous
conductive volume. But it is unclear at which length scales
preserving these hypothetical field geometries matters for the
accuracy of field estimations.

The Admittance Method (AM) has been established as a valid
and intuitive numerical approach to estimating electric fields
induced in animal tissue systems through extracellular electrical
stimulation (Cela, 2010; Xie et al., 2011). The AM is a specialized
form of the FEM method. In short, AM involves construction
and solution of an equivalent RC circuit used to approximate
the attenuation of electric fields in volume conductors. This
paper seeks to distinguish the AM as a numerical approach
to electromagnetics modeling that is capable of smoothly
incorporating endogenous neuronal current sources into an
inherited meshed model for prediction of evoked potentials in
complex neural tissue systems. The proposed extension of this
method yields the following utilities: (i) a granular algorithm
and guidance for adding dynamic current sources to existing
meshed volumes where spatial alignment between nodes and
new current sources is variable, (ii) automated incorporation of
very large numbers of dynamic current sources to existing AM
meshed volumes, (iii) intuitive implementation of tissue volume
conduction behaviors via equivalent circuits, (iv) simultaneous
solution of electric fields at many locations, and (v) the ability
to add dielectric heterogeneities to LFP estimation models.
Overcoming these challenges allows us to take advantage of the
computational efficiency and the potential for dielectric detail of
numerical methods for solving volume conduction problems.

METHODS

The algorithms proposed herein were developed through
utilization of data previously published and generated from a
multi-scale model of a rat dentate gyrus. The following sections
briefly summarize the construction, feedforward simulation, and
validation of a complex multi-scale AM-NEURON model of the
hippocampus (Bingham et al., 2016, 2018a). While this model
is extensively described in previous publications, it benefits the
reader for some concise explanations to be provided here.

Construction of the NEURON Model of the
Hippocampus
The rat dentate slice NEURON model was an in-situ scale and
density computational reconstruction of histology comprising
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the Kjonigsen and Witter hippocampal atlas (Kjonigsen et al.,
2011; Bingham et al., 2016, 2018a,b). Taking a particularly clear
image from the atlas, the cell layer boundaries were extruded
400µm in the septotemporal direction to yield the entire volume
within which the model was constructed.

The NEURON model is comprised of 50,000 granule cells
and 10,000 entorhinal cortical axon fibers. Previously validated
granule cell models, including morphology and biophysics, were
taken from Hendrickson et al. and arranged along the cell body
layer of the image from the atlas (Hines and Carnevale, 2003;
Hendrickson et al., 2016). Then 5,500 lateral perforant path axons
were arranged such that they coursed through the outer third
of the granule cell arbors and 4,500 medial perforant path fibers
likewise through the middle third. Each granule cell then formed
synapses with these fibers, prioritizing proximity, totaling ≈5.5
million synapses in the middle third and ≈6 million in the
outer third.

AM-NEURON Feedforward Simulation
Volume conduction in neural tissue in this study was
modeled using a variant of the heterogeneous AM, as
extensively described in Cela (2010), Xie et al. (2011), Bingham
et al. (2018a). In brief, this method involves four steps: (i)
image-based sculpting of a model volume and automated
extraction of bounding surfaces between sub-volumes of differing
conductivity, (ii) construction of a resistor (and capacitor)
network of varying resolution which discretizes the defined
volume, (iii) assignment of resistances to individual elements
in the mesh based on experimentally measured resistivity (the
estimated real component of impedance), and (iv) solution by
conjugate-gradient descent of a sparse matrix representation
of internode admittance and currents, and formulating nodal
voltages according to Ohm’s law (Zhang et al., 2006). This
established method provides meaningful flexibility in terms
of mesh construction, dielectric properties, and expression
of sources within the resulting model when compared to
common alternatives such as FEM via the COMSOL modeling
environment (Al-Humaidi, 2001).

Because both neuronal and volume conductor models are
electrical circuits, interfacing the two intuitively involves passing
node voltages or currents back and forth (Figure 2). Once
nodal voltages in the AM model are solved, voltage at neuronal
compartments are found by tri-linear interpolation from the 8
nearest nodes and applying this voltage as an extracellular battery
via the extracellular mechanism in NEURON—this is done for
each compartment in every neuron (∼200–300 locations for each
neuron and about 12.25 million locations in an in situ scale slice
of the dentate gyrus)–this causes currents within each cell that are
appropriate given their location within the field estimated by the
AMmodel.

Once the Volume conductor and network models were
in place, we added additional circuit elements to represent
virtual stimulating devices. The devices we modeled had real
geometry and conductive properties of twisted bipolar platinum
microwires insulated with Teflon. This was implemented with
equivalent circuits by discretizing the tissue-electrode interface
with parallel RC components, each representing a mode of

current transmission: faradaic and capacitive charge injection
(Cole and Cole, 1941; Geddes, 1997).

After this step, we placed the devices at different transverse
locations and delivered a biphasic pulse at threshold amplitude.
Compartmental currents from the infrapyramidal perforant path
stimulation case (1ms pulse-width per phase with no interphase
delay at 150 µA) were then used to calibrate the AM for LFP
estimation. This case was selected for LFP estimation analyses
that follow because stimulating in the infrapyramidal blade
allowed stimulation artifacts to be as far from the boundaries of
the volume conductor model as possible, somewhat reducing the
required complexity. This proved important owing to the dozens
of variations of meshed models (complexity and geometry) that
were used to analyze numerical vs. analytical performance.

The model was simulated on a 4,040-processor high-
performance computing cluster owned by the authors and
supported through the University of Southern California Center
for High-Performance Computing.

Analytical LFP Estimates as a Proxy
Ground Truth
Previous studies, by these authors and others in the community,
used simple analytical estimations of local field potentials to
validate their neuronal models (Figure 1). While the sources
of error associated with such an approach are well-understood,
the point-source method of LFP estimation provides reasonably
accurate estimates of potentials at a given observation point in
themodel. By assuming conductive homogeneity (homogeneous,
isotropic, and infinite boundary volume conductor), this estimate
can be used as a suitable proxy for ground-truth when calibrating
more sophisticated numerical approaches to estimating electric
fields under the same conductive conditions (Einevoll et al.,
2013). These assumptions reduce sources of error to numerical
volume conductor implementation rather than the countless
known and unknown factors influencing the emergence of
extracellular signals in real neural tissue systems. Lastly, a
homogeneous analytical method yields a level of experimental
control and access to system variables that cannot yet be obtained
by in vitro or in vivo electrophysiology. It is on this basis that
we justify establishing a homogeneous analytical estimate of
LFPs as a proxy ground-truth to validate the numerical methods
developed in the sections that follow.

The analytical method used in this study is the point-source
equation, as follows:

φ
(

x, y, z
)

=
1

4π

n
∑

i=0

Ii

σ ∗ri
(1)

ri =
√

(x− xi)
2 + (y− yi)

2 + (z − zi)
2 (2)

Where φ is the field potential resulting from n current sources,
I. σ is the inverse of tissue resistivity (3.8 �-m, obtained from
Lopez-Aguado et al.) and r is the path length from source to
recording location (Clark and Plonsey, 1970; Holt and Koch,
1999; López-Aguado et al., 2001; Wilson et al., 2014). The proxy
ground-truth is estimated by scaling each current source via
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FIGURE 1 | (A) A 2-D rendering of the biologically realistic NEURON model of a rodent dentate gyrus with demarcation of recording and stimulating devices. (B) The

slice model is populated with 10 k entorhinal cortical axons which synapse with 50 k granule cells. The entire model comprises ≈12.25 million synapses and ≈15

million neuronal compartments. (C) The NEURON model was imbedded in a meshed volume with bipolar stimulating electrodes targeting the perforant pathway. (D)

Analytical estimates of LFPs corresponded well with in vitro MEA recordings in temporal dynamics and waveform. Model validation was performed for stimulation at

the crest perforant path and recordings from the suprapyramidal cell body layer. Details regarding the construction and application of this model are described at

length in Bingham et al. (2018a).

FIGURE 2 | This toy model demonstrates the chief architecture of the equivalent circuits used to estimate the passive and active propagation of neural network

activity in an AM-NEURON model. Volume conduction is modeled via a specialized resistor and capacitor network called the Admittance Method (yellow). Intracellular

and transmembrane currents are then modeled using a second set of equivalent circuits setup and solved within the NEURON simulation environment (blue) (Hines

and Carnevale, 2003). Differences in spatial resolution between these two domains draws attention to the impact of potential approaches to handling their interface

(i.e., node alignment).

Equations 1 and 2, then summing them into a field potential
using the principle of superposition. This process was performed
for every current source and time step in a simulation until

the whole time-series is reconstructed. LFP estimates using
Equations 1 and 2 based on the feedforward AM-NEURON
model described in this and previous paragraphs were validated
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FIGURE 3 | Two common mesh geometries, grid-based/structured hexahedral and unstructured tetrahedral were used to fill 3-dimentional volumes to encapsulate all

current source locations described in this figure. The accuracy and computational performance of these were analyzed as mesh resolution was gradually increased in

both. Hexahedral meshes were created by linear segmentation of the volumes to ensure voxels were always cubical. Tetrahedral meshes were scripted in python

through the Gmsh and TetGen APIs using Delaunay triangulation to ensure very high quality (Geuzaine and Remacle, 2009; Si, 2015). It should be noted that

tetrahedral meshes created using this approach do not have uniformly equifacial tetrahedra.

against LFP recordings from MEA studies of rat hippocampal
slices and published in Bingham et al. and Soussou et al. (Hentall
et al., 1984; Soussou et al., 2006; Bingham et al., 2018a). The
following methods describe a new analysis of this data.

New Meshes for LFP Estimation:
Tetrahedral vs. Hexahedral
Early in this process it was observed that the spatial distribution
of currents contributing to LFP signals differed substantially
from the geometry of stimulating currents (i.e., many disperse
small charges vs. a few large and nearly co-local charges)
(Figure 2). Therefore, we determined to start with a fresh and less
constrained set of meshes with which to study LFP estimation.
Suppressing any preconceived notions of which mesh volume
geometry would be best, a bounding box was fit to the point
cloud that represented all compartments in the neuron model
which would be contributing currents to any LFP estimate
(Figure 4). A spatial scaling factor was then applied to expand
this volume, ensuring that current sources near the edges of
the model would be less affected by boundary-driven current
shunting. The bounding volume scalar factor used in this study
was 142%, which was set after determining that the relative field
amplitude of edge-most currents are >95% relaxed by the time
they reach the nearest boundary. This volume was then meshed
with either grid-based hexahedral or unstructured tetrahedral
(equifacial ideal) meshes with resolution (maximum edge-length)
ranging from 40 to 180µm edge-lengths. Tetrahedral meshes
were constructed through Python scripts that make API calls to
Gmsh 4.5 and TetGen 1.5.1 using Delaunay triangulation (Chew,
1989; Geuzaine and Remacle, 2009; Si, 2015).

Fundamentals of Resistor Network
Construction
Tetrahedralizations or hexahedralizations (Figure 3) are
unbroken networks of nodes and edges that must then be
converted to a valid circuit of virtual resistors (and capacitors for
non-quasistatic models). Rules for deriving mesh element
resistances from experimental impedance or resistivity
measurements are poorly described or completely absent
from the literature, so we will describe our process here: first for
hexahedral and then for tetrahedral mesh geometry. Because of
the orthonormality of structured hexahedral meshes we assumed
edge length, L, and edge cross-sectional area, A, to be the only
scalars of importance in converting local tissue resistivity, ρ, to
resistance, R, according to:

R = ρ
L

A
(3)

A was a constant 0.25 µm2 for all meshes in this study. Because
unstructured meshes are not orthonormal, it stands to reason
that there should be different rules for assigning or scaling
distance-derived resistances based on the angle and number of
adjoining connections. Following analysis done by Duffin in the
late 1950’s, fractional conductance within and across tetrahedra
can be approximated as proportional to the cotangent of internal
angles (Duffin, 1959), after the form:

RAB =
6× ρ × tan(ϑ)

|CD|
(4)
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FIGURE 4 | Example tetrahedral element explaining the variables used to

apply the cotangent rule for calculating edge-wise conductance. Resistance

from A to B is calculated by Equation (3) where RAB is proportional to the ratio

of the dihedral angle, ϑ , and the edge length, CD. A proof of this approach is

presented at length in (Duffin, 1959).

Where resistance along an edge, RAB, across from the dihedral
angle, ϑ , is 6 times resistivity times the tangent of ϑ scaled by the
length of the edge where the dihedral angle is formed (variables
described by Figure 4). The dihedral angle, ϑ , can be reliably
calculated with the following equations after ensuring that u, v
and w have the same sign:

ϑ = cot−1 (

√
(u. u) (v.w) − (u. v) (u.w)/

√
(u. u)

u.(v.w)
) (5)

u = B− A, v = C − A, w = D− A (6)

The denominator in Equations 5 is the triple product of
u, v, and w. This treatment of the tetrahedral meshing
problem later requires that R be summed for edges shared by
multiple conjoined elements to create a unified and continuous
network without superfluous co-parallel resistors. This is done
by following fundamental circuit-theory logic for summing
parallel resistors:

1

RTotal
=

1

R1
+

1

R2
+ . . . +

1

Rn
(7)

This overall approach of applying material properties to
tetrahedral meshes (Equations 4–7) has the nice feature of
tangent (ϑ) going to 0 as ϑ approaches 0 and infinity
as ϑ approaches π/2. Therefore, very narrow elements are
effectively short-circuited and meshes of a regular grid that

yield tri-rectangular tetrahedra are electrically equivalent to
hexahedralizations of the same grid. Whether this rule remains
useful for obtuse tetrahedra was not studied, as none were
generated in these models.

Following construction of a primary mesh and conversion to
a circuit, new resistors were added between the hull nodes and
a virtual ground. Each new wire connected to ground from a
hull node had a resistance equal to the average of all other wires
connected to the hull node being considered.

Incorporating Incident Endogenous
Current Sources: Splitting vs. Shifting
The fundamental paradigm of the AM was then extended
to incorporate incident and dynamic current sources from
NEURON compartments into an already existing meshed model
(Figure 5). For the sake of clarity, a single voxel/single incident
current-source scenario is presented in Figure 6. This figure
describes two algorithms that will be labeled descriptively as,
current “splitting” (i.e., interpolation) and “shifting.”

The steps for current splitting include, first, relative distance-
weighted division of currents into eight or four parts, for
hexahedral and tetrahedral elements, according to each of the
nodes in the voxel that contains the source in the AM mesh.
Secondly, these divided currents are then applied as a new static
current source at each node.

This relatively complex algorithm was also compared with
a simpler current shifting algorithm which applies all current
sources at the nearest respective node in the mesh according
to Figure 6 (shifting). This method became interesting because
of the relative complexity of finding a voxel which contains a
source location vs. just finding the nearest mesh node to that
current source.

LFP estimations via these two algorithms were compared
to each other and a point-source estimated LFP for both
computational performance and estimate accuracy. Comparison
was performed through calculation of a time-averaged absolute
residual, or error, with respect to the analytical solution at
recording locations evenly distributed throughout the transverse
plane of the tissue model.

Once a resistor network was constructed and properly
grounded, either the splitting or shifting algorithms were used
to add a set of currents to the model. While the geometry of
the model remained the same for every time step, a new netlist
was written for each time step to account for changing current
source amplitudes. Current source-node assignments remained
the same for every time step for a given mesh geometry and
resolution. These netlists were then loaded in series and nodal
voltages were solved using the matrix solvers described at length
by Cela (2010). Figure 7 provides an outline for all the analysis
performed to compare the mesh geometries and current source
handling algorithms described in this report.

Model Sharing and Software Distribution
It is our eventual goal to release a software tool that will
enable other investigators to optimize and later estimate LFPs
within tissue models of arbitrary geometry and conductivity.
Therefore, subsequent to acceptance of this manuscript, code to
generate a meshed volume, integrate current sources, solve nodal
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FIGURE 5 | AM-NEURON bidirectional interface can be reduced to an intuitive and methodologically consistent algorithm that ensures field geometry distortion is low

and mostly dependent upon mesh resolution at or near current sources. Eventually, this algorithm would be executed at each time-step in a simulation: first the

Admittance Method model is solved, then the estimated field is applied to compartments throughout the NEURON model. Then, a single time-step of the NEURON

model is solved and compartmental currents are passed back out to the Admittance mesh and the whole process begins again to prepare to simulate the next

time-step. Spatial alignment can be accomplished with one of two algorithms: interpolating/splitting to/from a source or shifting a compartment or source to the

nearest node in the AM mesh. The details of these two approaches are graphically explained in Figure 6.

FIGURE 6 | Spatial alignment in feedforward (AM to NEURON) and feedback (NEURON to AM) interfacing can be accomplished with one of two algorithms:

interpolating/splitting to/from a source or shifting a compartment or source to the nearest node in the AM mesh. The accuracy and computational performance of

solving meshes with split vs. shift were analyzed across a range of model complexities.
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FIGURE 7 | This flow diagram provides an overview of the analysis performed in this manuscript. To establish best practices for interfacing volume conduction models

with large-scale NEURON network models, we explored the impact of mesh geometry and current source handling algorithms on computational performance and

estimation accuracy. Validation consists of comparison of numerical model estimates with a proxy ground truth in the form of analytical estimates (line-source

equation).

FIGURE 8 | This visualization presents the source data, derived from simulations of a multi-scale model of an in vitro hippocampal slice, which was used to develop

the models presented in this manuscript. The hippocampal model is extensively described in Bingham et al. (2018a). Each ball represents the location of a current

source generated by a neuronal compartment in a hippocampal network simulation of perforant path stimulation. The color and size of each ball encodes the charge

polarity and the normalized amplitude of the voltage each ball contributes to the potential as measured at the recording electrode. This normalization was performed

for each time-step independently using the line-source equation (Holt and Koch, 1999). A feature of note in this data set is that the spatial distribution of important

current sources varies dramatically from beginning to end of the simulated behavior.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 August 2020 | Volume 14 | Article 72

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Bingham et al. Numerically Estimating Local Field Potentials

FIGURE 9 | To examine the impact of current source handling algorithms (splitting vs. shifting) and mesh geometry (tetrahedral vs. hexahedral), meshes of a range of

resolutions were solved and solve times were compared by both geometry and current source handling algorithm. (A) At low resolutions, shifting sources

outperformed splitting for both mesh geometries but the relative performance converged to parity at greater model resolutions (≈19 k nodes). (B) For all mesh

resolutions studied, tetrahedral meshes were solved more quickly than hexahedral, though this difference was diminished when using the shifting current handling

algorithm and performance parity was achieved at higher model resolutions (≈15 k mesh nodes).

voltages, and visualize results will be distributed via a public
Github repository (https://github.com/bingsome/Neurospice).
There remain, however, significant hurdles for adaptation of this
method to different tissue systems, including but not limited
to: tissue geometry, heterogeneous dielectric properties, and the
complexities of constructing a biologically realistic NEURON
model capable of generating meaningful virtual extracellular
currents. Further, the value of such a tool may be somewhat
reduced should we not focus future efforts on solving possible
computational bottlenecks to be raised in the discussion portion
of this manuscript.

RESULTS

The following sections describe results of a comprehensive study
of the AM for LFP estimation. More specifically the outcome of
sensitivity analysis surrounding mesh geometry (tetrahedral vs.
hexahedral) and current source handling algorithms (splitting vs.
shifting). Models were cross-compared for both computational
performance and accuracy with error calculated with respect
to point-source LFP estimates as a proxy ground truth. These
estimates were made at recording locations evenly distributed
throughout the transverse plane of the tissue model.

Analytical LFP Estimates as a Proxy
Ground Truth
The point-source equation was used to estimate LFPs in 1222
evenly distributed locations on a 2d-grid within a transverse
plane at 50µm under the stimulating electrodes and centered
over the NEURON model. Figure 8 shows the impact that these
neuronal current sources have on a single LFP recording taken
near the crest. The calculations used to create Figure 8 were
repeated to estimate the analytical LFP at all 1222 locations in
a grid distributed throughout the transverse plane of the tissue

model. This process was performed according to Equations 1 & 2
with a tissue resistivity of 3.8 �-m along all possible paths in an
infinite boundary volume conductor. Completion of this estimate
took ≈25min for a single recording location but ≈18 h for 1222
locations due to some multi-threaded parallel optimization that
was possible. While analytical method estimation speed could
plausibly be further optimized, it was not the goal of this study
to improve analytical estimation but rather to validate numerical
modeling approaches.

Incorporating Incident Endogenous
Current Sources: Split vs. Shift
At very coarse resolutions current splitting had the advantage
of 11–30% better accuracy at a computational penalty of 220–
350% longer solve times (Figures 9, 10). These coarse model
differences were more exaggerated for hexahedral meshes due to
the greater number of nodes per mesh element. Regardless of
mesh geometry, differences in accuracy quickly dissolved (low
single digit µV on average) by the time node counts reached
≈5–6 k (Figure 10).

Because the number and spatial distribution of current sources
remained the same for every meshed model, the preprocessing
step of assigning sources to voxels or nodes was particularly
impactful for very coarsemeshedmodels.While this step involves
pairwise relational distance calculation for millions of points
and, therefore, increases in complexity with increasingly complex
meshes, preprocessing time did not increase nearly as fast as did
the time required to solve the circuits.

New Meshes for LFP Estimation:
Tetrahedral vs. Hexahedral
Neither tetrahedral nor hexahedral meshes were universally
superior in the analyses performed. For very coarse meshes,
tetrahedral models were markedly faster to solve and could
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FIGURE 10 | To examine the estimation accuracy of numerical LFP solutions under differing current source handling methodologies (shifting vs. splitting) a range of

models with varying resolution were generated, solved, and quantitatively compared with an analytical estimate via the line-source equation in the plane at 50µm

under the slice model, and then with each other. Red regions represent voxels where shifting results in more error relative to splitting. µ, σ in each window denote the

average and standard deviation of residual differences over all voxels and all time-steps. While splitting often outperformed shifting, particularly in tetrahedral meshes

at very low resolutions, as meshes became more complex, shifting, and splitting methods reached comparable levels of error (low single digit µV). The difference in

methods across the range of resolutions was more pronounced in hexahedral meshes for any given node density because of the relative element size between

hexahedral and tetrahedral meshes.

be more accurate than hexahedral but not without substantial
cost in both dynamic memory utilization and model complexity
(Figures 9–12). As models increased in resolution, speed and
accuracy differences between the two geometries diminished but
tetrahedral models maintained ≈6–6.5x greater complexity and
memory requirements due to higher element to node ratios. At
very high resolutions, hexahedral meshes yielded solutions that
were slightly more accurate on average but significantly smoother
than tetrahedral solutions with a similar mesh node-count.

Sample LFP Estimates From the Medial
Molecular Layer
Overall, tetrahedral and hexahedral (shifted) numerical estimates
corresponded well with the analytical estimates (gray lines in
panel Figure 13) in both waveform and relative amplitudes. The

width, latency, and amplitude of population spikes were well-
approximated across all transverse locations with the greatest
errors being in the exposed infrapyramidal blade due to relative
proximity to the stimulating location. A greater portion of error
was also concentrated in the after-hyperpolarization phase of the
response (+8.0–12.0 ms).

DISCUSSION

The goal of this study was to demonstrate the theoretical
foundations of application of a numerical method to the
estimation of LFPs given neural model-driven current sources
which are broadly distributed in space and time. This work
was focused specifically on field estimation problems arising
from having endogeneous current sources which do not spatially
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FIGURE 11 | To examine the impact of geometry on model and computational complexity we created meshes of unstructured tetrahedral and structured hexahedral

geometry across a range of spatial resolutions and compared the (A) number of elements required to mesh a set of nodes and (B) the relative RAM utilization of the

generated models. As models grew in complexity the tetrahedral to hexahedral element to node ratio converged to ≈6x with tetrahedral models utilizing ≈6.5x more

memory.

align with volume conductor meshed nodes and, thus, must
be split, merged, or shifted in space. Having such a method
enables the implementation of critical features of tissue for
both feedforward and feedback tissue-electrode and tissue-tissue
interactions; these features include tissue dielectric heterogeneity
and anisotropy. The ability to accurately estimate (i) electric fields
generated in neural tissue by stimulating electrodes, (ii) evoked
behavior of neural tissue that lies within that volume, and (iii)
the electric fields that are generated by that behavior completes
the critical components of an algorithm that couples feedforward
and feedback interactions between virtual electrical stimulating,
recording devices, and computational models of neural tissue.
An algorithm for bidirectional communication between AM
and NEURON domains could prove a powerful approach
to understanding electrode-based brain-machine-interfaces and
electroceutical devices. While the accuracy of the numerical
method with respect to analytical solutions could have been
performed with randomized non-biological current sources,
previous work enabled the use of a highly detailed in vitro dentate
slice rat model, and the LFP solution reflects the behavior of this
model (Bingham et al., 2018a). Accurate use of the Admittance
Method for LFP estimation that corresponds to in vivo behavior
would have required modifications of the underlying NEURON
model to capture the differences between in vitro and in
vivo hippocampal tissue including differing dielectric properties,
tissue geometry, network topology, etc. Therefore, effective use
of this algorithm for neuroscience applications requires that
modelers first construct a meaningful mechanistic model of
the neural tissue they wish to study. The general value of
this algorithm for neuroscience applications is limited by the
realism of the interfacing models: (i) volume conduction model
design is complicated by geometric and anatomic variety of

electrodes and tissue and (ii) prediction of neural tissue system
behavior is complicated by the nuances of tuning biologically
detailed models of neurons and synapses. Through synthesis
of the results presented in this paper and those that provided
the feedforward AM-NEURON model described previously, we
propose a bidirectional algorithm that deepens the cross-scale
links between models of bulk-tissue dielectric behavior and
cellular and network behavior of complex neural tissue systems
(Figure 14).

A stable and efficient approach to solving fields arising in
tissue from endogenous current sources allows us to begin
inquiry into several new areas of work. Some of these include
the following: (i) providing clarity regarding the extent to
which volume conduction of transmembrane currents reinforces
population synchrony, (ii) use of the model framework to
validate and optimize spike-sorting algorithms for engineering
applications, and (iii) investigation of more fundamental
questions about the biology of specific neural circuits by
determining with greater accuracy which components of a
neuron or neurons in a network actually cause the features that
emerge in evoked potentials (Einevoll et al., 2012). Each of these
questions represents an avenue of work enabled and encouraged
by the modeling framework presented herein.

LIMITATIONS AND ALTERNATIVES

While models constructed via this proposed algorithm may
help investigators answer many questions related to brain-
computer-interfaces and their useful application, it is not
without limitations.
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FIGURE 12 | To examine the estimation accuracy of numerical LFP solutions under differing mesh geometries (tetrahedral vs. hexahedral) and managing endogenous

current sources via the current shifting regime, a range of models with varying resolution were generated, solved, and quantitatively compared with an analytical

estimate via the line-source equation in a plane at 50µm under the slice model. µ, σ in each window denote the average and standard deviation of residuals over all

voxels and all time-steps. Hexahedral meshes achieved accuracies comparable to tetrahedral meshes at around 1/6th the number of elements. Also, hexahedral

solutions at higher node counts achieved a smoother solution (visible in the bottom row and in σ’s).

We have demonstrated and quantitatively evaluated an
approach to estimating electric fields that arise from endogenous
current sources. This is a general method that can be applied
to the study of any neural tissue system with a few important
caveats. As our study system, we adopted an AM-NEURON
model of the rat hippocampus; many features of this tissue
system proved critical for accurate prediction of spatiotemporal
patterns of activity (Buzsáki et al., 1979). It is likewise critical to
capture the principle geometry and topology of neural networks
and dielectric properties of various regions of the tissue systems
being modeled (Tveito et al., 2017). When combined, these
tissue specific properties sculpt the geometry of electric fields
generated by neuronal activity. Further, tissue, behavioral, and
environmental variables can change AM meshing requirements
and model parameters. This constitutes a substantial hurdle
for proper implementation of AM for LFP estimation; the
need for mesh generation and refinement is a limitation of
this modeling approach, though not one that disadvantages

AM relative to alternative numerical methods that face similar
meshing challenges (e.g., FEM) (Pridmore et al., 1981).

Spatial Resolution of Sources and Meshes
One feature of model performance that drew our attention and
deserves comment is the potential for mechanistic differences in
error in the evoked potential phase (+3.0–12.0ms) and those
from the artifact phase (+0–2.0ms). While beyond the scope of
this present report, these differences warrant further analysis and
may become the focus of subsequent studies. Because recording
locations are often very far from the stimulation location, artifacts
in LFPs far from the stimulation can be estimated accurately
with very coarsemeshes without adequately capturing the activity
nearest to the virtual recording electrode (Nowak and Bullier,
1996). Minimizing error in both population spike phase and
artifact phase for any given location potentially requires two
meshes of differing resolutions or meshes with two resolutions,
near and distal to recording sites of interest in addition to
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FIGURE 13 | Example LFP time-series for current shifted tetrahedral (blue) and hexahedral (red) models plotted alongside the analytical (line-source equation; gray).

Solutions were calculated along the transverse axis with (A–E) along with enclosed or suprapyramidal blade, (D) at the crest, and (F–H) along the exposed or

infrapyramidal blade of the dentate gyrus. The tetrahedral and the hexahedral meshed solutions each had 6,500 nodes. Predictions were best in the suprapyramidal

blade (top), though the time-course, polarity, and relative amplitudes of all estimates were acceptable.

the stimulating location. Because the error types appear to be
separable in time (artifact and EP phases), a different mesh
could be used to optimize prediction performance within each
time span.

Floating Point Arithmetic
When implementing very large numerical problems, one known
source of error is floating point arithmetic. As loop currents are
calculated within the spatial circuit and the voltage matrix is
solved, values are inevitably rounded to a reasonable precision.
As a result, small errors can accumulate. Limitations in
arithmetical accuracy are imposed by floating-point precision
capabilities of both computer hardware and programming
languages. By default, Python uses 53 bits of precision and this
was carried through all operations in construction of our RC
circuits and solutions thereof. While floating point errors are
academically interesting and their analysis is critical for many
multiphysics simulation problems, this source of error (at 53
bits of precision) is likely to be negligible with respect to other

sources of error in computational neural systems and modeling
(e.g., mesh resolution, geometry, neuronal biophysics, etc.).

Mesh Quality
Mesh design challenges represent one specific limitation for most
numerical approaches to solving electromagnetic fields, the AM
included. For every new problem and new tissue geometry, new
meshes must be designed as there is not likely to be a universally
optimal mesh volume, fundamental geometry, or resolution.
Technically speaking, each model must find a new optimum for
the following three variables: geometry, resolution, and mesh
material properties (e.g., admittance). For LFP estimation, these
calculations must also consider the spatiotemporal distribution
of endogenous current sources.

Solvers and Model Complexity
Computational demands and model complexity represent
additional critical challenges that must be faced. Approaches to
mitigating these demands are being developed by the authors
and others who have a need for mature electromagnetics
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FIGURE 14 | Synthesis of feedforward AM-NEURON methods demonstrated in Bingham et al. (2018a) and feedback AM-NEURON examined in this manuscript via

current (A) splitting and (B) shifting yields an algorithm for bidirectional communication in mechanistic models of neural tissue systems and volume conduction

models. The above pseudocode would be the same for tetrahedral geometry except for the substitution of the number of nodes to interpolate from (4 vs. 8) in A.

Except in very coarse meshes, shifting (a simpler algorithm) produced results comparable to current splitting in hexahedral or tetrahedral models.

numerical solvers. Potential approaches include mesh reduction
or refinement and parallel solution of the AM. Alternative solvers
may be considered which have already implemented massively
parallel solution of RC circuits, such as the Xyce environment
distributed by Sandia National Labs (Hutchinson et al., 2002).
Should there be no such optimization of FEM-style methods,
then compute-time advantages of the numerical method over
analytical methods could potentially be negated by dramatic
parallelization of integral-based solutions.

Interestingly, for LFP estimation problems it is quite likely
that mesh/circuit solution is not the only computational
bottleneck. Preprocessing is not a trivial step in the process
of numerical solution of LFPs. Because this study involved so
many simulations of varying resolution, it required repeated
discretization of current sources into their respective mesh
model elements. For very small problems preprocessing is trivial;
but computing the pairwise relational distance of millions of
points is very time-consuming and memory intensive. Our
approach to alleviating this challenge was to massively parallelize
the solution, but an ideal tool that maximizes impact in the
neural computing community would not require use of a high-
performance computing (HPC) cluster. While the authors had
access to HPC resources, the implementation to be distributed
only requires a single-machine and will be multi-thread enabled.
This means that investigators must be especially aware of
the potential performance impact of increased quantities and
spatial distribution of current sources relative to their meshed
models. Future implementations may potentially be capable of
performing preprocessing and/or solution via GPU, as many
of the respective operations are reduceable to matrix algebra
first principles.

Ultimately, relative compute-time performance of analytical
vs. numerical methods is dependent upon compute-hardware,
the specific software implementation, and the spatial resolution
of both current source inputs and recording locations to be
solved. Thus, while there remain significant advantages for
numerical over analytical methods in solution of complex and
heterogeneous problems, it is difficult to conclude that numerical
methods are always faster or more efficient than analytical
for homogeneous volume conduction problems. However, for
inhomogeneous problems, there is significant advantage afforded
by application of a numerical method over analytical.

CONCLUSIONS

The present study demonstrates an intuitive numerical approach
to estimating local field potentials generated by a detailed
computational model of cortical tissue. AM-NEURON LFP
estimation, the analysis presented herein, and its synthesis
with earlier work makes three recognizable contributions
to model-based analysis of complex neural systems and
electroceutical devices: (i) validation of a fundamental approach
to incorporating incident and dynamic current sources into a
pre-existing meshed model, (ii) suggestion of an equivalent-
circuit algorithm that unifies intracellular and extracellular
neuronal models, and (iii) clarification of the impact of
mesh geometry on computational performance and model
accuracy. Together, these contributions point the way forward
in the development of more sophisticated models that seek to
understand the bi-directional interaction between brains and
brain-computer interfaces or electroceutical devices.
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