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Chronotherapy is a treatment for mood disorders, including major depressive disorder,

mania, and bipolar disorder (BD). Neurotransmitters associated with the pathology of

mood disorders exhibit circadian rhythms. A functional deficit in the neural circuits related

to mood disorders disturbs the circadian rhythm; chronotherapy is an intervention that

helps resynchronize the patient’s biological clock with the periodic daily cycle, leading

to amelioration of symptoms. In previous reports, Hadaeghi et al. proposed a non-linear

dynamic model composed of the frontal and sensory cortical neural networks and the

hypothalamus to explain the relationship between deficits in neural function in the frontal

cortex and the disturbed circadian rhythm/mood transitions in BD (hereinafter referred

to as the Hadaeghi model). In this model, neural activity in the frontal and sensory lobes

exhibits periodic behavior in the healthy state; while in BD, this neural activity is in a

state of chaos-chaos intermittency; this temporal departure from the healthy periodic

state disturbs the circadian pacemaker in the hypothalamus. In this study, we propose

an intervention based on a feedback method called the “reduced region of orbit” (RRO)

method to facilitate the transition of the disturbed frontal cortical neural activity underlying

BD to healthy periodic activity. Our simulation was based on the Hadaeghi model. We

used an RRO feedback signal based on the return-map structure of the simulated

frontal and sensory lobes to induce synchronization with a relatively weak periodic signal

corresponding to the healthy condition by applying feedback of appropriate strength.

The RRO feedback signal induces chaotic resonance, which facilitates the transition to

healthy, periodic frontal neural activity, although this synchronization is restricted to a

relatively low frequency of the periodic input signal. Additionally, applying an appropriate

strength of the RRO feedback signal lowered the amplitude of the periodic input signal

required to induce a synchronous state compared with the periodic signal applied alone.

In conclusion, through a chaotic-resonance effect induced by the RRO feedbackmethod,
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the state of the disturbed frontal neural activity characteristic of BD was transformed into

a state close to healthy periodic activity by relatively weak periodic perturbations. Thus,

RRO feedback-modulated chronotherapy might be an innovative new type of minimally

invasive chronotherapy.

Keywords: bipolar disorder, neural network, chaotic resonance, feedback control, chaos-chaos intermittency,

chronotherapy

1. INTRODUCTION

Mood disorders, including major depressive disorder, mania,
and bipolar disorder (BD), exhibit high morbidity, high suicide
rates, and multiple relapses during long-term treatment; effective

treatments and diagnostic methods are long-standing unmet
needs (reviewed in Drevets, 2000; Kessler et al., 2003; The
Wellcome Trust Case Control Consortium, 2007; Price and
Drevets, 2010). Accumulating neuroimaging evidence reveals
the multiple and complex pathologies of mood disorders
(reviewed in Baskaran et al., 2012; Vargas et al., 2013; Chiapponi
et al., 2016; Arnone, 2019). Particularly, functional magnetic
resonance imaging (fMRI) and electroencephalography (EEG)
have revealed region-specific enhancements and depressions in
neural activity in regions such as the amygdala, hippocampus,

and prefrontal cortex associated with major depressive disorder
(reviewed in Baskaran et al., 2012; Arnone, 2019) and BD
(Vargas et al., 2013). Furthermore, deficits in the excitatory
and inhibitory neural pathways, typified as employing the

neurotransmitters glutamic acid and gamma-aminobutyric acid
(GABA), respectively, and abnormal cortical neural networks are
reportedly also associated with mood disorders (Brambilla et al.,
2003; Hasler et al., 2007; Sanacora et al., 2012; Schloesser et al.,
2012; reviewed in Chiapponi et al., 2016). For the treatment
of mood disorders, antidepressants (e.g., selective serotonin
reuptake inhibitors, serotonin, and norepinephrine reuptake
inhibitors) and mood stabilizers (e.g., lithium carbonate and
clozapine) are widely used (Hirschfeld et al., 2003; López-Muñoz
et al., 2006; Tobe et al., 2017). However, in the treatment
of BD, mood stabilizers in particular exhibit troublesome side
effects, such as progressive renal failure and a narrow therapeutic
index (Hirschfeld et al., 2003; López-Muñoz et al., 2006).
Therefore, alternative treatments are needed, either to relieve
symptoms directly or to enhance the effects of conventional
pharmacological therapy, allowing dosages to be minimized.

As an alternative treatment, chronotherapy has been
garnering research attention (reviewed in Abreu and Bragança,
2015). The release of neurotransmitters associated with the
pathology of mood disorders, such as serotonin, noradrenaline,
glutamic acid, GABA, and dopamine, exhibits circadian rhythms
(Weiner et al., 1992; Castaneda et al., 2004; Weber et al., 2004;
Hampp et al., 2008; Cain et al., 2017). In mood disorders,
dysregulated neural circuits disturb these circadian rhythms
(Yeragani et al., 2003; Glenn et al., 2006; Bonsall et al., 2011;
Moore et al., 2014; reviewed in Albrecht, 2013). Chronotherapy
promotes the transition of the disturbed circadian rhythms
to periodic ones, consequently leading to the improvement of

symptoms (Abreu and Bragança, 2015). Chronotherapies include
light therapy and combination therapy (light therapy with drugs;
Leibenluft et al., 1995; Terman and Terman, 2005). However,
light therapy must be individualized, and customization of
the luminance and wavelength of the light for each patient is
difficult. Moreover, the use of inappropriate parameters in light
therapy carries a risk of inducing mixed states, hypomania, and
autonomic hyperactivation in cases of BD (Terman and Terman,
2005; Sit et al., 2007; Abreu and Bragança, 2015).

Circadian rhythms are a phenomenon in which biological
signals exhibiting oscillations synchronize with the daily cycle;
to describe these temporal behaviors at multiple hierarchical
levels, from the molecular to the synaptic network, non-linear
dynamic models have been proposed (Pavlidis, 1969; Goldbeter,
1995; Kurosawa et al., 2006; reviewed in Pikovsky et al., 2003;
Herzog, 2007; Pavlidis, 2012). In addition to circadian rhythms,
non-linear dynamic modeling has been considered key for
understanding the pathology of the transition of mood between
mania and depression with a view to treatment (Daugherty et al.,
2009; reviewed in Hadaeghi et al., 2013a,b). Daugherty et al.
and Hadaeghi et al. have demonstrated that the mood transition
is caused by the phenomenon of chaos-chaos intermittency,
in which the orbit of an oscillator in the phase plane hops
between separated chaotic attractor regions. Hadaeghi et al.
demonstrated the effect using the forced Duffing oscillator and
the Liénard oscillator (Daugherty et al., 2009; Hadaeghi et al.,
2013a). Furthermore, to explain the relationships between deficits
in neural networks in the frontal cortex and disturbances of
circadian rhythm/mood transitions in BD, Hadaeghi et al. and
Bayani et al. proposed a non-linear dynamic model (referred
to as the Hadaeghi model in this study) composed of frontal
and sensory cortical neural networks interacting with the
hypothalamus (Hadaeghi et al., 2016; Bayani et al., 2017). In this
model, activity in the neural networks of the frontal and sensory
cortices exhibits periodicity in the healthy state but is transferred
to a state of chaos-chaos intermittency in patients with BD.
The temporal fluctuation based on the healthy periodic state
reflects the controlling parameter of the circadian pacemaker
in the hypothalamus (Hadaeghi et al., 2016). Consequently,
disturbances in the circadian rhythm, which are observed in
BD because of mood transitions, appear (Hadaeghi et al., 2016;
Bayani et al., 2017). The circadian rhythms reproduced by
the model are highly congruent with actual clinically observed
disturbances of circadian rhythms (Hadaeghi et al., 2016).

Accumulating research on the effect of fluctuations on
synchronization phenomena in non-linear systems reveals that
fluctuations induce many types of synchronization, such as chaos
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synchronization, coherence resonance, stochastic resonance,
and chaotic resonance (reviewed in Pikovsky et al., 2003;
Anishchenko et al., 2007; Rajasekar and Sanjuán, 2016). The
mechanism of stochastic resonance in particular, in which
synchronization to a weak input signal is enhanced by additive
noise, has biomedical applications, such as the development
of devices and methods for enhancing human tactile sensory
performance (Enders et al., 2013; Kurita et al., 2013, 2016; Seo
et al., 2014). Similar to the synchronization phenomenon of
stochastic resonance, in chaotic resonance, the synchronization
to a weak input signal is enhanced by the internal chaotic
dynamics instead of additive noise (reviewed in Anishchenko
et al., 2007; Rajasekar and Sanjuán, 2016). Chaotic resonance has
been widely studied in many types of systems, including neural
systems (Nishimura et al., 2000; Nobukawa and Nishimura,
2016; Nobukawa et al., 2016, 2017; Baysal et al., 2019; reviewed
in Nobukawa and Nishimura, 2020). In these fluctuation-
enhanced synchronization phenomena, the strength of the
external perturbation required for the development of a periodic
state is weaker than that required for forced oscillations (Sinha,
1999; reviewed in Pikovsky et al., 2003; Anishchenko et al.,
2007; Rajasekar and Sanjuán, 2016). Therefore, using these
synchronization phenomena may be a strategy for administering
minimally invasive chronotherapy.

According to the Hadaeghi model, in patients with BD, the
presence of chaos-chaos intermittency in the neural activity of
the frontal cortex disturbs the circadian rhythm (Hadaeghi et al.,
2016; Bayani et al., 2017). Therefore, methods that promote the
transition from chaos-chaos intermittency to periodic behavior
may stabilize the disturbed circadian rhythm. As the best
candidate, we proposed a chaos controlling method known as
the “reduced region of orbit” (RRO) method, in which chaos-
chaos intermittency is synchronized to an external, weak periodic
signal using a feedback principle (Nobukawa et al., 2018b).
The RRO feedback signals reduce the absolute values of local
maximum and minimum values of the return-map functions,
causing a bifurcation called attractor merging, which underlies
the chaos-chaos intermittency (Nobukawa et al., 2018b). Because
the synchronization of chaos-chaos intermittency is maximally
facilitated around the attractor-merging bifurcation (review in
Anishchenko et al., 2007; Rajasekar and Sanjuán, 2016), an
appropriate strength of the RRO feedback signal can induce
synchronization, i.e., RRO feedback signals induce chaotic
resonance (Nobukawa et al., 2018b). Initially, the RRO feedback
signal was applied to simple cubic map systems to induce chaotic
resonance (Nobukawa et al., 2018b). Subsequently, the use of
an RRO feedback signal has been applied to several types of
systems, such as coupled cubic maps (Nobukawa et al., 2019a)
and Chua’s circuit (Nobukawa et al., 2020). These studies revealed
that chaotic resonance induced by RRO feedback possesses
advantages over other forms of synchronization induced by
fluctuations (Nobukawa et al., 2019b, 2020). Particularly, the
chaotic resonance induced by the RRO feedback method
exhibits higher sensitivity than stochastic resonances induced
by additive noise and are more adaptable to various types
of attractor conditions (Nobukawa et al., 2019b). Studies on
chaotic resonance induced by the RRO feedback method have

been applied to neural systems (Nobukawa and Shibata, 2019;
Nobukawa et al., 2019b). Therefore, in addition to stochastic
resonance controlled by additive noise in neural systems (Enders
et al., 2013; Kurita et al., 2013, 2016; Seo et al., 2014), chaotic
resonance controlled by RRO feedback is at the stage where
biomedical applications can be considered.

In this context, we hypothesized that the chaotic resonance
induced by RRO feedback will facilitate chronotherapy by
adapting to the daily neural activity of each patient, allowing
for minimally invasive treatments. To verify this hypothesis, we
applied chaotic resonance induced by RRO feedback signals to a
model of a patient with BD based on the Hadaeghi model and
evaluated the transition to periodic behavior of the disturbed
frontal cortical neural activity. In detail, we first developed
the RRO feedback method using the Hadaeghi model from
the return-map structure of the frontal and sensory cortical
neural system. Second, the chaotic resonance induced by an
RRO feedback signal in combination with a weak periodic signal
was evaluated. Third, the amounts of perturbation required for
entrainment were compared between chaotic resonance induced
by RRO feedback and synchronization induced by the application
of a periodic signal alone, i.e., a forced oscillation.

2. MATERIALS AND METHODS

2.1. Neural System Composed of the
Frontal and Sensory Cortices
The pathology of BD involves multiple complex neural pathways
(Sanacora et al., 2012; Schloesser et al., 2012; Tobe et al., 2017).
Hadaeghi et al. (2016) focused on the pathological consequences
of competition between excitatory (glutamatergic) and inhibitory
(GABAergic) neurons in the frontal cortex (Tretter et al., 2011;
Montague et al., 2012) as major etiological factors in BD. They
constructed a neural system composed of the frontal and sensory
cortices to reproduce healthy and disturbed BD-associated neural
activities on a diurnal timescale (Hadaeghi et al., 2016; Bayani
et al., 2017). Figure 1 shows an overview of this system. This
neural system has two neural pathways, excitatory and inhibitory,
from the sensory cortex to the frontal cortex; the neural activity
produced by the interaction between these pathways is fed back
to the sensory cortex (Hadaeghi et al., 2016).

The daily neural activity of the frontal cortex x(n) (n =
1, 2, · · · days), which represents the long-term firing rate
dynamics, is controlled by the competition of the excitatory and
inhibitory neural populations (Hadaeghi et al., 2016):

x(n+ 1) = F(x(n)), (1)

F(x) = B tanh(w2x)− A tanh(w1x), (2)

where w1 and w2 are the synaptic weights of inputs to the
inhibitory and excitatory neural populations, respectively. A and
B correspond to the synaptic weights of the outputs of the
inhibitory and excitatory neural populations, respectively, as
overall neurotransmitter levels. The parameters used in this study
were determined by previous research (Hadaeghi et al., 2016;
Bayani et al., 2017) as follows: w1 = 0.2223,w2 = 1.487, and
B = 5.82. In this study, as well as in the previous research, A

Frontiers in Computational Neuroscience | www.frontiersin.org 3 August 2020 | Volume 14 | Article 76

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Doho et al. Therapeutic Chaos-Periodicity Transition Using Feedback

is the main bifurcation parameter (Hadaeghi et al., 2016; Bayani
et al., 2017).

2.2. Controlling Frontal Cortical Neural
Activity by RRO Feedback
Hadaeghi et al. demonstrated that healthy circadian rhythms
and the disturbed circadian rhythms associated with BD are
produced by a period-p state in the periodic window and a
chaos-chaos intermittency state in the frontal cortical neural
activity, respectively (Hadaeghi et al., 2016). The concrete
behaviors of frontal neurons x(n) given by Equations (1) and

FIGURE 1 | Overview of the neural system proposed by Hadaeghi et al.,

composed of the frontal and sensory cortices and reproducing neural activity x

on a diurnal timescale (Hadaeghi et al., 2016).

(2) corresponding to healthy and BD states are demonstrated
in section 3.1. In this study, we developed a feedback signal
to facilitate the transition of the chaos-chaos intermittency
of x(n) to the period-p state using an RRO-type chaotic
resonance. An overview of the system for this control method
is presented in Figure 2. The daily neural activity of the
frontal cortex x(n) is controlled by RRO feedback signals
Ku(x) and a periodic input signal S(n) = α sin(2πn/p),
as follows:

x(n+ 1) = F(x(n))+ Ku(x(n))+ S(n), (3)

u(x) = −(x− xd) exp(−(x− xd)
2/(2σ 2)). (4)

Here, K, xd, and σ represent the RRO feedback strength, the
merging point of two chaotic attractors, and a parameter to
determine the region of the RRO feedback effect, respectively.
In this study, xd = 0 and σ = 1.0 were used, because the
return-map structure has a point symmetry at around x = 0
with local maximum and minimum values of the map function
located within the region −σ < x < σ (σ = 1.0) (Nobukawa
et al., 2018b). We used four values, 4, 8, 16, and 32, for the
period p.

To explain the effect of the RRO feedback signal Ku(x) in the
absence of the periodic input signal (α = 0), Figure 3A shows
the map function of F(x) + K(u(x)) and the orbit x(n) in the
presence/absence of RRO feedback signals. Attractor merging
(chaos-chaos intermittency) occurs if F(fmax) + Ku(fmax) < 0
and F(fmin) + Ku(fmin) > 0, where fmax and fmin are the local
maximum and minimum of the map function, respectively. For
an inhibitory synaptic weight A = 9.8, 12.0 in the absence
of feedback (K = 0), the attractor merging conditions are
satisfied (left graph in Figure 3A). The orbit x(n) hops between

FIGURE 2 | Overview of the Hadaeghi model stimulated by a reduced-region-of-orbit (RRO) feedback signal and a periodic signal.
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FIGURE 3 | (A) Map function F (x)+ Ku(x) for A = 9.8, 12.0 with and without external feedback signals in the return map between x(n) and x(n+ 1). The left and right

graphs indicate, respectively, map functions satisfying attractor merging conditions with K = 0.0 and not satisfying attractor merging conditions with K = 0.2 in the

(Continued)
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FIGURE 3 | A = 9.8 case and K = 0.7 in the A = 12.0 case. Red and green circles indicate F (fmax)+ Ku(fmax) and F (fmin)+ Ku(fmin), respectively. RRO feedback

separates the merged attractors by decreasing the absolute values of fmax and fmin. (B) RRO feedback signal K(u(x)) for K = 0.2, 0.7. The local maximum and

minimum of K(u(x)) are located at the local minimum and maximum of the F map function, respectively.

FIGURE 4 | System behaviors in the neural network comprised the frontal and sensory cortices as a function of the synaptic weight from the inhibitory neural

population, A, in the absence of feedback and periodic signals (K = 0,α = 0). (Top) Bifurcation diagram of the frontal neural activity x(n) represented by Equation (1)

as a function of A. Blue and red dots indicate positive and negative initial values of x(0), respectively. (Middle) Lyapunov exponent λ as a function of A. (Bottom)

F (fmin,max)+ Ku(fmin,max) as a function of A. The frontal neural behavior in the periodic window 12.5 . A . 13.5 corresponds to that of healthy controls (HC), while the

chaos-chaos intermittent behavior in 9.8 . A . 12.5 and A & 13.5 corresponds to that of patients with BD (Hadaeghi et al., 2016).

positive and negative x regions, i.e., chaos-chaos intermittency
arises. With positive feedback (K = 0.2 in the A = 9.8 case
and K = 0.7 in the A = 12.0 case, Figure 3B), the absolute

values of fmax and fmin are reduced, and the attractor merging
conditions are not satisfied; the orbit x(n) is constrained to
lie within either the positive or negative x region, depending
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FIGURE 5 | (Upper) Map function F (x) (the orbit in the return map) and (Lower) a time series showing frontal cortical neural activity x(n) in the absence of external

feedback or periodic input signals (K = 0,α = 0). (left) Healthy control (HC) (weight from the inhibitory neural population A = 13.0) and (middle and right) bipolar

disorder (BD) (A = 9.8, 12.0). In the return maps, the red and green circles indicate F (fmax)+ Ku(fmax) and F (fmin)+ Ku(fmin), respectively. In both HC and BD, the

attractor merging condition is satisfied with F (fmax)+ Ku(fmax) < 0 and F (fmin)+ Ku(fmin) > 0; the periodic and chaos-chaos intermittent states correspond to HC and

BD, respectively.

on the initial value of x(0), as shown in the right graph
of Figure 3A.

2.3. Evaluation Indices
For the evaluation of the attractor-merging bifurcation,
the conditions F(fmax) + Ku(fmax) and F(fmin) + Ku(fmin)
were utilized. F(fmax,min) + Ku(fmax,min) = 0 corresponds
to the attractor-merging bifurcation point. To judge
the chaotic state of frontal cortical neural activity
x(n), the Lyapunov exponent was calculated as
(Parker and Chua, 2012):

λ =
1

τM

M∑

k=1

ln(
dk(tl = τ )

dk(tl = 0)
). (5)

Here, dk(tl = 0) = d0 (k = 1, 2, · · · ,M) denotes
M perturbed initial conditions to x(n) applied at n =
n0 + (k − 1)τ . Their time evolution for tl ∈ [0 : τ ]
is dk(tl = τ ) = (x(n) − x′(n))|n=n0+kτ . Furthermore,
x′(n) is a perturbation applied to the orbit. λ > 0
and λ < 0 correspond to the chaotic and periodic
states, respectively.

The synchronization between x(n) and S(n) was evaluated
using their correlation coefficient at time delay τ as follows:

C(τ ) =
Csx(τ )√
CssCxx

, (6)

Csx(τ ) = 〈(S(n+ τ )− 〈S〉)(x(n)− 〈x〉)〉, (7)

Css = 〈(S(n)− 〈S〉)2〉, (8)

Cxx = 〈(x(n)− 〈x〉)2〉, (9)

where 〈·〉 denotes the average in n. In this study, τ is set to the
value for maxτ C(τ ) in each time series of x(n). The values for
maxτ C(τ ) are measured against ten trials with different initial
values of x(0).

To evaluate the amount of the perturbation due to the RRO
feedback signal Ku(x) plus the periodic input signal S(n), we used
the temporal mean value of the squared perturbations:

4 = 〈(Ku(x(n)))2 + (S(n))2〉, (10)

where 〈·〉 denotes the average in n. The values for4 are measured
against ten trials with different initial values of x(0).
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FIGURE 6 | System behaviors in the neural net comprised of the frontal and sensory cortices as a function of the RRO feedback strength K, in the absence of a

periodic signal (α = 0), for BD (A = 9.8, 12.0). (Top) Bifurcation diagram of the frontal neural activity x(n) represented by Equation (3) as a function of K. Blue and red

dots indicate positive and negative initial values of x(0), respectively. (Middle) Lyapunov exponent λ as a function of K. (Bottom) F (fmin,max )+ Ku(fmin,max) as functions

of K. The positive and negative regions of the merged chaotic attractor (λ > 0) were separated by breaking the attractor merging conditions: F (fmin)+ Ku(fmin) > 0 and

F (fmax)+ Ku(fmax) < 0 in K & 0.1 for the A = 9.8 case and in K & 0.7 for the A = 12.0 case.

3. RESULTS

3.1. Frontal Cortical Neural Activity on a
Diurnal Timescale
We demonstrated activity in a neural system composed of the
frontal and sensory cortices. Figure 4 shows the bifurcation
diagram of the frontal neural activity x(n), Lyapunov exponent
λ, and F(fmin,max)+Ku(fmin,max) as functions of synaptic weights
from the inhibitory neural population A in the absence of a
feedback or periodic signal (K = 0,α = 0). With an increase
in the A value, x(n) exhibits a period-doubling bifurcation and
enters a chaotic state A & 8.1 (λ > 0). In 8.1 . A . 9.8, x(n)
is trapped in either the negative or the positive region, depending
on the initial values of x(0), F(fmin)+Ku(fmin) < 0, and F(fmax)+
Ku(fmax) > 0. The attractor merging conditions F(fmin) +
Ku(fmin) > 0 and F(fmax)+Ku(fmax) < 0 are satisfied in A & 9.8;
consequently, x(n) hops back and forth between negative and
positive regions, which is known as chaos-chaos intermittency.

This effect corresponds with the merger of attractors in the
negative and positive regions of the bifurcation diagram. The
window of periodicity is 12.5 . A . 13.5. Hadaeghi et al.
considered that frontal neural activity in the periodic window
corresponds to that of healthy subjects (healthy control [HC]),
whereas chaos-chaos intermittent activity corresponds to that of
patients with BD (Hadaeghi et al., 2016). Figure 5 shows typical
examples of the frontal neural activity x(n) governed by Equation
(1) in HCs and in patients with BD. At A = 13.0, corresponding
with typical HC behavior, x(n) exhibits the periodic-4 state, where
the parameter set is located in the periodic window in the top
part of Figure 4. In this periodic window, various period-p states
exist through period-doubling bifurcation; therefore, as healthy
period-p states, we used p = 4, 8, 16, 32 in this study. At A =
9.8, 12.0, corresponding to BD behavior, x(n) exhibits chaos-
chaos intermittency. In both HC and BD cases, the attractor
merging condition is satisfied with F(fmax) + Ku(fmax) < 0 and
F(fmin)+ Ku(fmin) > 0.
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FIGURE 7 | Synchronization of neural activity x(n) to a weak periodic input signal S(n) (α = 0.01, 0.15, 0.3 and p = 4, 8, 16, 32) and perturbations of the RRO

feedback signal and the periodic input signal in BD cases (A = 9.8, 12.0). Here, the period p values are chosen based on the healthy periodic-p states locating in the

(Continued)
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FIGURE 7 | periodic window in 12.5 . A . 13.5 in Figure 4. Dependence of (Upper) maxτ C(τ ) and (Lower) 4 on the RRO feedback strength K. Solid black lines

and error bars show the mean and standard deviation across ten trials. In the lower panels, the scales of the vertical axes differ. In the case with α = 0.15 and p = 32

(represented by red arrows), maxτ C(τ ) exhibits a unimodal maximum (maxτ C(τ ) ≈ 0.3 in A = 9.8 and maxτ C(τ ) ≈ 0.4 in A = 12.0) at around the attractor-merging

bifurcation at K ≈ 0.06 in A = 9.8, and K ≈ 0.63 in A = 12.0. At this K condition, the perturbation amounts 4 are 0.012, 0.049 in the A = 9.8, 12.0 cases, respectively.

3.2. Transition From Disturbed Neural
Activity to a Periodic State by RRO
Feedback Plus Periodic Input Signal
To enhance synchronization to weak input signals, the system
parameters must be adjusted to those of the attractor-merging
bifurcation (Nobukawa et al., 2018b). Figure 6 shows the
behavior of the neural system composed of the frontal and
sensory cortices as a function of RRO feedback strength K,
in the absence of a periodic signal (α = 0), for BD (A =
9.8, 12.0). Shown are the bifurcation diagram of the frontal neural
activity x(n) given by Equation (3), the Lyapunov exponent λ,
and F(fmin,max)+Ku(fmin,max). The separation of merged chaotic
attractors (λ > 0) into positive and negative regions arises at
the region for F(fmin) + Ku(fmin) < 0, F(fmax) + Ku(fmax) > 0
in K & 0.1 for the A = 9.8 case and in K & 0.7 for the
A = 12.0 case.

Subsequently, synchronization of x(n) to a weak periodic
input signal S(n) (α = 0.01, 0.15, 0.3 and p = 4, 8, 16, 32) and the
evaluated perturbations of the RRO feedback and periodic signals
are shown. Here, the p values are chosen based on the healthy
periodic-p states locating at the periodic window in 12.5 . A .

13.5. Figure 7 shows the dependence of maxτ C(τ ) and 4 on
the RRO feedback strength K. In the case with α = 0.15 and
p = 32, maxτ C(τ ) exhibits a unimodal maximum (maxτ C(τ ) ≈
0.3 in A = 9.8 and maxτ C(τ ) ≈ 0.4 in A = 12.0) at
around the attractor-merging bifurcation defined as F(fmin,max)+
Ku(fmin,max) = 0 at K ≈ 0.06 in A = 9.8 and K ≈ 0.63 in
A = 12.0 (see Figure 6), i.e., chaotic resonance is induced by
the RRO feedback signal. Therefore, applying the RRO feedback
signal together with a weak periodic signal brings the neural
activity x(n) of BD close to the healthy periodic state. This chaotic
resonance is induced when the perturbation 4 = 0.012, 0.049, at
A = 9.8, 12.0, respectively. This perturbation is relatively small
in comparison to the variation range: −2.5 . x(n) . 2.5, as
shown in the bifurcation diagram of Figure 6. Under conditions
of higher input frequency (p = 2, 4, 8, 16) or weaker signal
strength (α = 0.01), the values of maxτ C(τ ) are significantly
reduced. At stronger signal strength (α = 0.3), the values of
maxτ C(τ ) exhibit a tendency to decrease monotonically with
increasing K. Thus, chaotic resonance can be induced by RRO
feedback signals at an appropriate signal strength and frequency.
Figure 8 shows a typical time series of frontal neural activity x(n)
in synchronization with a weak periodic input signal S(n) under
conditions that induce chaotic resonance in Figure 7, i.e., p =
32,α = 0.15, and K = 0.06 in the A = 9.8 case; and K = 0.63 in
the A = 12.0 case. The result shows synchronization between the
chaos-chaos intermittency of x(n) and the periodic input signal
S(n), with hopping between positive and negative x(n) regions.
Additionally, Figure 9 shows the bifurcation diagram of x(n)
represented by Equation (3) as a function of K under a weak

periodic input signal S(n) (p = 32,α = 0.15) in BD, in (A =
9.8, 12.0) cases. The chaos-chaos intermittency between positive
and negative x(n) regions is maintained until around the peak of
maxτ C(τ ) (represented in Figure 7) in K . 0.18 for the A = 9.8
case and inK . 0.79 for theA = 12.0 case. Therefore, the chaotic
resonance confirmed in Figure 7 produces synchronization of
the chaos-chaos intermittency with the periodic input signal S(n).

To evaluate the effect of the RRO feedback signal on
synchronization, we compared the synchronization induced by
RRO feedback with that in its absence (K = 0). Figure 10
shows the dependence of maxτ C(τ ) and4 on the signal strength
α in the case of no RRO feedback under the condition where
chaotic resonance is induced by the RRO feedback signal at
p = 32 in Figure 7. In the A = 9.8 case with α & 0.22,
maxτ C(τ ) exceeds 0.3, which corresponds to the maximum
value of maxτ C(τ ) under RRO feedback presented in Figure 7.
Moreover, the perturbation amount 4 at α ≈ 0.22 required
for accomplishing maxτ C(τ ) ≈ 0.3 is approximately 0.025;
however, under RRO feedback, it is 4 ≈ 0.012 at K ≈ 0.06
for a peak correlation of maxτ C(τ ) ≈ 0.3. Therefore, the RRO
feedback signal reduces the amount of perturbation needed for
the transition to the periodic state. In the A = 12.0 case, the
same tendency seen in the A = 9.8 case is confirmed. That is, the
perturbation amount 4 at α ≈ 0.95 required for accomplishing
maxτ C(τ ) ≈ 0.4 is approximately 0.41; however, under RRO
feedback, it is 4 ≈ 0.049 at K ≈ 0.63 for a peak correlation
of maxτ C(τ ) ≈ 0.4.

4. DISCUSSION AND CONCLUSIONS

In this study, we verified our hypothesis that chaotic resonance
induced by RRO feedback signals can enable the delivery of
chronotherapy by minimally invasive treatments. In a simulation
based on the Hadaeghi model, we evaluated the transition
of the disturbed frontal cortical neural activity corresponding
to BD to the periodic behavior found in the HCs that was
induced by RRO feedback signals. We found that the RRO
feedback signal, which is based on the return-map structure of
the modeled frontal and sensory cortical neural system, induced
synchronization to weak, periodic signals corresponding to the
healthy condition at appropriate feedback strength, although this
synchronization was restricted to a relatively low frequency of
the input signal. Thus, the chaotic resonance induced by the
RRO feedback signal facilitates the transition to a state that
is close to healthy, periodic frontal neural activity in the case
where this activity has a relatively low frequency. Additionally,
the combined amount of perturbation due to the RRO feedback
signal and the periodic input signal was significantly smaller than
that required for inducing a synchronous state by applying only
the periodic signal.
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FIGURE 8 | Typical time series of frontal neural activity x(n) in synchronization with a weak periodic input signal S(n) under the conditions for inducing chaotic

resonance shown in Figure 7. Synchronization between the chaos-chaos intermittency of x(n) and the periodic input signal S(n) is shown, which features hopping

between positive and negative x(n) regions (maxτ C(τ ) ≈ 0.3, 0.4 in A = 9.8, 12.0 cases, respectively).
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FIGURE 9 | Bifurcation diagram of the frontal neural activity x(n) represented

by Equation (3) as a function of RRO feedback strength K under a weak

periodic input signal S(n) (p = 32,α = 0.15) in BD (A = 9.8, 12.0) cases. Blue

and red dots indicate positive and negative initial values of x(0), respectively.

The chaos-chaos intermittency between positive and negative x(n) regions is

maintained in K . 0.18 for the A = 9.8 case and in K . 0.79 for

the A = 12.0 case.

First, we must consider the reason the RRO feedback signal
facilitates synchronization by small perturbations. Over the past
few decades, studies of non-linear control aimed at stabilizing
chaotic activity have proposed many methods such as the
Ott-Grebogi-Yorke method, the delay feedback method, and
the H∞ method (Ott et al., 1990; Pyragas, 1992; Nakajima,
1997; Jiang et al., 2005; reviewed in Schöll and Schuster,
2008). These conventional chaos control methods stabilize
the chaotic orbit to equilibrium points and periodic orbits.
In contrast, the RRO feedback method does not eliminate
chaotic behavior but adjusts local maximum and minimum
values of the map function; consequently, the feedback strength
at which chaotic behavior is maintained in RRO is smaller
than that of conventional chaos control methods, in which
chaotic behavior is completely suppressed (Nobukawa et al.,
2018b). Moreover, by virtue of chaotic resonance at around
the attractor-merging bifurcation induced by the RRO feedback
signal, chaos-chaos intermittency synchronizes with input signals
even at low input-signal strength (Sinha, 1999; Nishimura
et al., 2000; reviewed in Anishchenko et al., 2007; Rajasekar
and Sanjuán, 2016). Utilizing these advantages of the RRO
feedback method and of chaotic resonance should facilitate the

transition of the disturbed neural activity of BD to a healthy
periodic state.

Furthermore, the application of RRO feedback signals
with periodic input signals shows great promise for actual
chronotherapy practice. In current chronotherapy, the
administration of the light stimulus and the medication
occurs at a fixed time each day to enable the transition of neural
activity to a periodic state with a circadian period (Yeragani
et al., 2003; Glenn et al., 2006; Bonsall et al., 2011; Moore
et al., 2014; reviewed in Albrecht, 2013). This treatment may
correspond to the case we consider here, in which neural
activity is stabilized by applying only a periodic input signal (see
Figure 10). The application of the light stimulus and medication
on a schedule modulated by the daily frontal neural activity
of each patient would correspond to the application of RRO
feedback signals in combination with the periodic input signal,
in which the amount of perturbation needed for the transition
to the periodic state is expected to be significantly reduced.
That is, this strategy may lead to a reduction in the amounts of
stimulus and medication necessary to transition from a disturbed
frontal neural activity to a healthy periodic state. Furthermore,
this effect might also contribute to a reduction in mixed states,
hypomania, and autonomic hyperactivations that can occur
in BD chronotherapy due to overapplication of light stimuli
and medication. Additionally, methods for measuring the daily
variation of frontal neural activity are now under development,
with a focus on EEG approaches (Croce et al., 2018; González
et al., 2019). These methods might contribute to the realization
of a form of chronotherapy modulated by RRO feedback.

The following limitations of this study must be considered.
First, only the neural system composed of frontal and sensory
cortices was considered. However, the circadian rhythms targeted
in chronotherapy are produced not only by the frontal and
sensory cortices but also by the hypothalamus (Hadaeghi et al.,
2016; Bayani et al., 2017). Therefore, the evaluation of chaotic
resonance induced by the RRO feedback method in a neural
system comprising both the frontal/sensory cortex and the
hypothalamus is important for evaluating its applicability to
chronotherapy. Second, we used competition between excitatory
and inhibitory neurons in this study to describe long-term
neural dynamics in the frontal cortex. However, the questions
of what reflects the long-term dynamics of brain activity and
what mechanism produces it are currently controversial (Croce
et al., 2018; González et al., 2019). Therefore, it is important that
our proposed method be verified with models based on other
neural mechanisms for producing long-term neural dynamics
in the frontal cortex. In such evaluations, the use of spiking
neuron models, which exhibit highly realistic neurodynamics
(Nobukawa et al., 2017, 2018a, reviewed in Ma and Tang, 2017),
would enhance the pathological validity of the neural network
used to simulate BD (Brambilla et al., 2003; Hasler et al.,
2007; Sanacora et al., 2012; Schloesser et al., 2012; reviewed in
Chiapponi et al., 2016). Third, from the viewpoint of chaotic
resonance, the disturbed neural activity described as chaotic
dynamics in this study was close to the healthy periodic state.
However, to stabilize more challenging forms of chaotic behavior,
other candidate chaos control methods must be considered; we
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FIGURE 10 | Synchronization of neural activity x(n) to a periodic input signal S(n) (p = 32) and perturbation by this signal in the absence of RRO feedback.

Dependence of (Upper) maxτ C(τ ) and (Lower) 4 on signal strength α. Solid black lines and error bars show the mean and standard deviation across ten trials.

Horizontal red dashed lines in the upper figure indicate the maximum values of maxτ C(τ ) observed for the RRO feedback signals shown in Figure 7. Vertical blue

dotted lines in the lower figures give the minimum signal strengths α needed for exceeding the maximum value of maxτ C(τ ) in the presence of the RRO feedback

signals given in Figure 7. Horizontal red dashed lines in the lower figures indicate the values of 4 at K, where maxτ C(τ ) peaks in Figure 7. Compared with runs

having an RRO feedback signal, a larger perturbation (4 & 0.025 in the A = 9.8 case and 4 & 0.41 in the A = 12.0 case) is needed to achieve the synchronous state

with maxτ C(τ ) & 0.3 in the A = 9.8 case and maxτ C(τ ) & 0.4 in the A = 12.0 case.

plan to research these points in the future. In addition to model-
based studies, the methods of measuring the daily-timescale
variation in the frontal neural activity that have recently been
proposed (Croce et al., 2018; González et al., 2019) will be crucial
for applications and will aid in the estimation of the controlling
parameters required by RRO feedback methods.

In conclusion, in this simulation study, chaotic resonance
induced by the RRO feedback method enabled the disturbed
frontal neural activity characteristic of BD to be transitioned
close to a healthy periodic state by relatively weak perturbations.
Despite its limitations, this study demonstrated that
chronotherapy modulated by the RRO feedback method
might be a new type of minimally invasive therapy for BD.
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