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Scaffolds and patterned substrates are among the most successful strategies to dictate

the connectivity between neurons in culture. Here, we used numerical simulations to

investigate the capacity of physical obstacles placed on a flat substrate to shape

structural connectivity, and in turn collective dynamics and effective connectivity, in

biologically-realistic neuronal networks. We considered µ-sized obstacles placed in

mm-sized networks. Three main obstacle shapes were explored, namely crosses, circles

and triangles of isosceles profile. They occupied either a small area fraction of the

substrate or populated it entirely in a periodic manner. From the point of view of structure,

all obstacles promoted short length-scale connections, shifted the in- and out-degree

distributions toward lower values, and increased the modularity of the networks. The

capacity of obstacles to shape distinct structural traits depended on their density and

the ratio between axonal length and substrate diameter. For high densities, different

features were triggered depending on obstacle shape, with crosses trapping axons

in their vicinity and triangles funneling axons along the reverse direction of their tip.

From the point of view of dynamics, obstacles reduced the capacity of networks to

spontaneously activate, with triangles in turn strongly dictating the direction of activity

propagation. Effective connectivity networks, inferred using transfer entropy, exhibited

distinct modular traits, indicating that the presence of obstacles facilitated the formation

of local effective microcircuits. Our study illustrates the potential of physical constraints to

shape structural blueprints and remodel collective activity, and may guide investigations

aimed at mimicking organizational traits of biological neuronal circuits.

Keywords: network formation, simulations, patterned networks, structural connectivity, effective connectivity,

network bursts, modularity, network measures

1. INTRODUCTION

Naturally formed biological neuronal networks are characterized by an intricate spatial
organization that is central to ensure the functionality of the neuronal circuits (Achard and
Bullmore, 2007; Bullmore and Sporns, 2012). The brain’s cortex for instance is arranged in
columns and hyper-columns that shape structural and functional modules that conduct specialized
tasks. The abnormal formation of neuronal circuits during development or their damage due to
disease are known to substantially alter circuits’ activity patterns. It is therefore well-accepted
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that the structure of a neuronal circuit shapes its dynamics in
great measure. Although a direct relationship between structure
and dynamics cannot be established given the intrinsic non-
linear nature of neuronal circuits and the coexistence of
diverse dynamic physiological mechanisms, there is a wealth
of evidence indicating direct correspondences between key
structural traits and dynamics (Honey et al., 2010; Sporns,
2011). These traits emerge from general constraints imposed
by the spatial embedding of brain circuits (Bullmore and
Sporns, 2012; Stiso and Bassett, 2018) together with specific
topological characteristics such as high clustering, modularity
and the existence of central hub nodes (Sporns, 2011). It has
been suggested that these traits and even network motifs can
in part be explained from the trade-off between topological
integration and the biological cost incurred by nervous systems
(Schröter et al., 2017).

In the quest to understand the relationship between structure
and dynamics, in particular the importance of structural traits,
numerical simulations and in vitro studies of neuronal cultures
have emerged as invaluable tools. On the one hand, numerical
models have been employed to explore various configurations
ranging from small-scale circuits (Voges and Perrinet, 2012;
Orlandi et al., 2013; Pernice et al., 2013; Faci-Lázaro et al.,
2019) to whole-brain dynamics (Honey et al., 2007; Messé
et al., 2014; Cabral et al., 2017). Messé et al. for instance used
elaborate computational models and anatomical brain data to
predict the activity patterns observed in resting-state functional
magnetic resonance imaging, and concluded that the backbone
of anatomical connectivity strongly shaped overall dynamical
traits. Neuronal cultures, on the other hand, have helped
elucidate the importance of spatial embedding and imposed
metric correlations in shaping spontaneous activity (Orlandi
et al., 2013; Hernández-Navarro et al., 2017; Okujeni et al., 2017;
Tibau et al., 2020), the impact of modular organization (Shein-
Idelson et al., 2011; Tang-Schomer et al., 2014; Yamamoto et al.,
2018), the emergence of small-worldness (Downes et al., 2012;
de Santos-Sierra et al., 2014), or the role of hubs (Schroeter et al.,
2015).

The above studies demonstrated that non-random structural
characteristics are central to shape distinct activity patterns
and, in turn, specific functional connectivity traits. However,
an interesting aspect still to be explored in detail is the
impact of definite structural motifs on global network dynamics.
This is particularly relevant in the context of engineered
neuronal cultures (Aebersold et al., 2016), in which the spatial
arrangement of neurons and connections is dictated by chemical
or physical constraints. Microfabricated structures or scaffolds
have revolutionized the concept of engineered neuronal cultures
by providing both connectivity guidance and structural support
to two- and three-dimensional neuronal assemblies (Kunze et al.,
2011; Bosi et al., 2015; Severino et al., 2016; Larramendy et al.,
2019).

In an effort to help understanding how scaffolds, or specific
structural motifs, shape the blueprint, dynamics and effective
connectivity of neuronal cultures, we explored numerically
small two-dimensional neuronal networks similar to biological
in vitro ones which incorporated specific scaffold designs in the

form of arrays of obstacles. We considered µ-sized scaffolds
embedded in a mm-size substrate. Three designs with distinct
geometries were explored to examine whether they could imprint
specific structural and dynamic features to the networks. The
studied obstacles were crosses, circles and isosceles triangles.
They were designed to facilitate the trapping or deflection
of axons (crosses), to gently modulate connectivity across the
network (circles) and to dictate the directionality of connectivity
(triangles). We selected these shapes in view of recent
experimental studies aimed at guiding neuronal connectivity
through microfabrication technology (Crowe et al., 2020). We
observed that the obstacles molded structural connectivity at
short and long length scales. This induced characteristic features
of network dynamics and of effective connectivity. Our study can
be extended to tailored designs that mimic specific experimental
configurations. Thus, it can improve predictions of the action of
scaffolds on living neuronal circuits, for instance to tailor specific
dynamic patterns or network functionality.

2. RESULTS

2.1. Impact of Obstacle Shape on
Structural Connectivity
We explored in silico neuronal networks with spatial constraints
by considering different sets of obstacles arranged on a circular
area of either 2 or 4 mm in diameter. This size was selected to
mimic the characteristic size of small in vitro cultures (Orlandi
et al., 2013; Tibau et al., 2020). In the simulations, neurons
were laid out on the surface in a homogeneous manner and
connected to one another following a geometric model as
in Orlandi et al. (2013), in which the axons grew as concatenated
segments according to a biased random walk (Figure 1A)
and that is known to mimic well the behavior of individual
axons (Feinerman et al., 2008). The presence of obstacles altered
axonal growth, an aspect that was modeled by reflecting the
axon with the same angle of incidence upon contact with an
obstacle (Figures 1A,B). This “reflection rule” was inspired by
experimental observations in cultures of physically-constrained
neurons (Feinerman et al., 2008; Gladkov et al., 2017) and was
the simplest way to introduce interaction with obstacles for
this biased random walk. More biologically-accurate models,
in which axons may attach to the walls or follow the path of
previous axons (Simitzi et al., 2017) were disregarded for the
sake of simplicity. We considered three characteristic sets of
obstacles, namely crosses, circles and triangles of isosceles profile
(Figure 1C), that either occupied a small fraction of the available
area or populated it entirely. Table 1 and Figure 2 summarize
the different designs chosen and their major characteristics. The
density of neurons in the simulations in all configurations was
maintained constant at 200 neurons/mm2, leading to networks
with 625 and 2, 500 neurons for the 2 and 4 mm diameter
sizes, respectively.

The shape of the obstacles had an important effect on the
paths followed by the axons and on the capacity of neurons
to connect to one another. The bottom panels of Figure 2

show a detail of the positions of neurons and axons and the
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FIGURE 1 | Neuronal network construction. (A) Axons are laid out on the

substrate by concatenating segments of length l that follow a quasistraight

path. Whenever the axon hits an obstacle it is deflected with the same angle of

incidence. The dendritic tree of the neuron is modeled as a circle (gray area)

with a given radius of interaction. (B) Neuronal axons in the studied networks

interact with obstacles and connect to other neurons. A connection i→ j is

established whenever the axon of a neuron i crosses the dendritic tree of

another neuron j. In the sketch, dark gray arrows indicate the connections and

their direction, with neurons connecting as 1→ 2 and 2→ 3. (C) Sketch of

the obstacle geometries used and their dimensions.

interaction of the latter with the obstacles. Crosses (Figure 2D)
tended to either deflect axons or to trap them in their vicinity,
thus potentially inducing strong local inhomogeneities in the
connectivity of the network. Circles (Figure 2E) had a milder
effect, deflecting the axons toward the neighborhood, but causing
alterations in the connectivity due to the relatively large area
that they occupied, reducing the probability of spatially close

neurons to interconnect. Finally, triangles shaped as arrowheads
pointing upwards (Figure 2F) promoted a strong anisotropy
in the connectivity by funneling the axons reverse in the
direction opposite to the triangles’ tips. This is because axons
had a much higher probability to be deflected at the base of a
triangle than at its tip. Effectively, as illustrated in Figure 2F,
most axons were vertically aligned—although some orthogonal
growth remained—and thus neurons tended to connect vertically
and downwards.

To quantify the impact of each configuration on network
characteristics we analyzed the topological traits of the resulting
structural connectivities. Figure 3A shows representative
structural adjacency matrices of the empty configuration
together with the configurations made of crosses, circles, and
triangles that fully cover the available area. Neuron indices in the
matrices are arranged to highlight the existence of communities
along the diagonal. We note that communities already appear
in the empty configuration (modularity Q ≃ 0.37), a trait
that is due to the presence of metric correlations in spatially
embedded networks (Hernández-Navarro et al., 2017; Faci-
Lázaro et al., 2019) which facilitates the formation of local
neuronal microcircuits. The global efficiency is relatively high
(Geff ≃ 0.54), indicating that the neurons in the network are well
bound together despite spatial effects. The presence of obstacles
in the networks in general increased Q and decreased Geff,
which reveals a strengthening of metric effects and a reduced
capacity for the neurons to connect to one another. The impact
of obstacles on structural connectivity depended on their shape.
Crosses exhibited the strongest impact, with an increase of Q
by 43%, while for the other configurations the increase was by
27% (circles) and 30% (triangles). We argue that the trapping of
axons caused by the crosses is the cause of the high increase in Q
for this configuration.

The number and size of structural communities was similar
across the panel of configurations. This indicates that neurons
were still capable of interconnecting to some degree despite
the high spatial density of obstacles. In other words, structural
microcircuits emerged but they were not fully isolated. This was
verified by analyzing the spatial distribution of the observed
communities (Figure 3B), which were physically compact but
interlinked. Crosses and circles showed spatial features that were
similar to the empty case, with communities appearing in patches
of similar shape and size. The triangles configuration, however,
shaped communities distinctively organized as vertical stripes
and that revealed the strong capacity of triangles to dictate
vertical funneling of axons.

To shed light on the impact of obstacles on neuron-to-
neuron connectivity and network structure, we investigated the
distributions of Euclidean connection distances d and angles θ

of connections (Figure 3C). For the empty reference case, the
distribution of distances was broad, with most of the neurons
connecting in the range 0.1 − 1 mm, although there was a
marked peak at d ≃ 0.15 mm, a trait again due to the fact
that nearby neurons are more likely to connect in spatially
embedded networks. For crosses, however, the distribution
was strongly shifted toward small connection distances, clearly
indicating the capacity of the crosses to trap axons and boost
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TABLE 1 | Network descriptors for 2 and 4 mm configurations.

aobs/atotal(%) kin kin kout kout d (mm) d (mm)

µ σ µ σ m s.d.

2 mm

Triangles 47.2 53.34 22.92 50.21 25.73 0.403 0.306

Circles 44.7 59.08 13.18 54.26 26.26 0.422 0.314

Crosses

Empty 0.0 66.28 13.83 60.29 33.16 0.533 0.375

1 array 2.4 63.46 15.23 58.21 29.71 0.477 0.346

2 arrays 4.8 60.93 15.06 55.50 28.38 0.446 0.330

Full 13.6 47.98 11.37 45.49 18.07 0.312 0.238

4 mm (crosses)

Empty 0.0 73.51 14.67 67.35 33.97 0.301 0.220

1 array 0.6 72.75 14.37 66.46 34.44 0.293 0.214

2 arrays 1.2 72.20 15.07 65.72 34.63 0.285 0.209

4 arrays 2.4 70.52 15.82 63.37 33.06 0.271 0.202

For each configuration, we provide the area fraction occupied by the obstacles (aobs/atotal ) as well as the average value (µ) and standard deviation (σ ) obtained for the Gaussian fits to

the distributions of in- and out-degrees (kin, kout ), and the statistical average value (m) and standard deviation (s.d.) of the distribution of connection distances (d).

FIGURE 2 | Configurations of obstacles. The top row shows the black and white masks used to set up the simulations, with neurons and connections only placeable

in the black areas. The bottom row shows details of the simulated networks, marking the location of neurons (arrowheads) and axons (lines). Obstacles are shown in

gray and the blue scale bars are 100 µm. (A) Reference empty configuration. (B,C) Layouts with 1 array and 2 arrays of crosses. (D–F) Layouts of crosses, circles

and upwards-pointing isosceles triangles fully covering the substrate.

short-range connectivity. Circle and triangle configurations
exhibited a behavior in between the previous cases, with broader
distributions than crosses but with characteristic peaks that are
associated to the size and inter-spacing of the obstacles. On
the other hand, the distribution of angles θ was in general
homogeneous and similar across configurations except for
triangles, with a characteristic peak at θ ≃ 180◦ associated to the
guided top-to-bottom connectivity in the network. Additional
peaks appeared at θ ≃ 90◦ and 270◦, which revealed the existence
of orthogonal connectivity that facilitated the entire network to
be interlinked.

To further analyze the impact of obstacles on connectivity,
we inspected the distributions of in-degrees (kin) and out-
degrees (kout), and also looked in more detail at the distributions

of connection distances d at different length-scales. The
distributions shown in Figure 4 represent averages over 12
replicates for each configuration with the statistical standard
deviations shown by the shaded areas. The average value of each
distribution and its statistical standard deviation are depicted at
the bottom of each graph.

First, we compared the distributions among configurations
of circles, triangles and crosses that fully populated the
2 mm substrate (Figures 4A–C). The deviations from the
empty configuration were pronounced. Circles, on the one
hand, showed kin and kout distributions (Figures 4A,B) that
lay between those for empty and crosses configurations. This
moderate impact contrasted with the existence of periodic peaks
in the distribution of distances (Figure 4C). The first peak

Frontiers in Computational Neuroscience | www.frontiersin.org 4 August 2020 | Volume 14 | Article 77

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Ludl and Soriano Simulations of Neuronal Networks With Physical Obstacles

FIGURE 3 | Structural connectivity of 2 mm diameter networks with obstacles. (A) Representative connectivity matrices for the “empty” configuration and for

networks filled with crosses, circles or triangles. Matrices are arranged to highlight modular structure (colored squares). The values above each matrix indicate the

modularity Q and the global efficiency Geff. (B) Spatial localization of the identified modules. The color coding matches that of the adjacency matrices. Modularity

increases with the presence of obstacles, and the modules are distinctively vertically arranged for triangles. (C) Corresponding distribution of connection distances d

and angles θ between all pairs of connected neurons in each configuration. For triangles there is a characteristic peak at 180◦, indicating that most of the neurons

connect downwards, i.e., reversed with respect to the triangles’ orientation.

occurred at 170 µm, which is the distance between the centers
of neighboring circles (120 µm circle diameter plus 50 µm
separation), and the rest of the peaks are multiples of this typical
distance. Thus, circles induced characteristic length scales in
the network without strongly altering the degree distributions.
Triangles, on the other hand, exhibited a shift of kin toward lower
values and a marked broadening of the distribution. Their effect
on kout was very similar to that of circles. Clearly, the capacity
of the triangles to funnel axons along the substrate facilitated
long-range connections, whereas the limited orthogonal growth

promoted short-range ones. The distribution of distances for
triangles (Figure 4C) also shows periodic peaks multiples of
50 µm, the triangle height. These peaks are sharper and steeper
for triangles than for circles, the values of which lie in between
those for triangles. Crosses showed strong effects as well, which
we discuss in detail below.

For crosses, we considered the scenario in which they
gradually covered a higher area fraction of the substrate, and
compared the empty, 1 array, 2 arrays, and full coverage
configurations. As shown in Figures 4D,E, both kin and kout
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FIGURE 4 | Structural connectivity statistics. (A–C) Probability distributions of in- and out-degree (kin, kout ) and connection distances d for the empty configuration

and crosses, circles and triangles configurations that fully cover the substrate. Crosses and triangles exhibit the strongest effect on kin and kout. (D–F) The same

distributions for empty, 1 array of crosses, 2 arrays and full coverage in the 2 mm diameter networks. The strongest effect was observed for the configuration in which

the crosses fully populated the area, with kin and kout distributions shifting to lower values and the distribution of distances exhibiting a marked peak at small length

scales. (G–I) The same study in a 4 mm diameter network with crosses partially covering the substrate. Empty, 1, 2, and 4 arrays of crosses are compared. The kin
distribution gradually shifts to lower values, and the short distances gain prominence, as the number of arrays increases. The inset of panel (I) shows the difference

between each distance distribution P and that of the empty configuration Pempty. For all distributions and configurations, data is averaged over 12 network replicates.

For the distributions of kin and kout lines show a Gaussian fit to the data, their parameters are given in Table 1.

distributions gradually shifted toward lower values as the density
of occupation increased, although the change was substantial
only for full coverage, with the average values of kin and kout
decreasing by 30%. The distribution of connection distances d

(Figure 4F) also experienced a strong change for full coverage,
with short-range connections dominating the distribution at the
expense of highly depleted mid- and long-range ones. These
results confirm the hypothesis that crosses either trap axons in
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a neighborhood or deflect them away, reducing the capacity
of neuron to interconnect. The results also reveal that a small
occupation of the substrate by obstacles only causes a minor
effect in the distribution of connections. This was confirmed
by investigating bigger substrates of 4 mm in diameter where
the physical dimensions of the crosses were maintained, which
thus occupied a very small area fraction (see Table 1). As can
be seen in Figures 4G–I, the distributions for the empty, 1, 2
and 4 arrays are very similar to each other and fall within the
fluctuations among replicates. Here, the effect of an increase
in the number of obstacles is most noticeable on the distance
distributions (Figure 4I). As the effect is much smaller than in
the previous configurations, we computed the difference between
each distribution and that of the empty configuration shown in
the inset. It confirms the trend of excess short-range (< 0.7 mm)
and depleted long-range connections with increased number of
obstacles, as seen in the 2 mm configurations. However, these
effects are much smaller in the 4 mm case due to the small area
fraction occupied by the scaffolds.

An interesting trait of the distribution of distances is the
presence of a plateau for the empty case (Figure 4 and Figure S1).
This plateau is associated with the broad range of possible axonal
lengths, and whose average length (ℓa = 1.1 mm) is an order
of magnitude larger than the average radius of the dendritic
tree (150 µm), effectively shaping a neighborhood around the
neurons in which connection probability is independent of the
distance. The presence of obstacles alters this plateau, particularly
when they fully cover the substrate, since axons cannot extend
freely for long distances.

We next explored the effect of substrate size on structural
connectivity. We observed that alterations in kin and kout
degree distributions—relative to the empty configuration—were
more prominent when the substrate radius was similar to
the characteristic axonal length, approximately 1 mm in our
case. This is illustrated in Figure 5, where we compare the
degree distributions among 3 networks grown on substrates
whose diameters were scaled up from 2 to 12 mm (see
Table 2). We considered the empty configuration and the
crosses configurations with either 1 array or full coverage. The
dimensions of the crosses were also scaled up according to
the substrate diameter to preserve the area fraction occupied
by obstacles at 2.4% for 1 array and 13.6% for the covered
configuration. As shown in panels A and B of the figure,
distributions corresponding to the 1-array configuration at
different scaling factors were very similar among themselves
except for the smallest size of 2 mm diameter, which markedly
shifted to low kin and kout values. Only for this diameter
differences between the empty and obstacles configurations could
be appraised. However, for the configuration covered with crosses
the effects were stronger as shown in Figures 5C,D. At 2 mm
the mean value of kin decreases by 26.5% and kout by 24.1% in
obstacles compared to empty configurations. At 4 and 6 mm the
distributions of both in- and out-degree were still clearly shifted
and narrower for the covered configuration. The effect was less
clear but still perceptible at 8 and 12mm scales.We thus conclude
that size effects are very important and that they clearly attenuate
effects of scaffolds at the area fractions explored here. When the

system size is significantly larger than the characteristic axonal
length, then metric correlations at short length scales mask out
the alterations induced by the obstacles. Nonetheless, obstacles
still have an impact on their neighborhood, but from a global
perspective the network may appear unaffected.

To complete the analysis of connectivity, we studied the
spatial variability in the degree distributions and in clustering
coefficients (CCs) in the 2 mm substrate. For sake of simplicity,
we considered only kin in this analysis since it is the distribution
that exhibits the strongest differences among configurations. We
represented average values of kin and CC in square regions
of side 0.031 mm, containing each about 0.2 neurons. As
shown in Figures 6A,C, the empty configuration portrayed
strong inhomogeneities in kin which originated from metric
correlations. The addition of obstacles in the form of 1 array
or 2 arrays of crosses reduced the in-degree values within the
scaffolds and lead to higher values in localized areas outside the
scaffolds, hence accentuating inhomogeneities in the network.
We note that the kin distributions shown in Figures 4A,B could
not capture these inhomogeneities. Thus, this spatial analysis
helps to highlight important fluctuations in the network that
cannot be appreciated from solely inspecting the shape of the
degree distributions averaged over replicates. The CC values,
however, did not show a clear trend in spatial distribution upon
the inclusion of scaffolds, although the maximum CCs increased
by 20% and tended to concentrated around the scaffolds area,
possibly as a consequence of the deflected axons and that
facilitated the formation of a higher number of triangles.

The corresponding spatial analysis for obstacles fully
covering the network is shown in Figures 6D–F. For crosses,
the maximum kin dropped by 15% relative to the empty
configuration and the maximum values appeared concentrated
in mostly a few adjacent cells, while patches of low in-degree
were more evenly spread across the network. This behavior
contrasts with the circles configuration, in which fluctuations
among neighboring regions are much weaker, although very
high kin values occur near the border. For triangles, a strong
gradient of kin values emerged that extended across the entire
network, with kin decreasing sixfold in the direction of the
tips of the triangles. This patterned distribution of kin values
highlights the strong guidance of the axons, which also favored
an increase of the maximum kin values by 15% compared to
the empty configuration. The highest values were localized at
the lower edge of the triangles pattern. The CC values for these
configurations showed an overall increase of the maximum
values by 30% for crosses and triangles, but only increased by
10% for circles. Spatial fluctuations in CCs were marked for
crosses and milder for circles and triangles.

2.2. Dynamic and Effective Connectivity
Alterations Induced by Obstacles
We simulated dynamics of excitatory cortical neurons in the
generated structural networks through an integrate and fire
model with adaptation, whose parameters were adjusted as
in Orlandi et al. (2013) to provide rich spontaneous activity
for the empty configuration. Activity was simulated for 30 min
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FIGURE 5 | Impact of network size scaling on degree distributions. (A) Distributions of in-degree for the empty configuration and for the configuration with 1 array of

crosses scaled up to different diameters, preserving the relative size of the scaffolds with respect to substrate diameter. (B) Corresponding out-degree distributions.

(C,D) Distributions of in- and out-degree of the configuration covered by crosses scaled up to different diameters, compared with the empty configuration. For all

distributions, effects were more marked for smaller sizes. The data correspond to one representative replicate for each configuration. The lines show a Gaussian fit to

the data, their parameters are given in Table 2.

for four replicates of each configuration. Then, we explored the
changes in collective activity and effective connectivity due to
the presence of obstacles in 2 mm diameter cultures which were
the ones displaying the strongest effects in the above analyses of
structural connectivity. We must note that spontaneous activity
comprises both sporadic neuronal activations and network-
wide coordinated episodes in the form of network bursts. An
abundance of sporadic activations may mask the statistics of
network activity and induce artifacts in the analysis of effective
connectivity. Thus, in the analysis that follows we filtered out
sporadic activity data to emphasize network bursting events, and
retained only coordinated activations that encompassed at least
25% of the network.

We first considered the situation in which cross-shaped
obstacles progressively populated a larger fraction of the
substrate’s area. As shown in Figure 7A, network bursting
was high for the empty and 1 array configurations, and
progressively diminished as the density of obstacles grew.
Collective activity almost halted in the configuration in which

the obstacles fully populated the area, suggesting that the
substantially reduced structural in- and out-degree values
strongly affected the capacity of the network to trigger activity
and initiate bursts.

The corresponding analysis of the effective connectivity is
shown in Figures 7B,C, which provide the adjacency matrices
obtained through transfer entropy together with the network
maps of community organization and effective out-degree
distributions. In the maps, the size of a node is proportional to
its out-degree. We chose to plot the out-degree since it reveals
the initiation of activity, i.e., which neurons in the network
tended to activate other neurons. The adjacency matrix for the
empty configuration shows modular traits (Q ≃ 0.28) and
reveals that some groups of neurons tended to coactivate more
frequently with each other than with the rest of the network.
The effective modules, however, did not shape compact areas in
the network maps but were highly intermixed. This reveals that,
despite modularity, network intercommunication was strong as
indicated by the high global efficiency (Geff ≃ 0.41). Activity
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TABLE 2 | Scaled configurations without obstacles (empty), with 1 array of crosses and covered with crosses (full).

diameter Nneur. kin kin kout kout

(mm) µ σ µ σ

Empty 2 625 64.77 13.67 59.13 31.50

Empty 4 2, 500 72.57 14.02 67.32 33.44

Empty 6 5, 625 75.68 14.92 69.05 36.11

Empty 8 10, 000 76.69 15.18 70.78 35.49

Empty 12 22, 500 78.24 15.57 72.23 36.01

1 array 2 625 65.26 15.60 61.23 29.07

1 array 4 2, 500 72.92 14.49 66.98 35.81

1 array 6 5, 625 75.87 15.69 69.44 34.78

1 array 8 10, 000 77.06 15.25 70.73 35.65

1 array 12 22, 500 77.70 15.48 71.23 35.82

Full 2 625 47.60 10.55 44.89 17.13

Full 4 2, 500 58.78 13.35 56.08 23.17

Full 6 5, 625 67.01 13.25 66.63 31.13

Full 8 10 000 72.19 15.14 62.51 28.71

Full 12 22, 500 75.88 18.68 69.26 33.17

We report the diameter of the configuration, the number of neurons (Nneur.), as well as the average value (µ) and standard deviation (σ ) obtained for the Gaussian fits to the distributions

of in- and out-degree (kin, kout ).

also initiated in a similar manner throughout the culture, with
the highest values of kout spread out homogeneously.

A similar overall trend was observed for the configuration
with 1 array of crosses, which yielded very similar values of Q
and Geff. However, the effective modules were more compact
and no high out-degree values were observed in the center
of the map, where the array is placed, indicating that activity
did not initiate within the array. For the 2-array configuration,
modularity increased by 25% relative to the empty case, which
was accompanied by an increase in the number of modules. This
is a sign of higher fragmentation of the dynamics. One of the
modules was also compact when represented in the network map
(pink-colored neurons), indicating that the obstacles weakened
the capacity for whole-network interaction of activity. Most of
the activity initiated in this module at the bottom of the map
or in small regions at the top, and weak activity was detected
within the arrays. These results indicate that the obstacles were
capable of shaping effective microcircuits, i.e., a neighborhood
of highly activate neurons that poorly interacted with the rest
of the network. The isolation of these effective microcircuits
strengthen for the configuration in which the crosses fully
covered the area (Figures 7B,C, right panels). Here we observed
a substantial increase in modularity by about 80% relative to
the empty case, with some modules at the verge of full dynamic
isolation, as recognized in the effective connectivity matrices
by the few links outside the diagonal. Geff practically fell to
zero, indicating the severely reduced capacity of the network to
exchange information. This appears in the map as a large number
of disconnected neurons. Activity tended to start at the right
edge of the culture (high density of out-degree values), possibly
facilitated by the border of the substrate.

To complete the analysis of activity, we also looked at
the spatiotemporal structure of network bursts. As shown in

Figure 7D, bursting events propagated as circular or quasiflat
fronts for the empty and 1 array configurations, reflecting
a reduced sensitivity to connectivity inhomogeneities in the
network. This neat propagation pattern was altered in the
2-array and full configurations, with propagation showing a
richer structure that evinced the strong spatial fluctuations
in connectivity.

We note that the dynamics in the 2-array and full coverage
configurations were very sensitive to the details of the network
replicate. We observed that in some instances the simulated
networks were incapable of generating network bursts. We
characterized this effect on network bursting by computing the
spatial distribution of burst initiation events (Figure 8). For the
2 mm diameter network, burst initiation was distributed over
most of the area in the empty configuration, but it became
increasingly localized as more obstacles were incorporated.
Initiation took place outside the scaffolds except for the full
coverage configuration, for which the bursting fronts were
so fragmented that the identification of initiation could not
accurately be determined andmost likely occurred near the edges
of the network. For comparison, we also provide the results for
4 mm diameter networks. In those simulations the initiation
was much richer and the impact of the obstacles was smaller.
However, initiation never occurred within the arrays and became
more localized as more arrays were added.

The equivalent effective connectivity analysis for the different
types of obstacles fully covering the substrate is shown in
Figure 9. The raster plots compare the characteristic dynamics
across configurations. Although all of them displayed decreased
activity due to the obstacles, bursting was least affected in
circles, mildly in triangles and strongly in crosses, as discussed
above. In all cases, however, the effective connectivity matrices
(Figure 9B) showed a trend toward high Q values relative to
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FIGURE 6 | Spatial distributions of in-degree kin and clustering coefficient CC for the different configurations in the 2 mm substrate. (A–C) Distributions for the empty

configuration, 1 array and 2 arrays of crosses. The value of kin decreases by 30% inside the arrays of crosses, while CC is not appreciably affected. (D–F)

Corresponding distributions for crosses, circles and triangles entirely covering the substrate. Strong effects are observed in the distribution of kin for crosses and

triangles. Compared to the empty configuration, crosses show a decrease of the maximum kin by 15%; triangles show a gradient of kin values, which increase in the

direction opposite to the tips of the triangles which is indicated next to the colorbar (F). The data correspond to one representative replicate for each configuration.

the empty configuration which was reflected in an abundance
of small sized modules. Circles and triangles, as compared
to crosses, exhibited well interlinked modules, with few silent
neurons, and therefore their Geff values were not as small as
in the crosses configuration. The network maps (Figure 9C)
illustrate the strong cohesion of the effective networks for
circles and triangles, with modules extending all across the
area. Effective out-degree values were well spread for circles,
indicating that activity initiation equally occurred everywhere.
For triangles there was a clear localization of out-degree values
toward the bottom of the map, the region that contains also the
highest structural kin values. This correlation between structural
and dynamical traits highlights that adequate configurations
of obstacles help dictating activity initiation. The structure of
spatiotemporal fronts (Figure 9D) shows that all configurations
developed structured activity propagation patterns. We point out
that the velocity of propagation varied among configurations.
Propagating fronts crossed the network in about 30 ms for the
empty and circles configurations, while this time increased to 60
ms for crosses and to 300 ms for triangles. The slow propagation

observed in triangles is due to the strong connectivity differences
between the direction parallel to the triangles’ orientation (with
high connectivity) and the direction orthogonal to it (weak
connectivity), causing the front to advance faster in one direction
but slower in the other.

To conclude our study, we compare the major dynamic
and network characteristics—structural and effective—
among configurations. Figure 9A provides a comparison
of the distributions of inter-burst intervals (IBIs), showing
the contrasting differences between crosses and the rest of
configurations. Figures 9B,C provide the comparison of Q
and Geff, respectively. The main plots summarizes the data
for the 2 mm diameter networks, while the insets provide
the data for the 4 mm ones. All data is organized so that
the magnitudes of a given property increase toward the
right. For the 2 mm data, the structural network properties
varied gently and with very small fluctuations. This contrasts
with the effective network properties that exhibited strong
changes among configurations and with substantial variability
among replicates. For the 4 mm data, all network measures
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FIGURE 7 | Dynamics and effective connectivity in 2 mm diameter networks with increasing density of cross-shaped obstacles. (A) Representative raster plots of

bursting events for the empty, 1 and 2 arrays of crosses and full coverage. Bursting activity decreases as the density of obstacles increases. (B) Corresponding

effective adjacency matrices, with modules along the diagonal. Modularity increases as the density of crosses grows, with a boost by 80% for the full coverage relative

to the empty configuration. (C) Spatial maps of the effective networks. Neurons are color-coded according to their modularity class, and their diameter is proportional

to the out-degree of effective connectivity which reflects activity initiation. Edges are colored according to the outgoing module. The network fully populated with

crosses exhibits strong spatial anisotropies. (D) Spatiotemporal patterns of representative network bursts. The activity fronts advance as a quasicircular front for the

empty and 1 array configurations, to become more structured and erratic for higher densities of crosses. The data correspond to one representative replicate for each

configuration.

varied gently, either structural or effective, which again
highlights the importance of fully covering the substrate with
obstacles to induce substantial changes in both structure
and dynamics.

3. DISCUSSION

Our results show that obstacles imprint features on the structural
connectivity that may lead to strong alterations in the collective
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FIGURE 8 | Initiation points for the 2 and 4 mm diameter networks. The blue-yellow patterns are the locations where network bursts commenced. The brighter the

color, the higher the occurrence of a burst initiation event in that area. The data shown correspond to one representative replicate of each configuration.

dynamics and effective connectivity of neuronal networks. With
those designs of obstacles that we explored, the molding of
structural connectivity can occur in two different ways. The
first one is by funneling axons in a given direction, as observed
with triangles, and the second one is by modifying the spatial
density of incoming or outgoing connections in a given region, as
observed with crosses. In either case, the capacity of the network
to recruit, amplify and propagate activity is affected, thus causing
alterations in the timing and spatiotemporal structure of network
bursts whose details are sculpted by the underlying structure.
When the obstacles fully populated the substrate, their shape was
much more important than the total area they occupied. Circles
and triangles configurations, both occupying an area fraction of
about 45%, caused a twofold increase of the inter-burst interval
(Figure 10A), while for crosses the increase was sixfold even
though they occupied just 14% of the available area. The capacity
of crosses to either trap or deflect axons emerged as a key property
as compared to the funneling of axons by triangles or the gentle
alteration of axonal paths by circles. In addition to shape, the
ratio of typical axonal length to substrate diameter was also a
key parameter. When obstacles occupied only a small region of
the substrate, as the 1 or 2 arrays of crosses for instance, they
induced local alterations whose global effects were masked by the
connectivity traits of the rest of the network (Figure 5).

Our simulations reflect the importance of metric correlations
in shaping connectivity and dynamics in neuronal circuits.
Metric correlations appear naturally in spatially embedded

networks (Orlandi et al., 2013; Tibau et al., 2020). As in our
simulations, other studies pointed out the spatial distribution of
neurons and the characteristic axonal length relative to system
size as central ingredients in shaping local and global structural
traits (Schmeltzer et al., 2014; Hernández-Navarro et al., 2017;
Okujeni et al., 2017). The importance of metric correlations is
that they facilitate spatial heterogeneities in the connectivity of
the network which greatly influence the dynamic behavior of the
entire system, in particular its capacity to initiate and propagate
coherent activity in the form of network bursts (Orlandi et al.,
2013; Okujeni et al., 2017; Faci-Lázaro et al., 2019). Our work
goes a step further and shows that obstacles affect connectivity
by changing the shape and average values of in- and out-degree
distributions and by altering the range of connection distances,
which promoted variations that could be locally very strong. The
crosses and triangles configurations were the ones that more
significantly altered the spatial structure of connectivity. The in-
degree values dropped substantially within areas populated with
crosses, while triangles induced a strong gradient of in-degrees
along their orientation.

The mechanisms that caused a reduction of the spontaneous
activity when obstacles were incorporated are complex. The
detailed studies of burst initiation mechanisms by Orlandi et al.
(2013) showed that a balance of different network observables
was required to maximize bursting, which included in- and
out-degrees, clustering coefficients, feed-forward loops and feed-
backward loops, among others. Additionally, the study of Orlandi
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FIGURE 9 | Dynamics and effective connectivity in 2 mm diameter networks filled with obstacles. (A) Representative raster plots of bursting events for the empty

configuration and full coverage by crosses, circles and triangles. (B) Corresponding effective adjacency matrices, with modules highlighted along the diagonal. The

modularity Q depends on the specific obstacle design, but the number of communities is higher in all cases as compared to the empty configuration. (C) Spatial maps

of the effective networks. Neurons are color-coded according to their modularity class, and their diameter is proportional to the out-degree of the effective connectivity

which reflects activity initiation. Edges are colored according to the outgoing module. While the configuration of circles exhibits traits similar to the empty one, the

triangles show a tendency for activity to initiate at the bottom of the network, where kin is higher. (D) Spatiotemporal patterns of representative network bursts. Activity

flow is structured for the networks with obstacles. The speed of propagation is a factor 2 and 10 lower for crosses and triangles, respectively, relative to the empty

configuration. The data shown correspond to one representative replicate of each configuration.

and coworkers pointed out that an excess or deficit of some of
these observables could substantially reduce bursting frequency.
Our observation that the in- and out-degree distributions are

substantially shifted to lower values suggests that they could be
major actors in the alteration of activity. This is supported by a
recent study of Faci-Lázaro et al. (2019), in which they observed

Frontiers in Computational Neuroscience | www.frontiersin.org 13 August 2020 | Volume 14 | Article 77

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Ludl and Soriano Simulations of Neuronal Networks With Physical Obstacles

FIGURE 10 | Bursting and effective connectivity statistics for 2 mm networks

with obstacles. (A) Box plots of the distribution of inter-burst intervals (IBIs) for

all the explored configurations. For each box: the inner square is the mean; the

central horizontal line the median; the top and bottom box edges are,

respectively, the 25th and 75th percentiles; the bottom and top crosses are,

respectively, the 1st and 99th percentiles; and the bottom and top dashes are

the data range. The IBI in general increases as the density of obstacles grows.

Among obstacles fully covering the network, crosses show the strongest

alteration on the timing of activity. (B) Modularity Q and global efficiency Geff for

(Continued)

FIGURE 10 | the different configurations of obstacles, comparing structural

network traits with effective ones. Main plots correspond to networks of 2 mm

diameter, and insets to those of 4 mm diameter. Each data point is an average

over four replicates, and error bars denote standard deviation.

in simulations of neuronal networks similar to ours that the loss
of nodes with the highest out-degree precipitated a substantial
drop in the number of bursting episodes. The important shift
of the out-degree distribution toward lower values for cross-
shaped obstacles in Figure 4, much stronger than for other types
of obstacles, suggests that out-degree decrease could be one of the
most important factors in activity reduction.

We observed that the structural network traits of the studied
networks were very similar across network replicates. Even for
the configurations in which the obstacles fully populated the
substrate, the distributions of kin and kout and the values ofQ and
Geff varied less than 5% among replicates of the same obstacle
design (Figure 10, structural data). However, the effective traits
substantially changed as evinced by the large dispersion of
both Q and Geff (Figure 10, effective data). Since the effective
connectivity reflects dynamics, the strong contrast between these
two network descriptions clearly shows the complex relationship
between structure and dynamics, and that the former cannot
be directly inferred from the latter with current methods. For
instance, the network maps of the configurations with obstacles
in Figure 9 are qualitatively similar to one another, but by
analyzing only them or the corresponding effective matrices we
cannot deduce precisely which structural connectivity or obstacle
configuration they emerged from. Thus, our work invites to
proceed with caution when trying to infer structural connectivity
features from effective ones.

The simulations showed that obstacles increased the
modularity in the network, with an impact on both structure
and dynamics (effective connectivity). We observed that the
impact on structure was similar for all types of obstacles at full
coverage of the substrate, with an increase of Q by about 30%
with respect to the empty case. However, the impact on effective
connectivity was much higher, with Q increasing by 50% for
circles and 80% for crosses. This suggests that the sharp edges
of the crosses configuration greatly facilitate the isolation of
groups of neurons, a characteristic that is especially relevant
for experimental, in vitro preparations aimed at enriching the
dynamic and functional organization of neuronal networks. For
instance, crosses could be placed in groups of four and closer
to one another, shaping a structure similar to a hollow square
with tiny entrances. Such a structure would create communities
of strongly connected neurons with weak connectivity among
communities, mimicking for instance the designs of Yamamoto
et al. (2018).

Configurations of tailored obstacles could also help shaping
networks-of-networks such as the experimentally observed
aggregated neuronal networks (Sorkin et al., 2006; Teller et al.,
2014) or fractal designs (Díaz Lantada et al., 2013). The latter
can be employed to capture the non-Euclidean geometry of
the human brain and its relation with developmental traits and
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multi-scale dynamics (Werner, 2010; Hofman, 2014). Fractality
and multi-scale organization are indeed inherent properties
of cortical circuits and are closely related to the concept of
criticality (Poil et al., 2008; Friedman et al., 2012; Haimovici
et al., 2013; Massobrio et al., 2015; Marshall et al., 2016;
Johnson et al., 2019), in which a neuronal circuit operates at
the boundary between an ordered, strongly coupled state and a
disordered, weakly coupled one. Neuronal systems at criticality
exhibit long-range spatial and temporal correlations with power-
law distributed statistics, facilitating a broad dynamic repertoire
and swift communication among distant areas. Massobrio et al.
(2015) showed through experiments and theoretical analysis
that a critical state can be favored by combining short- and
long-range connections, i.e., by imprinting small-world features
into a neuronal circuit. Here, we observed that the presence of
obstacles, particularly crosses, increased the “small-worldness”
(Watts and Strogatz, 1998; Humphries and Gurney, 2008) from
2.46 to 4.03 (SM, Table S1). This confirms that the obstacles trap
axons and increase connectivity locally while preserving some
long-range connectivity.

Although our simulations aimed at providing a numerical
playground to investigate the impact of physical constraints
on structural connectivity and dynamics, they were limited
by a number of simplifications that could be relaxed in
future studies. A first simplification concerns the rule for the
growth of axons. We disregarded for simplicity the interaction
of axons with neurons or with other axons, and used a
simple “reflection” rule to model the interaction between axons
and obstacles. In vitro experiments in engineered neuronal
cultures (Feinerman et al., 2008; Li et al., 2014; Casanova
et al., 2018) and microfluidic chambers (Renault et al., 2016;
Yamada et al., 2016; Holloway et al., 2019) have shown that
axons interact in complex ways with obstacles and that axons
often attach to and follow walls. Thus, for a more realistic
representation of in vitro behavior those interactions should
be incorporated in future simulations. A second simplification
was the use of excitatory neurons only, which facilitated the
inference and analysis of connectivity and its relation with
overall network dynamics. The inclusion of inhibition, which
typically comprises of about 20% of connections in cortical
circuits (Soriano et al., 2008; Schröter et al., 2017), would reduce
whole-network bursting and promote a richer spatio-temporal
dynamics, as observed experimentally in two-dimensional
homogeneous and engineered neuronal cultures (Cohen et al.,
2008; Orlandi et al., 2013; Okujeni et al., 2017; Yamamoto
et al., 2018). A third simplification was the use of soma and
synapse dynamical models that shape cortical-only neuronal
networks without plasticity. The inclusion of different cell types
and activity-regulatory mechanisms could help investigating
questions such as the capacity of the networks to reach
activity set points or their response to neuronal loss, as
recently explored experimentally in vitro (Slomowitz et al.,
2015; Teller et al., 2019). And a fourth simplification was the
use of solely two-dimensional networks, which only partially
reflect the structural complexity and functional richness of
naturally-formed brain circuits. Severino et al. (2016) recently
showed experimentally and numerically that three-dimensional

neuronal networks with fractal organization maintain modular
characteristics while promoting long-range connections. As
discussed above this facilitates the emergence of a small-world
architecture and enhances whole-network bursting. Thus, fractal
or three-dimensional patterns could be employed to design more
realistic simulations aiming to mimic the dynamic behavior of
in vivo circuits.

4. CONCLUSION

We have shown that it is possible to dictate the structure of
neuronal circuits by incorporating obstacles, whose impact on
dynamics and effective connectivity depends on their shape
and density. Our work invites the exploration of various
configurations in an effort to control the dynamics of the
resulting networks. However, achieving precise control remains
difficult due to the complex interplay between connectivity,
intrinsic neuronal dynamics and noise. Nonetheless, our study
provides a method and tools that will allow computational
neuroscientists not only to explore a variety of configurations
systematically, but eventually contribute to the understanding of
the way in which geometry influences the emergence of patterns
in growing networks of living neuronal circuits. Thereby, our
study can assist in the design of substrates to guide the
growth of networks in vitro, inviting a quicker and more
efficient investigation of prototype geometries than in wet-lab
experiments. This will help in finding and selecting suitable
candidate geometries for scaffolds or complex architectures in
brain-on-a-chip investigations.

5. METHODS

5.1. Geometric Patterns
Three types of obstacles were studied: crosses, circles and
triangles. Arrays of obstacles were placed in circular areas of
either 2 or 4 mm diameter. Patterns were set as white objects on
a black substrate (Figure 2), and simulated neuronal soma and
axons were only allowed to grow on the black areas. The neuronal
density was set to 200 neurons/mm2, leading to networks with
625 and 2500 neurons for the 2 and 4 mm diameter sizes,
respectively. An empty configuration with the same number
of neurons was also considered as reference (Figure 2A). The
different obstacles’ geometries are described in detail below.

Crosses: The cross-shaped obstacles were 130 µm high and
wide, with a beam thickness of 20 µm. The spacing between
crosses was 50 µm. They were arranged either in arrays of 4 × 4
crosses, each array covering a square area of side 670 µm, or
filling the available substrate entirely (Figures 2B–D). For the
latter, a ring 50 µm wide at the edge of the substrate, and
free of obstacles, was incorporated to ensure that border effects
were the same everywhere in the network. Arrays were placed
at the center of the circular substrate. For the 2 mm diameter
networks, simulation schemes considered 1 array, 2 arrays, and
full occupation; for the 4 mm, simulations considered 1, 2, and 4
arrays. The spacing between arrays was 230 µm. The empty and
1 array configurations were also simulated in a version scaled up
by factors 2, 3, 4 and 6. In these scaled versions, the dimensions of
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the crosses changed according to the scaling factor. The number
of neurons placed within the area was scaled to conserve the
neuronal density of the smallest configuration (see Table 2).

Circles: This design consisted in circles of 120 µm in
diameter that were placed in a hexagonal grid covering the entire
substrate as shown in Figure 2E. The separation between circles
was 50 µm. A 50 µm spacing at the edge of the substrate was
incorporated as for the crosses.

Triangles: The triangle-shaped obstacles were designed to
mimic the geometry of experimental scaffold structures (Crowe
et al., 2020). Triangles were of isosceles shape with 50 µm
height and 20 µm width. They were placed pointing upwards
(Figure 2F). Triangles were arranged in an array that entirely
filled the substrate excepted at the edge, that incorporated a
ring 5 µm wide free of triangles. The horizontal and vertical
separation between triangles at their base was 5 µm.

5.2. Network Generation
Neurons were randomly positioned without overlap in the
black areas of the designed patterns. Neuronal soma were
virtual objects that did not occupy physical space. Thus the
axons interacted only with the obstacles and not with the
neurons. Neuronal dendritic trees and axons were incorporated
following (Orlandi et al., 2013). Briefly, dendritic trees were
modeled as circular areas with radius drawn from a normal
distribution (mean µ = 150 µm and standard deviation σ =

20 µm), while axons grew at random angles from the neurons’
center and followed a biased random walk of concatenated
segments of length ℓ (Figure 1), with a total length drawn from
a Rayleigh distribution with width σ = 0.9 mm and average
axonal length ℓa = 1.1 mm. Upon encountering an obstacle’s
edge an axon was reflected on the opposite side of the normal
to the reflecting surface with a symmetric angle. Once the axons
were positioned on the substrate, a connection was established
whenever the axon of a given neuron intersected the dendritic
tree of any other neuron. The whole network connectivity that
resulted from this geometric construction was stored in the
structural adjacency matrix S = {sij}, where sji = 1 corresponds
to a connection i→ j and sji = 0 otherwise.

5.3. Neuron and Synapse Dynamics
A quadratic integrate and fire model with adaptation, based on
Izhikevich (Izhikevich, 2003, 2007; Alvarez-Lacalle and Moses,
2009), was used to model the soma dynamics. The equations
governing a single neuron are

τc
d

dt
v = k(v− vr)(v− vt)− u+ I + η, (1)

τa
d

dt
u = b(v− vr)− u, (2)

if v ≥ vp then v← vc, u← u+ d0. (3)

d

dt
D =

1

τD
(1− D)− (1− β)Dδ(t − tm), (4)

where the fast soma membrane potential is v, the slow inhibitory
current is u, with τc and τa their respective time constants.
The synaptic inputs are denoted by I, and the spontaneous
emission of spikes is reflected by the noise term η. The resting
membrane potential is vr . Above the threshold potential vt ,
v rises to its peak value vp generating a spike, whereafter it
is reset to vc. The membrane potential u is reset with the
parameter d0 which describes high threshold conductances.
Synaptic depression in Equation (4) is modeled as in Alvarez-
Lacalle and Moses (2009), with the characteristic recovery time
of synaptic vesicles τD (Cohen and Segal, 2011). Initially, D is 1
and after a current injection, i.e., an action potential, at time tm it
decreases as D→ βD with 0 < β < 1.

We used the same implementation as in (Orlandi et al.,
2013; Tibau et al., 2020). Parameter values were similar to those
used in (Orlandi et al., 2013) and were chosen so that the
model reproduces typical behavior of cortical neurons. They
are also given in the SM (Table S2). Here, all neurons were set
to be excitatory for the sake of simplicity. Specifically, we set
gAMPA and gminis equal to 9.5 for all simulations. These values
facilitated the generation of network bursts, i.e., activity fronts
that encompassed a large fraction of the network, although the
timing and spatiotemporal structure of the fronts varied with
the obstacles’ designs. The time step in all simulations was set to
0.1 ms, with a total duration of 30 min.

5.4. Data Processing
5.4.1. Neuronal Activity, Data Filtering and Network

Bursts
Simulated networks exhibited rich spontaneous activity that
combined sporadic neuronal events with coherent activations
of different sizes. Typically, neurons fired either individually or
in a coordinated manner at a rate in the range 0.1 − 0.5 Hz.
Since effective connectivity inference was not reliable when
sporadic activations were abundant, raster plots of neuronal
activity were filtered to retain only coordinated activity episodes.
The filtering consisted in computing first the size of coherent
network activations in a window of 0.5 s, and next to inspect
the distribution of sizes. About 95% of the collective events
encompassed at least 25% of the network. Therefore this
threshold was chosen to eliminate sporadic activations from the
raster plots while only minimally affecting collective bursting
episodes. The inter-burst interval (IBI) was then defined as the
average time elapsing between two network bursts in which at
least 25% of the network participated.

5.4.2. Initiation Points and Representative

Spatiotemporal Activity Patterns
Network burst ignition events originated in specific areas of the
network, which were termed “initiation points” as introduced
in Orlandi et al. (2013). The spatial distribution of these events
was obtained by first identifying the starting time of each burst in
the raster plots. The neurons in each burst were then reindexed
using the time of their first firing during the burst and that
provided its spatiotemporal structure in the form of a wave
front. This front was fitted to a space-time cone whose apex
provided the spatial location of the origin of this burst. Wave
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fronts that procured coordinates outside the area containing
neurons were considered unreliable and excluded. The cone
fitting assumed that activity propagated like a circular wave across
the network, an assumption that was found valid only for the
obstacles’ configuration made of crosses. Therefore, the analysis
of initiation points was carried out only for this configuration.
Given the errors in the cone fitting, the final distributions of
initiation points were smoothed versions of the spatially binned
histograms of initiation points.

The information about the timing of burst and neuronal
reindexing was also used to draw representative spatiotemporal
activity patterns. The x and y coordinates of the neurons
participating in the burst were mapped into a grid of 25 × 25
elements. The mapped data was then represented as an smoothed
image plot with a color scheme proportional to the propagation
time of the burst throughout the network.

5.4.3. Structural and Effective Connectivity
Structural connectivity: It corresponded to the ground truth
topology that resulted from the geometric construction of the
networks. Data was stored in the adjacency matrix S = {sij}

which is by construction directed and non-weighted. Their
major topological traits were examined using the specified
network measures.

Distributions of connection distances and angles for the

structural connectivity: They were presented as histograms in
the figures, and were obtained by combining the information
about the spatial location of the neurons and their ground truth
topology. The distance dij was the Euclidean distance between
the centers of the somas of two physically connected neurons i
and j. The corresponding angle θij was measured as the angle
between the vertical axis and the straight line corresponding to
the distance dij.

Effective connectivity: It was inferred using a modified
version of Transfer Entropy (TE) (Schreiber, 2000). For neurons
X and Y with signals xn and yn indexed by 0 ≤ n ≤ nmax,
where nmax is the total number of time steps in the data, TE was
computed as

TEY→X = −
∑

0≤n≤nmax
0≤k≤kM

p
(

xn+1, x
(k)
n , y(k)n

)

×log2

p
(

xn+1

∣

∣

∣
x
(k)
n , y

(k)
n

)

p
(

xn+1

∣

∣

∣
x
(k)
n

) ,

(5)
where k is the index of the past time step considered, i.e., the

length of the vectors {x
(k)
n }, and kM = 2 is the Markov order of

the model. Here, instantaneous feedback was assumed, meaning
that X and Y could interact within a time bin, as in Generalized
Transfer Entropy (Stetter et al., 2012; Orlandi et al., 2014). Thus,

the Markov order superscript indices on {x
(k)
n } and {y

(k)
n } are

identical. This assumption was justified because the synaptic
time constants (≃ 1 ms) were much smaller than the time bins
(50 ms) used. This binning also ensured that data analysis was
feasible and reasonably fast. Effective connectivity was inferred
for 30 min long raster plots (nmax = 36, 000) containing network
bursting events only. For any connection X to Y , significance z
was established by comparing the TEY→X estimate with the joint
distribution of TE for all input scores X′ to Y and output scores

X to Y ′ (for any X′ and Y ′), as

z =
TEY→X − 〈TEjoint〉

σjoint
, (6)

where 〈TEjoint〉 is the average value of the joint distribution and
σjoint is its standard deviation. Significant connections were then
set as those with z ≥ 2. This threshold was considered optimal
since it captured the flow of neuronal communication during
activity at both local and global scales. A lower threshold of
z = 1 yielded networks that excessively emphasized whole-
network coordinated activity, effectively shaping random graphs
in all studied cases. Thresholds z & 3 emphasized the strongest
neuron-to-neuron interactions and often yielded emptymatrices.
Significant connections were finally thresholded to 0 (absence of
connection) and 1 (presence of connection). The final effective
connectivity matrices E were then directed and non-weighted.

5.4.4. Network Analysis and Measures
The following network statistics and centrality measures were
computed for both structural (S, ground truth) and effective
(E) topologies.

In- and out-degree distributions and clustering coefficient:

Degree statistics were computed in Python using the Brain
Connectivity Toolbox (BCT) (Rubinov and Sporns, 2010). For
the structural connectivity, these distributions reflected the
capacity of the obstacles to shape or dictate a distinct circuitry.
For the effective connectivity, they reflected the flow of activity.
Clustering coefficients (CC) (Fagiolo, 2007) were computed using
the Python module NetworkX (Hagberg et al., 2008). The spatial
distributions represented as heatmaps in Figure 6 show the
average values of in-degree (kin) and CC in square regions of side
0.031 mm, containing≈ 0.2 neurons on average for the networks
of 2 mm in diameter. Therefore, linear interpolation was used to
improve readability of the heatmap. For larger network sizes, the
size of the squares was scaled up proportionally to the diameter
of the network.

Modularity Q: It quantified the likelihood that neurons were
organized in communities, i.e., that neurons within a community
were more connected with themselves than with neurons in
other communities. Following Rubinov and Sporns (2010),Qwas
computed as

Q =
1

2m

∑

0≤i,j≤N

(

Aij −
kikj

2m

)

δ(ci, cj), (7)

where N is the number of neurons, Aij represents the weight

of the connection between i and j, ki =
∑N

j=1 Aij is the sum

of the weights of the connections attached to neuron i, ci is
the community to which neuron i belongs, m = 1

2

∑N
i,j=1 Aij,

and the δ(u, v) function is 1 for u = v and 0 otherwise.
Optimal community structure was computed using the Louvain
algorithm (Blondel et al., 2008).Q ranged from 0 to 1, withQ ≈ 0
for a random, non-modular network and Q → 1 for a strong
modular organization.

Global efficiency Geff: It quantified the integration capacity
of the network, i.e., the performance of information exchange
among neurons across the network. It was calculated using
the BCT. Following (Latora and Marchiori, 2001; Rubinov and
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Sporns, 2010), the efficiency E of a network of N nodes was
computed as

E =
1

N(N − 1)

∑

0≤i,j≤N

1

λ(i, j)
, (8)

where N is the number of neurons and λ(i, j) is the length
of the shortest path connecting neurons i and j. The global
efficiency Geff is the relative value Geff = E/Eid, where Eid
refers to the efficiency of an ideal graph that has all N(N − 1)
possible connections.
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