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Every year thousands of patients are diagnosed with a glioma, a type of malignant

brain tumor. MRI plays an essential role in the diagnosis and treatment assessment of

these patients. Neural networks show great potential to aid physicians in the medical

image analysis. This study investigated the creation of synthetic brain T1-weighted (T1),

post-contrast T1-weighted (T1CE), T2-weighted (T2), and T2 Fluid Attenuated Inversion

Recovery (Flair) MR images. These synthetic MR (synMR) images were assessed

quantitatively with four metrics. The synMR images were also assessed qualitatively by

an authoring physician with notions that synMR possessed realism in its portrayal of

structural boundaries but struggled to accurately depict tumor heterogeneity. Additionally,

this study investigated the synMR images created by generative adversarial network

(GAN) to overcome the lack of annotated medical image data in training U-Nets to

segment enhancing tumor, whole tumor, and tumor core regions on gliomas. Multiple

two-dimensional (2D) U-Nets were trained with original BraTS data and differing subsets

of the synMR images. Dice similarity coefficient (DSC) was used as the loss function

during training as well a quantitative metric. Additionally, Hausdorff Distance 95% CI

(HD) was used to judge the quality of the contours created by these U-Nets. The model

performance was improved in both DSC and HD when incorporating synMR in the

training set. In summary, this study showed the ability to generate high quality Flair, T2,

T1, and T1CE synMR images using GAN. Using synMR images showed encouraging

results to improve the U-Net segmentation performance and shows potential to address

the scarcity of annotated medical images.
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INTRODUCTION

Approximately 121,000 (Ostrom et al., 2018) people in the US are diagnosed with a malignant
brain tumor annually, with over 13,000 of those being Glioblastoma (GBM), defined by the World
Health Organization (WHO) as grade IV tumors with an unacceptable median overall survival
despite best available treatment of less than to 2 years. For primary brain tumors WHO grade
II-IV, there are no curative treatments and limited approved therapies. Current management
of primary brain tumors has two standard benchmarks, tissue analysis for diagnosis, and the
longitudinal analysis of treatment response/ tumor stability through serial brain tumor imaging.
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In fact, the brain MRI in patients with GBM is used to stratify
clinical trial options prior to initial surgery and to offer patients
definitive cytoreduction surgery for malignant glioma or GBM
when radiographic features are highly suggestive of a malignant
tumor. Therefore, advanced imaging methods to stratify patients
into phenotypic, functional, molecular, and prognostic groups is
highly sought after.

Amongst GBM researchers, clinicians, patients, and patient
advocates there is hope that new advances as promised by
molecular targeted therapies, advanced radiation techniques,
evolving surgical technologies, and unforeseen innovation will
result in improved patient outcomes. One key element to all
of these are MR images; both for diagnosis and longitudinal
patient monitoring. Applications of deep machine learning in
brain tumor imaging has the potential to transition from a
subjective analysis to objective analysis and create a new set
of tools to refine treatment options, improve care quality,
and ultimately impact patient care. One critical limitation to
achieving the success seen in non-medical imaging is the volume
of data needed to power deep machine learning. It is common
knowledge that deep learning techniques are highly powerful
when there are numerous training samples. However, in the
medical field, especially in clinical trials, where limited numbers
of training samples are accessible, deep learning models are
easily overfitting during the training stage and perform poorly
in prediction (Shen et al., 2017). Besides, annotation of medical
images is generally expensive, time-consuming, and requires
highly trained clinicians. Therefore, data argument has been
widely used to increase the original dataset to improve the
performance of supervised learning. One possible solution to
overcoming the limited brain tumor imaging data available
for analysis is to create synthetic brain tumor MR images.
Synthetic MR (synMR) images of sufficient quality may be
created using a generative adversarial network (GAN). Herein,
we quantitively and qualitatively evaluated the quality of these
created synMR and established the capability of using synMR
images for the practical application of increasing the volume of
data required by deep learning. Specifically, we evaluated the
performance of image segmentation using a widely implemented
two-dimensional (2D) U-Net model (Ronneberger et al., 2015)
by augmenting real patients’ T1-weighted (T1), post-contrast T1-
weighted (T1CE), T2-weighted (T2), and T2 Fluid Attenuated
Inversion Recovery (Flair) MR images data with varying amount
of synMR images. In fact, the investigation of the changes in
accuracy of enhancing tumor (ET), whole tumor (WT), and
tumor core (TC), also known as the non-enhancing necrotic
region, for glioma patients when incorporating varying amounts
of synMR images may be the most practically useful metric in
judging both quality and real-world usability of T1, T1CE, T2,
and Flair synMR.

METHOD

Patient Population
Data was obtained from the BraTS multimodal Brain Tumor
Segmentation Challenge 2018 (Menze et al., 2015; Bakas et al.,
2017a,b, 2018). Nineteen different institutions provided a total

of 210 patients for training and 66 patients for validation. T1,
T1CE, T2, and Flair MR images were provided for each patient.
Provided ET/WT/TC contouring was performed by one to four
clinicians and approved by neuro-oncologists.

Image Pre-processing
BraTS provided T1, T2, and FlairMRI that were rigidly registered
with T1CE, resampled (1 × 1 × 1 mm3) and skull stripped. In
addition to the pre-processing performed by BraTS, this study
performed normalization and padding of each 2DMRI slice from
240 × 240 to 256 × 256. To aid in data balance between tumor
and unlabeled areas, the z dimension in the training dataset
was cropped to 64 slices from original 155 slices. This served
to decrease amount of unlabeled data present during training
and increase focus on the tumor regions for data augmentation
and segmentation. Data augmentation was done by flipping each
slice left/right to decrease dependence on location as the brain
exhibits marked symmetry across the sagittal plane. No cropping
was performed on the validation dataset as all 155 slices were
segmented during validation.

Generative Adversarial Neural Network
We developed an augmentation network to create synMR images
as a new augmentation approach to aid in overcoming the
well-known limitation of available annotated medical image
data. We manipulated semantic label maps of lesions in real
MR (rMR) images, e.g., changing lesion locations or types,
and then transferred the new label to synMR image using the
augmentation network. Compared to traditional augmentation
methods such as affine transformation or cropping, which
could not guarantee standard anatomical structures, this
approach introduced new data augmentations by varying tumor
sizes, shapes and locations while maintained the authentic
morphologic structures of brain.

Architecture
Our augmentation network consisted of a generator (blue box
in Figure 1) and two discriminators (red and yellow box in
Figure 1). The generator was used to generate synMR images
from sematic label maps which in turn were derived from rMR
images. The semantic label map was composed of normal brain
tissue and GBM tumor segments. GBM segments were further
classified into the ET/WT/TC regions derived from T2 rMR.
Three quarters, one half and a quarter of maximum pixel values
of T2 were the three categorizing thresholds that were used to
segment normal brain tissues. Five categories of segments were
generated in total. The discriminators were used to distinguish
between synMR images and rMR images.

Generator
The generator consists of several components Ci-„ with each
operating at a different resolution. The semantic label (256× 256)
is down sampled to provide segmentation layout at the different
resolutions (wi × hi, wi = hi). The first component, C0, gets
down-sampled semantic labels at the resolution of w0 = h0 =

4 as input and then it generates feature maps as an output for
the next component. For components C1 to Cn, feature maps
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FIGURE 1 | Architecture of Augmentation Net. The Generator is shown in blue box and discriminators in yellow and red boxes.

from previous component are up sampled at a scale of 2 and
are concatenated with the semantic labels of the same resolution
as input. A residual block is applied to generate feature maps as
output. The convolution kernel size is 3×3, layer normalization
(Gomez-Iturriaga et al., 2016) is applied, and ReLU (Maas et al.,
2013) is used as the activation function.

Discriminator
Two discriminators are used. The first one is a pre-trained VGG-
19 convolutional neural network (Simonyan and Zisserman,
2014), which won the first and second place in localization and
classification in the Image Net Large Scale Visual Recognition
Challenge (ILSVRC) 2014. It is used to calculate the perceptual
loss (

∑

i
pi) and the image per-pixel loss Lim.

Lim =
∑

m

∑

n

|Ireal − Isynthetic| (1)

Ireal represents the real patient rMR image, Isynthetic represents the
synMR image created by the generator, with

∑

m

∑

n
indicating the

summation over all pixels

pi =
∑

m

∑

n

|θireal − θisynthetic| (2)

piis the perceptual loss from layer i of VGG-19 Net. Perceptual
loss was firstly proposed by Johnson et al. (2016) and was claimed
to be more robust than image per-pixel loss to measure image
similarities. θireal and θisynthetic are feature maps of rMR image
and synMR images generated at layer i, respectively. The second
one is a patch GAN, which penalizes on image patches, the loss
is given as Ladv = E

[

D
(

Ireal, Isynthetic
)]

+ E
[

1− D
(

Isynthetic
)]

.

D(.) is the discriminator net. The total loss is computed as the
weighted summation of each loss.

The synMR image is generated by solving the
following objective:

S∗ = argmin(E

[

n
∑

i=0

λipi,+λimLim

]

+ λLadv) (3)

Training and Generation of New Training Samples
One hundred sixty-four patients were randomly selected from
the BraTS18 dataset for training. For each MRI modality, an
independent model was trained. λi, λim and λ were adapted
every 10 epochs to maintain the balance among each loss. The
total training epoch was 100 for each modality. New semantic
labels were created from real labels to augment synMR images.
The lesion contours were rotated with a random angle (0◦-90◦),
translated with a random number (0–40) of pixels and randomly
flipped left/right/up/down. The lesion contours that were outside
the brain contour were changed to zero (background). Then the
augmented semantic labels were used as the new training dataset
and transferred into image domain using the augmentation
network of each imaging modality.

GAN Evaluation Metrics
Mean Square Error (MSE), Mean Absolute Error (MAE), Peak
Signal to Noise Ratio (PSNR), and Structural Similarity Index
(SSIM) were used to quantitatively compare between the synMR
and rMR images.

InMSE (Equation 4) variable “n” represents number of images
being compared. Since MSE depends on intensity scaling, it is
necessary to report these details. In this study, 16-bit images were
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used with the pixel range 0–255.

MSE = 1/n
∑

{(original image− generated image)2} (4)

MAE (Equation 5) determines the prediction error between the
rMR and synMR.

MAE = 1/n
∑

{(original image− generated image)} (5)

PSNR (Equation 6) overcomes the limitation of MSE by scaling
the MSE value according to image range, which is done by the S2

value in Equation 4. Generally, the higher the PSNR, the better
the synthetic image; however, this metric has a limitation.

PSNR (dB) = −10∗log10

(

MSE

S2

)

(6)

SSIM shows the perceived change in structural information as
opposed to MSE, MAE, and PSNR that show absolute error
differences. SSIM assumes pixels close to each other possess
strong inter-dependency. It is based on luminance, contrast, and
structure differences between the images and is among the most
commonly used metrics to compare the synthetic images to the
original images.

The benchmark of quantitative metrics of our study deviated
from other works on synthetic images as one of the key
characteristics of our methodology was to produce variations
of tumor size, shape and location in synMR. Therefore, there
were inherent differences between the synMR and rMR which
made direct quantitative comparisons difficult. To overcome
this limitation, qualitative analysis of synMR images was
performed in the form of the Turing test, physician individual
synMR review, and investigation of changes in deep learning
performance. The Turing test requires a physician to correctly
classify a dataset consisting of both rMR and synMR. A
misclassification percentage of fifty percent implies the rMR and
synMR are indistinguishable. In addition to this test, an in-
depth analysis of a randomly selected synMR was performed
by an authoring physician. SynMR images were also assessed
for the practical application of increasing the volume of data
required by deep learning. Specifically, synMR was incorporated
both in subgroups and as a whole during training of the
outlined U-Net segmentation model. Investigation of impact on
performance of segmentation could provide feedback on the
quality of synMR images.

U-NET Segmentation Model
The segmentation model is comprised of three individual 2D U-
Nets designed by Ronneberger et al. (2015), one for each of the
three tumor regions: ET/WT/TC. Each U-Nets was trained with
rMR and synMR images of modalities T1, T1CE, T2, and Flair.
This model combines the ET/WT/ET contours generated by the
three separate U-Nets during post-processing. Two processing
techniques were used to improve the segmentation model’s
ability to accurately contour ET/TC. The first one served to
aid the segmentation model during training by mathematically
manipulating input T1 MRI to improve delineation of ET/TC

boundaries. Specifically, each input T1 MRI was used in
conjunction with its corresponding T1CE MRI and the pixel-
wise intensity difference between these MRI was calculated. This
calculated array replaced the T1MRI during training. The second
technique was to use the WT contour as a boundary for ET/TC
delineations. Therefore, any ET/TC contour predicted outside of
the WT contour would be erased. The best model for each type
of contour was chosen according to the validation loss within 100
epochs run on GPU (Titan XP, nVidia, Santa Clara, CA).

U-NET Architecture
Each U-Net followed Pelt and Sethian (2018) recommendation of
four downscaling and upscaling layers. Each downscaling layer is
followed by a batch normalization layer (Pelt and Sethian, 2018)
and the architecture uses this grouping to downsize the image
while increasing the number of features. Each upscaling layer
is merged with its corresponding downscale layer and used to
return the downsized image to the size of the original. These
layers combined to form a merged layer and soft dice (Equation
7) was employed as the loss function.

Dice Loss =
2∗ < ytrue,ypred > +c

< ytrue,ytrue > + < ypred,ypred > +c
(7)

y-true is the clinician’s contour, ypred is the model’s output, and c
(0.01) is a constant to avoid division-by-zero singularities.

Creation of Training Datasets
As outlined previously, synMR images were generated from
210 GBM patients’ rMR. To further investigate how synMR
could affect segmentation performance during training of the
U-Net, the synMR images were randomly partitioned into four
unique subsets. Multiple U-Nets were trained using the total
rMR in combination with each of these synMR subsets. One
U-Net was trained using only rMR to serve as a baseline with
which to compare performance. Four other U-Nets were trained
on datasets that contained either a quarter, half, three-quarters
or total generated synMR to investigate how the amount of
synMR incorporated in the training dataset influences model
performance. In order to solely evaluate the impact of amount
of synMR images on the model performance, extra care was
taken to decrease variance of the quality of synMR used in
each training datasets. This was accomplished by dividing all
synMR into four subsets equally, with each subset containing an
exclusive quarter of all available synMR. These subsets were then
numerically labeled one through four and used in the following
manner to create the training datasets. Subset one was used to
form the training dataset containing one quarter of synMR. To
form the training dataset that employed half of the generated
synMR, subset one was combined with subset two. Similarly,
subsets one, two, and three were used to form training dataset
representing three-quarters of available synMR, while all four
subsets were used for the total synMR dataset. By staggering
synMR subsets in each training model, we could evaluate the
model performance differences with regards to change in the
amount of synMR incorporated.
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U-NET Evaluation Metrics
Dice similarity coefficient (DSC), Hausdorff distance with 95%
confidence interval (HD), sensitivity, and specificity are used
to evaluate U-Net segmentation as these metrics quantitatively
show the agreement between the created U-Net model and
the “gold-standard” physician created contours. Specifically,
DSC indicates volumetric agreement of the physician created
contour and the contours generated in this study. Reported
DSC values fall into the range zero to one with zero indicating
no volumetric overlap and one indicating complete volumetric
agreement. HD indicates point-based agreement between the
compared contours. This quantitative metric shows largest
relevant Euclidean offset between every pixel in the ground truth
contour and its corresponding pixel in the generated contour.

h (A,B) = maxa∈A
{

minb∈B
{

d
(

a, b
)}}

(8)

with a and b being points of sets A and B, respectively, and d(a,b)
is the Euclidean metric between these points (Menze et al., 2015).

Sensitivity (true positive) and specificity (true negative)
indicate level of border agreement between generated and
physician contours. While DSC shows volumetric overlap
of contours, these metrics report relative size differences.
Essentially, they report if the generated contour is smaller or
larger than the physician’s contour.

Sensitivity = (9)

number of true positives

number of true positives + number of false negatives

Specificity = (10)

number of true negatives

number of true negatives + number of false postives

RESULTS

SynMR Quantitative Analysis
MSE, MAE, PSNR, and SSIM were performed to provide
quantitative analysis of synMR. Table 1 shows quantitative
metric for each modality. Consistent inter-modality results
demonstrate that high similarity is achieved between the rMR
and synMR for all modalities (T1,T1CE,T2, Flair).

SynMR Qualitative Analysis
Qualitative analysis was performed to further investigate both
overall and inter-modality synMR quality. Specifically, qualitative
analysis of synMR was assessed in two ways by an authoring
physician. The first assessment was the performance of the
Turing test (Table 2). The second one was an in-depth
visual comparison of generated synMR images with their
corresponding rMR images on each of the following modalities:
T2, Flair, T1, and T1CE.

SynMR Qualitative Analysis: Turing Test
A subset of 9 rMR images and 10 synMR images flair, T1,
T1CE, and T2MR images were randomly selected for evaluation.
The physician was presented with each of these 19 MR images
blindly and judged if the MR image was rMR or synMR and

TABLE 1 | Average reported Mean Square Error (MSE), Mean Absolute Error

(MAE), Peak Signal to Noise Ratio (PSNR), and Structural Similarity Index (SSIM)

for synMR images generated by GAN.

MSE MAE PSNR SSIM

T1 19.3 ± 0.3 23.4 ± 0.6 43.1 ± 0.4 0.788 ± 0.002

T1CE 19.2 ± 0.3 22.8 ± 0.6 43.1 ± 0.4 0.789 ± 0.004

T2 19.2 ± 0.3 23.4 ± 0.4 43.1 ± 0.5 0.784 ± 0.003

Flair 18.9 ± 0.4 24.1 ± 1.5 43.1 ± 0.5 0.794 ± 0.005

TABLE 2 | The classification accuracy of a subset of synMR and original images

reviewed by the physician blindly.

Modality % Misclassified

Flair 26.3

T1 10.5

T1CE 26.3

T2 26.3

The amount of synMR and rMR improperly categorized by physician is represented by

percent misclassified.

provided feedback. Ideally the rMR and synMR images would
be completely indistinguishable from each other, and this would
be reflected by a 50 percent misclassification rate of the images.
As shown in Table 2, Flair, T1CE, and T2 MR images were
misclassified 26.3 percent of the time, while T1 was incorrectly
identified 10.5 percent of the time. This lower score was due to the
visible streaking artifacts on coronal and sagittal views for some
of the synMR images.

SynMR Qualitative Analysis: In-Depth Physician

Analysis
Figure 2 shows that the T2 MR image’s main difference between
the synMR and rMR lay in the tumor at the right frontal lobe
(lower left on the images A3 vs. A7). It was noted that the tumor
geometry was preserved, but the relative signal intensities in the
region were distorted. Specifically, synMR differed in appearance
in the core of the tumor, as it displayed a hyperintense T2 signal
compared with the surrounding edema. In addition, the signal
from edema was also slightly different in images A4 and A8.
Image A8 had a broader range of contrasts within the edema,
whereas A4 delineated the extent of the edema with a sharper
drop-off at the edges than the rMR. Comparing the edema
between Flair rMR images and synMR images (B3 vs. B7), it
showed differences in the extent of the edema. Also, there were
noted circumferential artifacts in the rMR flair images (B1–B4).
T1 MR images showed that quality of synMR (C1–C4) was very
good. For T1CE MR images, the boundary of enhanced rim
and necrotic regions of the T1CE synMR (D1–D4) were clearly
defined, although the area surrounding the tumor had slight
decrease in intensity.

In summary, synMR had high image quality with clearly
defined structural boundaries. However, synMR suffered in
showing details inside lesions and areas of high gradient (e.g.,
edema signal in T2 modalities). It was possible that this detailed
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FIGURE 2 | Synthetic MRI compared with patient MR images. (A1–A4), synthetic T2; (A5–A8), patient T2; (B1–B4), synthetic Flair; (B5–B8), patient Flair; (C1–C4),

synthetic T1; (C5–C8), patient T1; (D1–D4), synthetic T1CE; (D5–D8), patient T1CE.

information was lost when lesion pixels were classified into
the same semantic label. This is notable as re-gaining lost
information is a well-known GAN limitation.

U-Net: Utilization of SynMR
In addition to quantitative and qualitative investigation of synMR
image quality, incorporation of generated synMR in training
datasets for the U-Net segmentation model was done to assess
the ability of synMR to enhance segmentation performance.
The impact on the U-Net’s segmentation performance by
incorporating synMR during training is indicative of both
quality and synMR’s capabilities as a data distillation technique.
SynMR was evaluated both as a whole set and in overlapping
subsets containing either a quarter, half, or three quarters of the
synMR images.

U-Net: DSC/HD Analysis
The two most popular metrics, DSC and HD, are used to identify
ET, WT, and TC segmentation performance for the U-Nets.
Figure 3 shows the DSC and HD for each structure of the
validation dataset trained with different subsets of synMR.

Figure 3 shows standard box-plot results for both DSC and
HD for each model. T-Test reported statistically significance
in models containing one quarter, half, and total synMR when
compared against baseline. In addition, the relationships between
neighboring models as synMR increased showed statistical
significance as well. It can be seen that U-Nets trained using
at least half synMR show a direct relationship between the
amount synMR used and the U-Net performance. The statistical
significance in model relationships combined with differences in
model performance (Figure 3) indicate that a threshold ratio of
2:1 (rMR:synMR) is necessary to introduce more variance while

maintaining a proper distribution of data. HD shows significant
improvement; however, DSC shows lower relative improvement
as DSC is inherently biased in this study due to the fact that it was
used as the loss function during the training of each U-Net.

U-Net: Sensitivity/Specificity Analysis
While sensitivity and specificity are not as integral in judging the
quality of generated contour as DSC/HD, they show the level
of accuracy in defining the tumor border, as well as the size
differences between the ground truth and generated contours.
As the U-Net was trained, DSC was optimized, however, this
metric only indicates the level of volumetric overlap, which leaves
the size of the generated contour dependent on other factors.
These factors can relate to the differences in training datasets and
give insight into how incorporation of synMR changes the U-
Nets. Table 3 shows that when one half or a quarter of synMR
was implemented, sensitivity and specificity both increased,
indicating improvement in border definition. However, when all
synMR was used, sensitivity decreased while specificity remained
relatively unchanged. Since synMR showed higher distinction
from rMR at the boundaries with sharper gradient drop off, this
could lead to a systematic difference of the segmentation labels
between the two datasets and led to smaller contours generated
from U-Net. However, the smaller contour generated by training
on synMR possessing gentler gradients does not negatively affect
overall U-Net performance, as specificity and sensitivity mainly
show the direction of the offset between the ground truth and
generated contours (HD).

Individual Cases
It is necessary to outline the best and worst cases to assess the
model performance. The best performing and worst performing
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FIGURE 3 | ET/WT/TC Validation Results for U-Nets trained by BraTS MRI and different subsets of synMR(None, 1/4,1/2,3/4, total synMR incorporated). Top row

shows DSC, bottom shows HD. Each grouping displays results in order ET/WT/TC. Incorporation of synMR above threshold ratio of 2:1 (rMR:synMR) improves DSC

and HD. Standard box-plot format used with singular points displaying outliers.

TABLE 3 | Validation results for U-Nets trained by BraTS MRI and different

subsets of synMR.

Percent of SynMR added None (rMR

Only)

1/4 1/2 3/4 All

Sens. ET 0.70 0.80 0.84 0.78 0.62

WT 0.89 0.90 0.89 0.83 0.80

TC 0.66 0.74 0.75 0.77 0.66

Spec. ET 0.96 0.99 0.99 0.99 0.99

WT 0.99 0.98 0.99 0.99 0.99

TC 0.99 0.99 0.99 0.99 0.99

Bolded values indicate highest contour metric value.

individual cases are carefully evaluated. Figures 4–7 show the
comparison of contours on WT for two good and two poor
performing cases.

We have observed encouraging improvement of the
segmentation accuracy for high grade glioma when the lesion
was centrally and radially located. However, the challenge
still exists in the low-grade glioma cases due to increased
difficulty in boundary definition. Location also plays a role in
discerning whether the contouring accuracy would improve
or not. The improved low-grade glioma case was centrally
located, while in the case that did not show improvement was
located toward the edge of the brain. It can also be seen in
the improved cases (Figures 4, 5) that the U-Net focuses more
on differences in structure, rather than differences in pixel

intensity. This is in line with the strength of synMR, as synMR
quality regarding structure outperforms its quality pertaining
to intensities.

DISCUSSION

The original idea of synthesizing images indistinguishable from
reality is inspired by the development of GANs (Goodfellow,
2014). GANs have been employed to expand training datasets
for many tasks. Specifically, synthesizing new images as training
samples provides a possible solution to overcome the challenge
of the limited number of annotated medical images. Frid-Adar
et al. (2018) achieved impressive results in lesion classification
using GAN-synthesized images, which indicated the potential of
GAN for data distillation tasks. Bowles et al. (2018) used GAN for
segmentation, however, there are important differences between
the studies. First, they experimented on image patches sampled
from the dataset, while we experimented on the entire images
(Bowles, 2018). Second, their study generated synMR images
and contours from Gaussian noise (Bowles, 2018). Due to this,
their study was not able to provide a quantitative evaluation
between rMR and synMR images. Their work was limited to
only providing a visual comparison using the Turing test (section
SynMR Qualitative Analysis).

Researchers have leveraged GANs in a conditional setting
which allows the model to deterministically control the
generation of particular samples based on external information
(Gauthier, 2014; Mirza, 2014; Isola, 2017) However, some
researchers suggested that adversarial training might be unstable
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FIGURE 4 | Case One (Improved). Flair MRI. rMR only (Left) and Total SynMR

MRI (Right) DSC of WT was improved from 0.21 to 0.67.

FIGURE 5 | Case Two (Improved). Low-grade Glioma. Flair MRI. rMR only

(Left) and Total SynMR MRI (Right) DSC of WT was improved from 0.49

to 0.88.

or even diverge, and introduced image per-pixel loss and
perceptual loss (Dosovitskiy and Brox, 2016) that was used
in this study. In this paper, we proposed an augmentation
network that was trained in a supervised fashion using paired
semantic labels and rMR images. This method was chosen over
(Frid-Adar, 2018) and (Bowles, 2018) as it incorporated flexible
object manipulations with desired scenarios, which allows for the
creation of synMR with various tumor size and location from
those present in the rMR images.

Our study explored the idea to utilize GAN to generate
synthetic images to improve image segmentation performance.
Specifically, the segmentation model employed the previously
outlined 2D U-Net (Ronneberger et al., 2015) due to its
effectiveness, competitiveness and high familiarity, as it has
been widely adopted in the field of image segmentation. In the
medical field, especially in clinical trials, where limited numbers
of training samples are accessible, deep learning models can
easily overfit during training and perform poorly in application
on independent datasets (Ronneberger et al., 2015). Purely
increasing the size of the training dataset by simple inclusion
of synMR does not guarantee higher performance. However,
the neural networks performance will show improvement if the

FIGURE 6 | Case One (Worsened). Flair MRI. rMR only (Left) and Total

SynMR MRI (Right) DSC of WT changed from 0.76 to 0.58.

FIGURE 7 | Case Two (Worsened). Low-Grade Glioma. Flair MRI. rMR only

(Left) and Total SynMR MRI (Right) DSC of WT showed a decrease from 0.86

to 0.59.

synMR is of sufficient quality and introduce diversity. This study
assumes that the model performance is sufficient to judge the
overall data distillation ability of synMR generated in this study.
We postulate that that all neural network-based segmentation
models should show improvement if trained on datasets
containing more variance, although level of improvement may
vary model to model. However, this study recognizes that this
should be further investigated in a future study by introduction
of one or more additional segmentation neural networks.

“TumorGan” (Qingyun Li et al., 2020) and “ANT-GAN”
(Sun et al., 2020) were different GAN methodologies to
generate synMR. Direct quantitative comparison of synMR
image quality is difficult among studies due to synMR/rMR
structural differences. Specifically, the tumor location in our
synMR was purposefully changed from original rMR to increase
variability of resulting datasets. This structural difference
between synMR and rMR created the need for advanced
qualitative analysis by authoring physicians. However, compared
to the other two studies, our work showed competitive results
on the improvement of segmentation using synMR as a data
augmentation technique. The other two studies reported an
increase over baseline of 2.6 and 2.5% in the average DSC while
our study showed an improvement of 4.8%.
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Statistical investigation of incorporation of certain subsets of
synMR during training showed improved performance when
incorporating synMR at or above the threshold ratio of 2:1 (rMR
to synMR). This ratio could be due to the inherent necessity to
introduce additional variance in the training dataset. However,
differences in individual synMR image quality could also play
a role. Even though the subsets of synMR were staggered in
the training models, there are still differences in the quality of
individual synMR images. This difference in individual synMR
qualities could play a part in the reasoning behind reduced
results in segmentation performance when trained using only
one randomized subset of synMR. The difference in individual
synMR qualities can be partially explained by the fact that rMR
quality was not constant. Individual rMR quality differed as it
was obtained from different MRI machines over many years.
Since image quality had been improved throughout this time,
recently obtained rMR images generally show a higher image
quality than older rMR. Performance of the employed GAN
was impacted by this as it is not likely that the generated
synMR will possess greater quality than its corresponding input
rMR. However, the relationship of individual synMR quality
and its impact regarding the model’s performance should be
further investigated.

CONCLUSION

We were able to generate high quality Flair, T2, T1, and
T1CE synMR using the presented augmentation network and

had a thorough evaluation of the images both quantitatively
and qualitatively. In addition, the synMR images proved their
capability as a data augmentation technique, as incorporation of
the created synMR images to increase the size and diversity of

the training dataset showed promising results. The presented data
manipulation strategy has the potential to address the challenges
regarding the limited labeled medical dataset availability for
medical image segmentation.
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