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The amount of visual information projected from the retina to the brain exceeds the

information processing capacity of the latter. Attention, therefore, functions as a filter

to highlight important information at multiple stages of the visual pathway that requires

further and more detailed analysis. Among other functions, this determines where to

fixate since only the fovea allows for high resolution imaging. Visual saliency modeling,

i.e. understanding how the brain selects important information to analyze further and

to determine where to fixate next, is an important research topic in computational

neuroscience and computer vision. Most existing bottom-up saliency models use

low-level features such as intensity and color, while some models employ high-level

features, like faces. However, little consideration has been given to mid-level features,

such as texture, for visual saliency models. In this paper, we extend a biologically

plausible proto-object based saliency model by adding simple texture channels which

employ nonlinear operations that mimic the processing performed by primate visual

cortex. The extended model shows statistically significant improved performance in

predicting human fixations compared to the previousmodel. Comparing the performance

of our model with others on publicly available benchmarking datasets, we find that

our biologically plausible model matches the performance of other models, even

though those were designed entirely for maximal performance with little regard to

biological realism.

Keywords: saliency, visual attention, image texture analysis, neuromorphic engineering, proto-object

INTRODUCTION

Human eyes capture and send large amounts of data from the environment to the brain, more than
can be processed in detail. To deal with the overwhelming quantity of input, various stages of visual
processing select a small subset of all available information for detailed processing and discard the
remainder, for reviews see Desimone and Duncan (1995), Reynolds and Chelazzi (2004), Petersen
and Posner (2012). Understanding quantitatively how the brain selects important information,
and where humans fixate, is an important research topic in neuroscience and computer vision.
In a seminal study, Koch and Ullman (1985) laid the basis for understanding the mechanisms
of selective attention in terms of biologically plausible neuronal circuitry which led to the
development of detailed computational models of this process (Niebur and Koch, 1996; Itti et al.,
1998; Itti and Koch, 2001). A better understanding of visual attentive selection will improve the
effectiveness of graphic arts, advertisements, traffic signs, camouflage and many other applications,
as well as contributing to the basic science goal of understanding visual processing in the brain.
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Because only the fovea allows for high resolution imaging,
the observer needs to move the eyeballs for thorough scene
inspection. Therefore, eye movements can be used to observe
what is attended (i.e., what is interesting and important for the
brain). There is a nexus between the modeling of visual saliency
and the detection of salient objects. The goal of modeling visual
saliency is to understand and predict what attracts human
attention and gaze (Parkhurst et al., 2002; Bylinskii et al.,
2016). Even though changes of covert attention (without eye
movements) and overt attention (with eye movements) are not
the same, as has been known since the nineteenth century [see
von Helmholtz (1896); the pertinent section was translated
by Nakayama and Mackeben (1989)], under natural viewing
conditions they are positively correlated. In visual saliency
modeling, the locations and objects which humans fixate when
visually inspecting an image or scene are therefore considered
as a manifestation of what is considered to be salient. Maps
generated from the fixations of human observers are then
considered to be ground truth for which parts of the scene
or image are attended (Parkhurst et al., 2002). In computer
vision, salient object detection aims to find the most salient
object in images (Liu et al., 2011; Borji et al., 2019). In this
case, ground truth is usually a pixel-wise or box-shaped binary
mask which indicates the most attended object or place. The
focus of this paper is on the first of these problems (i.e., to
model the mechanisms that govern the deployment of attention
by humans). Our measure of model performance will be
its performance in predicting human eye movements, the
aforementioned ground truth measure. A basic idea is that an
ideal model would be able to predict fixations as well as other
subjects (Wilming et al., 2011). Importantly, ourmain objective is
to gain understanding of the mechanisms underlying attentional
selection in human (biological) information processing,
rather than optimizing prediction performance on benchmark
data sets.

One limitation of our approach is that ourmodel includes only
bottom-up processes, even though visual attention is guided by
both bottom-up and top-down information flow. The bottom-up
process is a data-driven, non-intentional, and reflexive process,
based on low-level features (Koch and Ullman, 1985). The top-
down process is task dependent and controlled by an organism’s
internal state and its goals (Yarbus, 1967). Substantial efforts have
been made to unify both processes (Navalpakkam and Itti, 2005,
2006; Chikkerur et al., 2010; Kollmorgen et al., 2010) but top-
down influences are much harder to control and to measure
experimentally. Our model is therefore concerned only with
bottom-up attention.

Various methods have been proposed to predict local saliency,
such as graph based models (Harel et al., 2007) and high-level
feature based models (Judd et al., 2009). Deep neural networks
(DNNs) for visual saliency computation have also been studied in
recent years, and they show promising results predicting human
attention (Kümmerer et al., 2014, 2016; Vig et al., 2014; Huang
et al., 2015; Kruthiventi et al., 2015; Cornia et al., 2016). However,
it is difficult to understand how DNN-based algorithms process
the visual information, and the structure of the algorithm is to
a large extent opaque to the researcher. The possible extent of its

role in providing understanding how the brain performs the same
task is therefore not clear.

In-between these two levels of abstraction—high-level fully-
developed complex structures and simple local feature contrast—
there lies a highly promising approach to understanding human
perception, commonly referred to as Gestalt perception. Nearly
a century ago psychologists formulated “Gestalt laws” which
determined, among other things, where humans direct attention.
There is no universal set of laws, but examples of salient
objects are those possessing qualities like good continuation,
proximity, closure, symmetry etc. (Wertheimer, 1923; Koffka,
1935). Russell et al. incorporated Gestalt principles into visual
saliencymodeling (Russell et al., 2014). In their model, proximity,
continuity, and convexity are implicitly used in a grouping
mechanism that segregates foreground (proto-)objects from the
background and also predicts human attentional selection well
(Russell et al., 2014) (see next section for the distinction between
objects and proto-objects).

The Russell et al. model originally made use only of intensity,
color, and orientation modalities (see below for later additions).
In this report, we extend it by adding channels which incorporate
nonlinear texture features. Since modeling of texture is quite
complex (Simoncelli and Portilla, 1998), we have developed a
compact representation that can easily be computed in real-time
or realized in hardware.

RELATED WORK

Biologically-Plausible Saliency Model
One of the early and influential saliency models (Itti et al.,
1998) relies on the low-level features of intensity, color,
and orientation. The model uses center-surround cells and
normalization operators to determine conspicuous locations
for each feature space. The final saliency map is obtained by
normalizing and summing results of the contributions from all
feature maps.

Going beyond that approach, it was recognized that visual
scenes are commonly thought to be organized in terms of objects.
Humans frequently fixate at centers of objects rather than their
edges even though the latter generally have higher contrast than
their interiors (Einhäuser et al., 2008; Nuthmann andHenderson,
2010; Stoll et al., 2015), see however Borji et al. (2013a). This
would imply that humans do not simply fixate high contrast
areas but at objects. It was argued by Rensink (2000) and by
Zhou et al. (2000) that perceptual organization does not require
the formation of fully-formed objects; those would be needed
only for tasks like object recognition, semantic categorization
or discrimination. Instead, to organize a visual scene, it is
sufficient to segment it into entities that are characterized by a
few elementary features, like their position, size etc. Following
Rensink (2000), we call these entities “proto-objects.” Since we
will never make reference to objects (as opposed to proto-objects)
in this study, we will use the terms “object” and “proto-object”
interchangeably for the sake of simplicity.

We should note here that the meaning of “proto-objects” in
this paper is different from the one in Walther and Koch (2006).
In the current paper, and in the Russell et al. model, discussed
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FIGURE 1 | Saliency maps of the models compared in this study for a synthesized input image. The pattern-defined figure (a square) is in the lower-left of the input

image. Neurophysiological data show that primate V1 neuron activity is enhanced when the receptive fields are within the figure. Different from previous proto-object

model and other saliency models, our model can discriminate the pattern-defined figure from the background. The cited models: AIM (Bruce and Tsotsos, 2005),

BMS2016 (Zhang and Sclaroff, 2016), GBVS (Harel et al., 2007), HouNIPS (Hou and Zhang, 2008), HouPAMI (Hou et al., 2012), Itti et al. originally from Itti et al. (1998)

but we used the latest code from Harel et al. (2007), Judd et al. (2009), SUN (Zhang et al., 2008), and DeepGaze2 (Kümmerer et al., 2016).

in the next section, a saliency map is computed from proto-
objects which are obtained from feature maps. In contrast, the
Walther and Kochmodel computes proto-objects from a saliency
map. Thus, the flow of information between saliency maps and
proto-objects is opposite.

One recent model of attentional selection is based on
the Gestalt law of “surroundedness,” making use of the fact
that surrounded regions are more likely to be seen as figure
(foreground) than non-surrounded regions, and more likely
to be attended. The resultant Boolean Map based Saliency
model (BMS) compared favorably with other attentional models
(Zhang and Sclaroff, 2016). Craft et al. used a more general
approach to employ Gestalt principles (Craft et al., 2004).
To implement convexity and proximity, border-ownership
selective cells and grouping cells were introduced, resulting
in foreground objects (figures) having higher saliency values
than the background. Russell et al. (2014) built on this model
to generate an image-computable model which uses intensity,
color, and orientation channels. This latter model has been
extended by addition of a motion channel (Molin et al., 2013)
as well as a depth channel (Hu et al., 2016; Mancinelli et al.,
2018).

The use of (proto-)objects for fixation prediction can be
justified from a different viewpoint. DeepGaze2, one of the
most successful DNN-based saliency models, uses the VGG-
19 network which is pre-trained for object recognition. Its
fully-connected layers are removed, and a readout network is
added at the top of the convolution layers and trained with the
SALICON and MIT1003 networks to predict human fixations
(Kümmerer et al., 2016). That is, the feature extraction layer
of DeepGaze2 is the same as that of an object recognition
network, while the “decoding” layers are different. Even
though it is difficult to understand what is represented in
detail in the convolution layers, it is safe to say that these
features are suitable for object recognition given that the
VGG-19 shows good performance in the object categorization
task. DeepGaze2 shows very high performance in fixation
prediction even though it leaves the VGG-19 convolution

layers unchanged, and is only trained in the added readout
layers. This means that the features appropriate for object
recognition are also useful for fixation prediction. This is
further evidence that there is a strong relation between objects
and attention.

Proto-object based models, however, fail to capture second-
order features such as a pattern-defined object as shown in
Figure 1. Because the average luminance of the foreground figure
is identical to that of the background at relevant spatial scales,
simple center-surround differences cannot detect such pattern-
defined objects. In the example shown in Figure 1, orientation-
selective cells which are modeled as Gabor filters can detect the
oriented lines but not the square defined by the lines. Therefore,
another layer with larger receptive fields (RF) is needed to capture
high-order features.

On the other hand, monkey V1 cells can discriminate
the pattern-defined foreground from the background (Lamme,
1995). In Lamme’s study, the V1 neuron response is enhanced
when its RF is on the boundary or within the figure defined
by the oriented lines, compared to the response when the
RF is on the background even though the figure is much
larger than the RF of the neuron. This enhancement occurs
later (30–40ms) than the initial response to the stimuli. The
enhancement for the surface of the figure vanishes when V3
or higher cortical areas are lesioned, but the response for the
boundary of the figure does not (Lamme et al., 1998). This
suggests that the enhancement for the surface of the figure is
a consequence of feedback from V3 or higher cortical areas,
while enhancement of the figure border is caused by feedback
from V2 or through recurrent interaction within V1 (Lee and
Yuille, 2006). Such perception of a (proto-) object defined by
pattern will attract attention. In the human brain, bottom-up
orienting is processed in the ventral attention system which
includes the temporo-parietal junction and ventral frontal cortex
(Corbetta and Shulman, 2002; Petersen and Posner, 2012;
Shomstein, 2012). This pathway projects to the frontal eye field
and controls movement of the eyeballs, in interaction with top-
down attention.
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Texture Characterization
Describing texture mathematically is not trivial and
algorithmically complex. For example, Julesz proposed n-
th-order statistics methods to describe texture features which can
be distinguishable or indistinguishable for humans (Julesz, 1975).
Wavelet analysis and statistical methods are also used (Simoncelli
and Portilla, 1998; Van De Wouwer et al., 1999; Portilla and
Simoncelli, 2000). More recently, sparse representation concepts
have been used to tackle the representation of texture (Schaeffer
and Osher, 2013; Ono et al., 2014; Zhang and Patel, 2018). In
all these cases, the models are complex and not easily reduced
to a simple construct that can be easily folded into a model of
human visual attention, especially if that model is supposed to
be biologically plausible. In this paper, we propose simplified
descriptions of texture that can be incorporated into cortical
models of visual attention, particularly our previous proto-object
based visual saliency model (Russell et al., 2014).

How are the mechanisms that represent texture implemented
in biological vision? Bergen and Adelson have suggested that
human texture perception may be explained by relatively simple
center-surround cells of different scales (Bergen and Adelson,
1988). Also, the nervous system may process second-order
textures by rectification and second-stage orientation-selective
filters following first-stage filters (Sutter et al., 1995; Mareschal
and Baker, 1998). This concept can be thought of as the
combination of simple cells (S-cells) and complex cells (C-cells)
(Hubel and Wiesel, 1962). A similar mechanism is also used
in the HMAX algorithm proposed as a biologically realistic
model for object recognition (Riesenhuber and Poggio, 1999).
It uses a cascade of orientation-selective S-cells with small RFs
and max operation C-cells which have larger RFs. Similarly,
the combination of a rectification linear unit (ReLU) and
max pooling has become common in deep neural networks
(Krizhevsky et al., 2012). Although the biological plausibility
of max pooling is still controversial, efforts to construct
biologically plausible models based on neural networks have
been reported (Yu et al., 2002), and neurophysiological results
support the presence of max pooling mechanisms in visual
cortex (Pestilli et al., 2011). The importance of spatial pooling
for texture segregation is also suggested in other studies
(Bergen and Landy, 1991). Furthermore, recent experiments have
revealed that human and macaque V2 has an important role
in discriminating complicated texture, and the perception of
texture depends on the energy of the product of orientation-
selective filters (Freeman et al., 2013). Our present model
adopts these concepts because they are simple and suitable for
integration into the proto-object based model (Russell et al.,
2014). Furthermore, they can be realized in hardware or highly
efficient software implementations.

MODEL

As mentioned above, our model is based on the Russell et al.
model, and the proto-object mechanism is the same. Here, we
focus on texture feature extraction and the relation between the
algorithm and biological systems. See Supplementary Materials

and the original paper (Russell et al., 2014) for details of the
basic algorithm.

Intensity and Color Feature Extraction
We are concerned with photopic vision, the light intensity range
above ∼3 cd/m2 in which rod photoreceptors are saturated, and
therefore play no role, and all information is provided by cones.
Color and intensity information originates in three types of cones
which are sensitive to long- (L), middle-(M), and short- (S)
wavelengths, respectively. After intra-retinal processing, retinal
ganglion cells convey all information to the brain. The largest
projection is via the optic nerve to the thalamus, specifically the
lateral geniculate nucleus (LGN) which, in turn, projects via the
optic radiation to the primary visual cortex, area V1.

The retinal ganglion cells mostly consist of three types:
parasol, midget, and bistratified (Nassi and Callaway, 2009). The
parasol cells are the beginning of the magno-cellular pathway
in the LGN and receive input from L and M cones. They
represent mainly intensity (luminance) information and are
highly sensitive to motion signals. The midget and bistratified
cells project to parvo- and konio-cellular populations of the
LGN and transfer shape as well as chromatic information, the
latter in red-green and yellow-blue pathways. This representation
is thought to reduce redundancy caused by sensitivity profiles
of cones and to represent natural scene spectral components
efficiently (Webster and Mollon, 1997; Lee et al., 2002). We
model this mechanism by computing one intensity channel and
four color opponency channels, red-green (RG), green-red (GR),
blue-yellow (BY), and yellow-blue (YB).

We model the intensity channel, J , as:

J =
r + g + b

3
(1)

where r, g, and b are the red, green, and blue components of the
RGB input image, in a coarse analogy to the L, M, and S cones
(Itti et al., 1998).

Since hue variations are not perceivable at very low luminance,
a color signal is only computed for pixels whose intensity value is
greater than 10% of the global intensity maximum of the image.
The four color opponency channels, RG, GR, BY , and YB, are
obtained from the tuned color channels; red (R), green (G), blue
(B), yellow (Y) as follows:

R=
⌊

r−
g + b

2

⌋

, G =
⌊

g−
r + b

2

⌋

(2)

B =
⌊

b−
r + g

2

⌋

, Y =

⌊

r + g

2
−
∣

∣r − g
∣

∣

2
−b

⌋

RG = ⌊R− G⌋ , GR= ⌊G −R⌋
BY = ⌊B − Y⌋ , YB = ⌊Y − B⌋ (3)

where [·] is half-wave rectification.
For the intensity feature, the red, green, and blue components

in RGB images do not correspond directly to the three described
types of cones, and luminance perception is not a simple average
of responses of three types of cones. Likewise, for the color
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feature, Equations (2), (3) are a simplified version of biological
color opponency computation. To use other color conversion
schemes (e.g., the CIE Lab color space) is a possible alternative.
We use these definitions for the sake of simplicity and also
because they are the same as those used by Itti et al. (1998),
Russell et al. (2014), whichmakes it easy to compare the proposed
model with those previous studies.

We do not implement temporal dynamics of neuronal activity
because all our stimuli are static images. Other saliency models
have been proposed that do include image motion, for instance,
Molin et al. (2015).

Since salient objects can appear at different scales, the
algorithm successively down-samples the intensity and color
opponency channels in half-octaves (steps of

√
2) to form an

image pyramid spanning three octaves. We represent these
pyramid images as J k, RGk, GRk, BYk, and YBk where k is the
level of the pyramid.

Texture Channels for the Proto-Object
Based Saliency Model
The model we propose in this paper includes texture channels
which are based on visual processing mechanisms in cortical
areas V1 and V2. Thalamic magno-cellular neurons project to
layer 4Cα of the V1 cortex, and parvo-cellular and konio-cellular
neurons to layer 4Cβ and also directly to 2/3. Here and in
the next layer (layers 4B and 2/3), many cells are orientation
selective. We first discuss simple cells that are modeled as Gabor
filters (Kulikowski et al., 1982), other cell types are discussed
below. Even-symmetric Gabor filters are used to build intensity
and color opponency pyramids J k, RGk, GRk, BYk, and YBk

as described above. Odd Gabor filters are suitable to detect
an object’s boundary such as luminance change, and the even-
symmetric Gabor filters are sensitive to lines. Texture features
exist inside an object, and even-symmetric Gabor filters are
suitable to capture such stimuli.

Whether the early stages of the human brain use the features
of the combination of color and orientation is unclear. Treisman’s
famous experiments which led her to develop feature integration
theory suggests that the brain needs attention to bind color and
orientation features, and does not use the combination of them
as basic features in early visual processing (Treisman and Gelade,
1980). We, however, found that including the texture channels
derived from color opponency improves the performance of the
model. We will revisit this argument in the Discussion section.

The Gabor filtered intensity and color opponency maps are
represented as:

F
k
θ , C

(

x, y
)

=
∣

∣

∣
Ck
(

x, y
)

∗ g e, θ

(

x, y
)

∣

∣

∣

(C ={J ,RG,GR,BY ,YB}) (4)

where ∗ indicates convolution, θ ∈
{

0, π
4 ,

π
2 ,

3π
4

}

, and ge,θ
(

x, y
)

is the even-symmetric Gabor filter defined as:

g e,θ

(

x,y
)

= exp

(

−
x′2 + γ 2y′2

2σ 2

)

cos
(

ωx′
)

(5)

x′ = x cos θ + ysinθ , y′ =−xsinθ + y cos θ (6)

where γ is the spatial aspect ratio, σ is the standard deviation,
and ω is the spatial frequency. These definitions are the same as
in Russell et al. (2014).

Then, the opponency signal Fopp
k
θ
(x, y) is calculated by taking

differences between the output of orthogonal Gabor filters of the
same scale as:

Fopp
k
θ ,C

(

x, y
)

=
⌊

F
k
θ ,C

(

x, y
)

−F
k
θ + π

2 ,C

(

x, y
)

⌋

(7)

This represents inhibition between simple cells which have
antagonistic preferences of orientation.

Complex cells with larger RFs receive the simple cell outputs.
We model this as a max-pooling operation. Determining the
most appropriate size of the max-pooling filter is not trivial.
We therefore let ourselves be guided by biological plausibility.
According to Hubel (1988), receptive field size of complex cells
in the fovea of macaque monkeys is about six times larger than
that of simple cells, but the optimum stimulus width is about the
same. In our model, the receptive field size of the Gabor filter (a
model of simple cell) is set to about 13 pixels with about 3 pixels
width of the center excitatory region as in Russell et al. (2014).
We therefore set the diameter of the max pooling operation to
15 pixels.

We propose three types of texture channels: the spatial pooling
channel, cross-scale channel, and cross-orientation channel. The
first, spatial pooling channel J1, is similar to one used in a
previous model (Uejima et al., 2018), but max-pooling is used
instead of the Gaussian filter. This can be written as:

J
k
1,θ ,C

(

x, y
)

=MAX
[

Fopp
k
θ ,C

(

x, y
)

]

(8)

where MAX[·] is max-pooling operation within a circular area.
Each pooling operation is applied adjacently (i.e., the stride is
set to 1).

This process can occur within V1 cortex, but V2 may be
involved as described in Biologically-Plausible Saliency Model.
In the classical view, layer 4B of V1, which mainly includes
magnocellular information, projects to the thick stripes of
V2, and layer 2/3, which mainly originated from the parvo-
/konio- pathway, projects to the pale stripes of V2. Recent
studies have, however, suggested that the connections are
more mixed (Nassi and Callaway, 2009). After V2, we assume
our algorithm is processed in the ventral pathway which
is responsible mainly for form/color perception and object
recognition. The output of the texture detection stage is fed to
the proto-object detection mechanism including edge detection.
See Supplementary Materials for details.

Cross-scale channel J2 and cross-orientation channel J3

emulate the processes that are apparently done in V2 (Freeman
et al., 2013). A cross-scale channel emphasizes where similar
small elements [sometimes called “textons” (Julesz, 1981)] are
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repeated at different scales. This is calculated by:

J
k
2,θ ,C

(

x, y
)

=MAX
[

Fopp
k
θ ,C

(

x, y
)

× Fopp
k + 2
θ ,C

(

x, y
)

]

(

k ∈ {1,2,3,4}
)

(9)

J
k
2,θ ,C

(

x, y
)

=MAX
[

Fopp
k
θ ,C

(

x, y
)

× Fopp
k−4
θ ,C

(

x, y
)

]

(

k ∈ {5,6,7}
)

where × means pixel-wise product after resizing a map to the
other map’s size. The cross-orientation channel is

J
k
3,(θ ,φ),C

(

x, y
)

=MAX
[

Fopp
k
θ ,C

(

x, y
)

× Fopp
k
φ,C

(

x, y
)

]

(

θ = 0,
1

2
π

)

(10)

(φ =
1

4
π ,

3

4
π)

An outline of the texture channel generation is drawn in the
upper row of Figure 2 (only the spatial pooling channel is
shown). As shown in the figure, a max pooling mechanism works
to spatially combine the features extracted by Gabor filters and
to form proto-objects. A similar approach using rectified Gabor
filter outputs has been used in prior visual saliency research
(Imamoglu and Lin, 2011). However, that approach did not
consider the Gaussian filter as a method to combine texture
elements, as we have done here, nor did it use max pooling.

The texture channels’ outputs are shrunk after the max
pooling process such that center-surround cells can cover various
sizes of objects in the grouping algorithm. Because second-order
texture mechanisms seem to operate at a spatial scale eight times
or more coarse than first-order features (Zhou and Baker, 1993;
Sutter et al., 1995), maps are resized to 1/7.5 of their original
size. After resizing, the max-pooling operation with 15-pixel
diameter becomes 2-pixel diameter, and center-surround cells
which operate in up to five octaves to cover coarser second-
order features.

Note that for computational efficiency, we implement the
image pyramid for all features by keeping fixed sizes for all filters
and max pooling operations, and scale the input image. This
imparts scale invariance in all feature channels.

The outputs of texture feature channels are fed to the
proto-object mechanism described in Supplementary Material.
A schematic view of the grouping process is shown in the
bottom row of Figure 2, and an overview of the model is shown
in Figure 3. As Figure 2 shows, the proposed texture channel
enables the formation of a “boundary” at the interface between
differently textured regions (the regions do not originally have
borders), so that the model can detect these boundaries, assign
their ownership to either figure or ground in the region, and
ultimately group them into proto-objects before their saliency
is determined.

We propose two type of saliency models. The proposed model
1 includes all channels of low-level features (intensity, color, and
orientation) and three texture channels. The proposed model
2 incorporates only the spatial-pooling texture channel. See
Supplementary Material for details.

FIGURE 2 | (Top row) Schematic of the spatial pooling texture channel. The intensity and color opponency maps (only intensity map shown) of the input image are

convolved with Gabor filters of four orientations. The responses are rectified and fed to a max-pooling operation. This process combines the Gabor filter responses

and highlights the texture-defined object (located in the lower right part of the input image). (Bottom row) Schematic chart of the grouping algorithm. The texture

channel output is processed through the edge detection and center-surround cells. The grouping cells’ output is summed with the other channels, intensity, color, and

orientation.
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FIGURE 3 | Overview of the proposed model. The center part shows the overall structure of the model. The left box is a detailed view of the grouping algorithm. The

right box shows the schematics of the proposed texture channels. The first stage consists of Gabor filters of 0, 90, 180, and 270◦. The opponency function is

calculated from the output of the perpendicular filters. After rectification, cross-scale and cross-orientation products are obtained followed by max pooling operation

whose receptive field is larger than the first stage Gabor filter is applied. Modified from Uejima et al. (2018) with permission.

Experimental Setup
Saliency Dataset
To validate our algorithm, we determine its performance by
its ability to predict human eye fixations on public datasets:
TORONTO (Bruce and Tsotsos, 2005), CAT2000 training dataset
(Borji and Itti, 2015; Bylinskii et al., 2019), MIT1003 (Judd et al.,
2009), and FIGRIM (Bylinskii et al., 2015). These datasets are
briefly described below.

TORONTO dataset
The TORONTO dataset includes 120 color images and fixation
data from 20 subjects. Images were presented to the subjects for
4 s each. The resolution of the images is 681 pixels by 511 pixels.
The images were shown on a 21-inch CRT display which was
positioned 0.75m from the subjects.

CAT2000 training dataset
The CAT2000 training dataset includes 2,000 images from 20
categories. All images are high definition resolution, 1,920 pixels
by 1,080 pixels. We removed gray margins that were added to
the images to preserve the aspect ratio before using them in the
proto-object based models because they generate artifacts at the
margins. 120 observers (24 observers per image) were placed
106 cm away from a 42-inch monitor such that scenes subtended
∼45.5◦ × 31◦ of visual angle. Each image was shown for 5 s.

MIT1003 dataset
The MIT1003 dataset consists of 1,003 images with fixation data
from 15 users. The longer dimension of each image is 1,024 pixels
and the other dimension varies from 405 to 1,024 pixels. The
images were presented for 3 s. with a 1 s. gray screen in between.

The display showing the images was 19 inches and the distance
between the display and users was about 2 feet.

FIGRIM dataset
The FIGRIM dataset is not collected from saliency experiments
but from memory experiments. The dataset has two types of
images, target images and filler images. A target image was shown
first to subjects, followed by non-target (filler) images and the
target image. The subjects had to answer whether each image was
the target or not. Images remained on the screen for 2 s. Though
this is a memory task and different from the free-looking tasks
of typical saliency experiments, what the subjects had to do is
similar: investigating the images for a few seconds.

Images in the dataset have 1,000 pixels by 1,000 pixels
resolution and were presented on a 19-inch CRT monitor. The
chinrest mount for the subject was set 22 inches away from the
display. Forty subjects participated in the experiment. The dataset
has 630 target images and 2,157 filler images.

Adjustment of stimulus resolution
Since we are comparing human fixation data with model output,
it is important to match the resolution of the filters in the
model with images observed by the subjects. If the model image
resolution does not mimic that of the human visual system, the
comparison between the model output and the human fixation
data will not be meaningful. Hence, we determined the optimal
image size for the model that mimics the human visual system
for the datasets.

A reasonable way to adjust the input image resolution is to
scale it so that the degree of visual angle (DVA) for the dataset
equals the DVA of the algorithm. The DVA of the dataset is
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determined by the experimental setup: the actual screen size,
distance between the screen and subject, and image resolution.
The DVA of the model is determined by the size of filters. In
our algorithm, the wavelength of the finest Gabor filter is set at
4 pixels. On the other hand, the finest primate simple cell’s center
excitation region width is a few minutes of arc (Hubel, 1988).
Thus, the filter range in the algorithm can be thought to be from
30 pixels per degree or more.

For the CAT2000, MIT1003, and FIGRIM datasets, the DVAs
are 30s pixels per degree, and they match our algorithm. On the
other hand, the DVA of TORONTO dataset is about 20 pixels per
degree, which means the dataset’s resolution is too low for our
algorithm. Thus, the images of TORONTO dataset are scaled to
twice their original sizes before being fed to our algorithm.

Evaluation Score
Evaluating how well saliency models predict human fixations is
not a simple problem. In the field of saliency prediction, several
metrics have been proposed and used to evaluate the models,
with different properties and characteristics (Wilming et al., 2011;
Bylinskii et al., 2019). The published datasets provide two types
of human fixation data: fixation locations and fixation maps. The
fixation locations are binary value maps which indicate whether
the observers fixated at each location or not. The fixation maps
are scalar-value map obtained by blurring fixation locations by a
2D Gaussian kernel whose sigma is typically set to one degree of
visual angle (see also Effect of Blurring the Saliency Map).

Recently, Kümmerer et al. proposed to redefine saliency maps
and fixations in a probabilistic framework and simplify the
evaluation problem (Kümmerer et al., 2015, 2018). One problem
with this formulation is that it is necessary to convert existing
models to probabilistic ones. In the current paper, we therefore
use classical methods such as blurring saliency maps and add
distance-to-center weight as written in Effect of Blurring the
Saliency Map and Considering Center-Bias. Below we describe
the metrics we use in this work.

Pearson’s Correlation Coefficient (CC) is a statistical metric to
measure how correlated two variables are. The CC between two
variables, X and Y, is computed from their covariance σ (X, Y)
and standard deviation σ (X) and σ (Y) as follows:

CC =
σ (X, Y)

σ (X)× σ (Y)
(11)

The CC of two uncorrelated variables is 0, and negative CCmeans
inverse correlation.

The similarity metric (SIM) is a metric for scalar-value maps.
To compute it, first twomaps X and Y (e.g., a human fixationmap
and a saliency map) are normalized so that

∑

i Xi =
∑

i Yi = 1
where i indicates pixel locations. Then, SIM is calculated as:

SIM =
∑

i

min (Xi, Yi) (12)

A SIM value of 0 means there is no overlap between two maps,
and identical maps give 1.

The normalized scan-path saliency (NSS) is a location-based
metric. To calculate the NSS, each saliency map is linearly
normalized to have zero mean and unit standard deviation. The
NSS is the mean value of the normalized saliency map at the
fixation locations (Peters et al., 2005). An attractive property of
the NSS is that it penalizes false positives and false negatives
equally (Bylinskii et al., 2019). As a baseline, the chance value of
NSS is 0, and the larger the NSS value the better.

The Kullback-Leibler divergence (KLD) is a scalar-value based
metric from information theory. To compute the KLD, the
human fixation map (called Y in the following equation) and the
saliency map (called X) are treated as probability distributions.
KLD indicates the loss of information when the saliency map
is used to approximate the human fixation data. Smaller KLD
signifies better performance. KLD can be computed as:

KLD=
∑

i

Yi log

(

ǫ +
Yi

ǫ + Xi

)

(13)

where ǫ is a small regularization constant.
The shuffled AUC (sAUC) is a modified version of the

area under the ROC curve (AUC). The receiver operating
characteristic (ROC) measures the ratio of true positives and
false positives at various thresholds. The saliency map is treated
as a binary classifier to separate positive from negative samples.
Thresholds are varied, and the ROC curve is determined by true
positive rate and false positive rate at varying thresholds. The area
under the curve is the result. The difference between sAUC and
standard AUC is that sAUC samples negative points to calculate
the false positive rate from fixation locations of other images
instead of uniformly random locations. This compensates for
the center-bias effect (and other systematic biases present in all
images) where human fixation shows significantly higher density
at the center of the display regardless of image content (Borji
and Itti, 2012; Borji et al., 2013b; Zhang and Sclaroff, 2016). As
a baseline, the sAUC indicates 0.5 by chance.

These metrics were calculated using the published code from
Bylinskii et al. (2019).

Model Comparison
Numerous saliency models have been proposed by a number of
researchers (Borji et al., 2013b). We have compared our proposed
models with representative models; AIM (Bruce and Tsotsos,
2005), BMS2016 (Zhang and Sclaroff, 2016), GBVS (Harel et al.,
2007), HouNIPS (Hou and Zhang, 2008), HouPAMI (Hou et al.,
2012), Itti et al. originally from Itti et al. (1998) but we used the
latest code from Harel et al. (2007), Judd et al. (Judd et al., 2009),
SUN (Zhang et al., 2008), and DeepGaze2 (Kümmerer et al.,
2016).

Unlike other saliency models, including our proposed models,
the DeepGaze2 model is designed to calculate an output as a
probability distribution which needs to be converted to saliency
maps. Each map is optimized for each metric that is used
for comparison to human subject fixation data (Kümmerer
et al., 2015). We used the pysaliency toolbox (https://github.
com/matthias-k/pysaliency) to compute the saliency maps for
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each metric, except the similarity measures that need nonlinear
optimization to convert to maps. Instead, we used the saliency
map optimized for CC to compute the similarity. Also, the
DeepGaze2 model can incorporate center-bias effects where
humans tend to fixate at the center of the display as a prior
distribution. In this paper, we used a uniform distribution as
a prior distribution for the DeepGaze2 and incorporated the
center-bias in the same way as for the other models, as stated in
section Considering Center-Bias.

We also evaluated human inter-observer performance, which
shows inter-observer consistency and can be thought of as
the upper-bound performance of each dataset. To compute
inter-observer performance, we used three-fold evaluation: the
subjects are divided into three groups in each dataset, and
one group is treated as “ground truth” (test) and the other
two groups are treated as a prediction model (training). This
calculation is repeated three times with swapping groups,
and then results are averaged. The center-bias compensation
described in Considering Center-Bias is not applied to the
inter-observer data since they already have the center-bias by
their definition.

Effect of Blurring the Saliency Map
One of the difficulties of comparing saliency models is that
blurring (smoothing) the saliency maps can largely affect the
results (Borji and Itti, 2012; Hou et al., 2012). Typically, the
blurring is applied to approximate the effect of the sampling
error of the eye tracker used in the human study that generated
the human fixation maps. Here, we applied a Gaussian kernel
with various sizes to the saliency map of each model. The sigma
of the Gaussian kernel was varied from sigma values from 0.01
to 0.20 of the image widths in steps of 0.01. For the sAUC
metric, we used smaller sigma values up to 0.08 of the image
widths because of sAUC’s preference of smaller sigma. See the
Supplementary Material for the effect of blurring. To compare
the models, we chose the best result for each model and metric.

Considering Center-Bias
As mentioned in Evaluation Score, human fixations have
significant center-bias, and all metrics, except the sAUC, are
affected by it. This can be compensated to some extent by
differentially weighting salience relative to the distance from
the image center [e.g., by a Gaussian (Parkhurst et al., 2002;
Parkhurst and Niebur, 2003)]. In this study, we have used
distance-to-center (DTC) re-weighting to compare different
models in the same way as the NSS calculation of Zhang and
Sclaroff (2016). The DTC map is calculated as:

DTC
(

i, j
)

= 1−

√

(

i−H
2

)2 +
(

j−W
2

)2

√

(

H
2

)2 +
(

W
2

)2
(14)

where i and j are the row and column index andH andW are the
height and width of the stimulus image. The saliencymap blurred
by the best size Gaussian kernel is pixel-wise multiplied with the
DTC map, and it is used to calculate the respective metric. The
DTC re-weighting has not been applied to calculate the sAUC
metric because sAUC itself compensates for the center-bias.

RESULTS

As shown in Figure 1, our models can segregate a figure defined
by a texture formed by oriented bars from a background, while
all other models cannot clearly detect it. Figure 4 shows saliency
maps of our models and other saliency models including the
previous proto-object based model (without texture channels),
AIM (Bruce and Tsotsos, 2005), BMS2016 (Zhang and Sclaroff,
2016), GBVS (Harel et al., 2007), HouNIPS (Hou and Zhang,
2008), HouPAMI (Hou et al., 2012), Itti et al. originally from Itti
et al. (1998) but we used the latest code from Harel et al. (2007),
Judd et al. (Judd et al., 2009), SUN (Zhang et al., 2008), and
DeepGaze2 (Kümmerer et al., 2016). The saliency maps of each
model are blurred by Gaussian filters whose standard deviations
are set as resulting the best SIM (similarity) metrics for each
model as described in Effect of Blurring the Saliency Map. They
are also re-weighted for DTC as described in Considering Center-
Bias. Images and human fixations in the figure are from the
CAT2000 training dataset and the MIT1003 dataset. We include
non-blurred saliency maps in Supplementary Materials since
blurring sometimes makes it difficult to see where the models
are activated.

Figure 4A shows a quite simple example: the image shows one
“+” among many “L” s, and subjects tend to look at the unique
“+”. This kind of stimulus can be discriminated by center-
surround (or oriented) RFs with different sizes as pointed out
by Bergen and Adelson (1988). The saliency of this stimulus,
therefore, can be predicted by the previous proto-object based
model (Russell et al., 2014), as well as most of the other models.
On the other hand, an input such as Figure 4B is a rather complex
scene and illuminates both advantages and limitations of our
proposedmodel. There is a person in the foreground, with a fence
and a colorful parasol in the background. Human observers tend
to fixate preferentially the person’s face and the left hand. There
is likely a strong top-down component in this selection since
the person is using the left hand to interact with two colored
balls next to it (the balls are difficult to see in the small image
shown in this figure, a larger version of the image that shows
them more clearly is provided in Supplementary Material). The
previous Russell et al. model showed high saliency at the fence
and the person in the foreground, and possibly the parasol. Our
new models capture objectness but they see a (proto-)object and
not a person, and they fail to selectively attribute saliency to
the face and the hands. This, of course, is expected since our
models do not have semantic knowledge and, in particular, do
not have any mechanism to detect faces or hands, features known
to be of high behavioral relevance to humans. The same lack of
specificity to these features is found in all except one model. This
exception is DeepGaze2, a DNN-based model, which shows high
saliency at the face location. It also fails to predict fixations to the
hands, because, we speculate, it was not trained with image data
that included hands as objects that are relevant in the training

data set.
Figure 4C shows mosaic tiles of patterns and persons. The

subjects mainly fixate at the center of a circular pattern in the
upper-left and a face in the lower-right. Our proposed models
successfully signal high saliency at the (center or boundary) of
the pattern, but fail to predict fixations at the face, for the same
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FIGURE 4 | Examples of the results. Input images and human fixations are from the CAT2000 training dataset and the MIT1003. The saliency maps are blurred by a

Gaussian kernel whose sigma is set to the best value for the similarity metric, and the DTC re-weighting is applied. (A–C) Each show one image and the

corresponding human fixation map in the top row, and outputs of different models in other rows. See text for details.

reason as discussed above. The other models, except DeepGaze2,
show weak or no saliency at the pattern center. The result of
DeepGaze2 is similar to that of our proposed models on this
image: high saliency at the center of the pattern, but very limited
if any saliency is attributed to the face. Interestingly, DeepGaze2
seems to be exquisitely sensitive to faces: TheDeepGaze2map has
a secondary maximum in the upper-left corner which seems to
correspond to faces in the image. They were not fixated by human
subjects, probably due to their high eccentricity.

Tables 1A–D shows the quantitative performance comparison
among the models on each dataset. The MIT1003 dataset was
used to train DeepGaze2, and this model’s performance in
Table 1C cannot be compared with the other models because
the training data were also used for testing. Inter-observer
performance (i.e., the theoretically best possibly performance)
is also shown as a reference. As stated in Model Comparison,
inter-observer metrics were calculated by three-fold validation.

Therefore, the mean number of fixations in ground truth
used for the inter-observer is only one-third of all fixations.
Some metrics, especially KLD, are affected by the number
of fixations and show worse results (Wilming et al., 2011).
The reason is that, to calculate inter-observer performance,
human fixation data (ground truth) needs to be separated into
different groups which will in general have different numbers
of fixations. The number of fixations affects the density of
the maps, with small numbers of fixations resulting in sparse
maps and large numbers of fixations in more distributed maps.
KLD being a comparison of probability distributions, this may
result in artifactual differences between model-generated maps
and ground truth. On the other hand, NSS is, by definition,
insensitive to the number of fixations and can be thought of as
upper-bound predictability.

Our new two models outperformed the previous model for all
datasets and metrics. Comparison between the two new models
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TABLE 1 | Quantitative evaluation of saliency models on four datasets.

Proposed Proposed Previous AIM BMS2016 GBVS HouNIPS HouPAMI Itti et al. Judd et al. SUN Deep Inter-

Model 1 Model 2 Model Gaze2 Observer

(A) EVALUATION SCORES ON TORONTO DATASET

NSS 1.739 5 1.753 4 1.517*† 8 1.190*† 1.925*† 1.644*† 1.455*† 1.776 1.551*† 1.442*† 1.213*† 2.199*† 2.438

CC 0.641 5 0.646 3 0.558*† 8 0.481*† 0.681*† 0.617*† 0.529*† 0.643 0.585*† 0.557*† 0.491*† 0.763*† 0.742

SIM 0.542* 3 0.548† 2 0.501*† 7 0.418*† 0.522*† 0.524*† 0.495*† 0.497*† 0.505*† 0.462*† 0.435*† 0.620*† 0.594

KLD 0.718 2 0.729 3 0.811*† 7 1.037*† 0.735 0.829*† 0.987*† 0.803*† 0.799*† 0.916*† 1.008*† 0.530*† 0.910

sAUC 0.691 5 0.686 4 0.670*† 8 0.692 0.724*† 0.638*† 0.673† 0.708*† 0.659*† 0.619*† 0.660*† 0.756*† 0.734

(B) EVALUATION SCORES ON CAT2000 TRAINING DATASET

NSS 1.599* 3 1.623† 2 1.552*† 6 1.482*† 1.554*† 1.538*† 1.452*† 1.511*† 1.502*† 1.593* 1.496*† 1.717*† 2.447

CC 0.670* 3 0.677† 2 0.656*† 5 0.632*† 0.654*† 0.649*† 0.617*† 0.640*† 0.637*† 0.662*† 0.636*† 0.686*† 0.845

SIM 0.605* 3 0.613† 2 0.582*† 5 0.531*† 0.586*† 0.580*† 0.544*† 0.557*† 0.560*† 0.543*† 0.548*† 0.614† 0.704

KLD 0.593 3 0.585† 2 0.625*† 6 0.711*† 0.619*† 0.617*† 0.712*† 0.649*† 0.647*† 0.669*† 0.680*† 0.537*† 0.546

sAUC 0.596 7 0.595 8 0.599 5 0.611*† 0.622*† 0.582*† 0.591 0.609*† 0.591† 0.565*† 0.597 0.641*† 0.616

(C) EVALUATION SCORES ON MIT1003 DATASET

NSS 1.426* 4 1.441† 2 1.258*† 7 1.167*† 1.606*† 1.439 1.186*† 1.235*† 1.332*† 1.345*† 1.179*† 2.565 2.806

CC 0.460* 4 0.469† 2 0.420*† 7 0.396*† 0.503*† 0.466 0.394*† 0.416*† 0.427*† 0.442*† 0.400*† 0.725 0.747

SIM 0.400* 2 0.408† 1 0.374*† 6 0.325*† 0.391*† 0.398* 0.374*† 0.362*† 0.376*† 0.349*† 0.333*† 0.529 0.591

KLD 1.198 3 1.198 2 1.274*† 6 1.451*† 1.175*† 1.203 1.398*† 1.293*† 1.256*† 1.343*† 1.393*† 0.738 0.988

sAUC 0.644* 6 0.633† 9 0.641* 7 0.675*† 0.702*† 0.631† 0.636 0.665*† 0.644* 0.599*† 0.649* 0.782 0.778

(D) EVALUATION SCORES ON FIGRIM DATASET

NSS 1.616* 5 1.682† 3 1.587*† 8 1.507*† 1.588*† 1.633† 1.397*† 1.550*† 1.593*† 1.737*† 1.521*† 2.025*† 2.864

CC 0.530* 4 0.540† 2 0.521*† 7 0.497*† 0.522*† 0.536† 0.458*† 0.510*† 0.524*† 0.521*† 0.502*† 0.614*† 0.740

SIM 0.432* 3 0.446† 2 0.402*† 7 0.357*† 0.412*† 0.423*† 0.383*† 0.371*† 0.410*† 0.386*† 0.364*† 0.479*† 0.575

KLD 1.045* 3 1.012† 2 1.144*† 7 1.287*† 1.095*† 1.072*† 1.241*† 1.232*† 1.110*† 1.153*† 1.260*† 0.904*† 0.988

sAUC 0.630* 5 0.624† 7 0.621† 8 0.640*† 0.664*† 0.612*† 0.619 0.640*† 0.618† 0.582*† 0.629* 0.705*† 0.662

(E) EVALUATION SCORES ON Black AND WHITE CATEGORY OF CAT2000 TRAINING DATASET

NSS 1.716* 3 1.799† 2 1.653*† 5 1.588*† 1.646*† 1.648*† 1.540*† 1.619*† 1.619*† 1.696* 1.581*† 2.140*†

CC 0.644* 3 0.664† 2 0.627*† 5 0.605*† 0.623*† 0.623*† 0.585*† 0.614*† 0.613*† 0.629*† 0.601*† 0.705*†

SIM 0.571* 3 0.593† 2 0.543*† 5 0.495*† 0.538*† 0.544*† 0.495*† 0.517*† 0.527*† 0.506*† 0.493*† 0.604†

KLD 0.671* 3 0.638† 2 0.713*† 5 0.827*† 0.719*† 0.700* 0.803*† 0.756*† 0.737*† 0.775*† 0.820*† 0.567*†

sAUC 0.624 3 0.620 6 0.620 7 0.622 0.627 0.602*† 0.589*† 0.623 0.604*† 0.585*† 0.588*† 0.669*†

The best three scores for each metric are underlined. The numbers written in the right column in the proto-object based models (three models form the left) are the orders among the

models. Daggers and asterisks indicate statistical significance of the difference (paired t-test, p ≤ 0.05) from the proposed model 1 and 2, respectively. Inter-Observer scores are also

shown as references. Some metrics of the inter-observer model show worse results because of fewer fixations. The results of the MIT1003 dataset of DeepGaze2 are gray-hatched

because the dataset is used to train DeepGaze2 and cannot be compared with other models.

shows that model 2 has better performance for most of the
metrics. Also, in most comparisons it is ranked in the top three
among all models. Of particular interest is DeepGaze2, the only
DNN network in our comparison set. It shows significantly
better results than all other models including both of ours, as
expected from the MIT saliency benchmark (Bylinskii et al.,
2009). One likely reason is that, by design, DeepGaze2 is trained
on image features that are known to have behavioral relevance
to humans (e.g., faces) while our models use only hard-coded
constructs based on Gestalt principles. However, DeepGaze2
sometimes misses salient simple and low-level features like the
balls in Figure 4B. To better understand the relative merits of our
models and DeepGaze2, we compared the models separately on
different categories of the CAT2000 training dataset in Figure 5.
Out of 14 categories with significant differences between our
model 2 and DeepGaze2, the latter works better on seven. These
include the Social, Affective, and Action images which typically
include many images with persons and faces. Figure 6A shows

the image in the Social category for which DeepGaze2 produced
the best CC relative to our model 2. In agreement with human
fixations, DeepGaze2 placed high saliency on the faces and less
on other objects, such as the glasses on the counter. In contrast,
our model 2 showed high values on the counter, which were
of relatively little apparent interest to humans, and only very
limited weight at the face locations. On the other hand, our
model 2 worked significantly better than DeepGaze2 on the other
image classes, including the Pattern, LineDrawing, and Random
categories which mainly consist of synthesized or artificial
images. Figure 6B shows the image where our model 2 showed
the best performance relative to DeepGaze2 in the Pattern
category. DeepGaze2 failed to predict fixations on the group
of slightly modified patterns, while our method predicted these
fixations. It were, however, not only over-simplified or highly
abstract images where our model outperformed DeepGaze2. It
also had significantly better performance on satellite images. We
believe that the reason is that these images can be described
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FIGURE 5 | Correlation coefficients comparison between the proposed model 2 and DeepGaze2 by categories of the CAT2000 training dataset. Asterisks indicate

statistical significance of the difference in corresponding categories (paired t-test, p ≤ 0.05).

FIGURE 6 | (A) Image for which DeepGaze2 showed the best CC relative to the proposed model 2 in the Social category. (B) Image for which the proposed model 2

showed the best CC relative to DeepGaze2 in the Pattern category.

by image statistics inherent in natural scenes (including Gestalt
laws) which are implemented in our models. We surmise that
satellite images are absent or strongly underrepresented in the
dataset used to train VGG-19, and thus DeepGaze2, leading to a
lower performance on these images. Our model also seems more
robust to noise, as shown by its comparative advantage in the
Noisy class.

Most types of texture are discriminable even in grayscale
images. Texture perception may be of ecological relevance
particularly in low-light conditions since the only light receptors
usable in such conditions (rods) do not produce a color
perception. To investigate the effect of the lack of color, we have
summarized the result for the Black and White category of the
CAT2000 dataset which contains 100 gray-scale (mostly outdoor)

images in Table 1E. For these images, our two models are in
2nd and 3rd place except for the sAUC metrics (overall best
performance is shown by DeepGaze2).

We summarized evaluation scores on all four datasets in
Figure 7. The metrics are averages on 5,910 images, and
parameters of blurring Gaussian kernel were chosen as those
showed the best performances for each model and metric. The
scores of DeepGaze2 were calculated by excluding MIT1003
since it was used to train the model. The presented models
constantly show significant improvement from the conventional
proto-object based model and in most cases better performance
than other methods on most stimuli, with one exception. This
exception is DeepGaze2 which clearly outperforms all other
models, by all measures.
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FIGURE 7 | Summary of evaluation scores on four datasets. Circle markers indicate the proposed models, the square markers the previous proto-object based

model, and the cross markers show other saliency models. The inter-observer data are shown by the triangle markers. The metrics of DeepGaze2 was computed

without the MIT1003 dataset since it was a part of its training data.

The proposed algorithms are implemented using MATLAB
(The Mathworks, Natick, MA). Execution time is about 13min
for the proposed model 1 and 3.5min for the proposed model
2 on a PC with a Ryzen 7 1700X 3.4 GHz processor and 32 GB
memory for a 1,920× 1,080-pixel image.

DISCUSSION

Our models show improvement over the original proto-object
based saliency model in predicting human fixations which
already performed very well. Through four datasets, our model 2
shows the second performance for two metrics (SIM and KLD)
and third best for CC as shown in Figure 7. This means our
model is close to the best at predicting human fixations, with the
exception of the DNN-basedmodel, DeepGaze2 which outclasses
all models by a wide margin.

But what is the core mechanism of our two models, and

why do they work so well? To simplify the problem, let us
focus on the simpler (and better performing) one, model 2.

The model extracts features by multi-scale Gabor filters and
then applies a proto-object detection algorithm. This means that
the model assumes that objects have localized specific oriented

spectral components (as features), and a foreground object can
be detected if its components are sufficiently different from other
objects and a background. In other words, each oriented spectral
component works as a carrier, and an object is an envelope
defined by an ensemble of carriers. The previous proto-object
based model used simple intensity (or color) as a feature instead
of oriented spectral components. Thus, it does not work well
when a foreground object has shadows or is not discriminable by
mean intensity/color contrast. In that case, the previous model

tends to focus on a part of the object or other objects that are
lighter or darker than the whole of the foreground as shown in
Figure 4B.

The premise of our proposed models is similar to HouPAMI
(Hou et al., 2012), which supposes that the foreground is spatially
sparse and the background is spectrally sparse, even though the
implementations of the two models are completely different.
In our model, the proto-object detection algorithm works to
find blobs that are spatially sparse, and it prefers single or a
few blobs, while omitting features with numerous peaks (i.e.,
dense features). In the spectral domain, we assume that the
foreground has different components (i.e., different frequency or
orientation) from the background, and an object that is dense
in the frequency domain has more chance of surviving the
normalization process. As a result, our models have a tendency
to put saliency on an object that is spatially sparse and spectrally
dense. It seems that our implementation of Gestalt principles
by biologically quite realistic mechanisms is functionally similar
to the explicit implementation of the principles formulated by
Hou et al. (2012).

It is somewhat difficult to understand why our proposed
model 2 shows better performance than our model 1 which
includes low-feature channels, cross-scale texture and cross-
orientation texture channels. The absence of intensity and color
channels in model 2 means it does not have non-orientation
selective feature detectors. However, isotropic stimuli, such as a
circle, can be detected by the Gabor filter. For instance, large and
small circles can be discriminated by large and small Gabor filters.
On the other hand, the reason why the cross-scale and cross-
orientation features does not improve performance very much
is not easy to understand. One possibility is that such mid-level
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features are necessary to discriminate complex textures, but do
not attract people’s gaze in free-viewing experiments.

Table 1E shows that the texture channel works particularly
well on images without color information. We believe that this
indicates that when texture is the predominant structure in the
image, our biologically plausible model with the texture channel
performs as well or better than the computational state-of-the-art
models, except for DeepGaze2. This alsomeans ourmethodsmay
be applicable to other intensity-based images such as infrared
videos, synthetic-aperture radar pictures etc.

Recent studies show that DNNs achieve high performance in
object classification but they heavily depend on the texture of
objects rather than their shape, while humans put importance
on the object shape (Baker et al., 2018; Geirhos et al., 2018).
This is reasonable because in static scenes, texture cues are
more robust than the shape which changes and is modified
by changes of the direction from which pictures were taken
from, especially when the training data include various views
for each object. However, texture cues are subject to their own
distortions (e.g., the influence of speckled illumination under a
tree canopy). Humans rely much more on shape than DNNs
(Geirhos et al., 2018) which may also have to do with the fact that
their visual system is “trained” in a dynamic world in which shape
changes smoothly and typically predictably, rather than in world
in which unrelated static scenes are presented in random order,
which would correspond to typical DNN training paradigms. We
surmise that one of the results of shape dominance is that humans
recognize texture-defined objects such as the input image of
Figure 1 even without obvious borders. Therefore, it is natural
to think humans treat texture features as a cue not only to
recognize an object, but also to determine its shape. For these
reasons, our shape based (proto-object based) model can capture
the shape of texture-defined object thanks to the combination
of Gabor filters, max-pooling, and grouping algorithm as shown
in Figure 2.

The only DNN included among the models tested,
DeepGaze2, showed significantly better results than any
other. As described in Biologically-Plausible Saliency Model, we
believe the successful results of DeepGaze2 are due to the fact
that it is built on the VGG-19 network, which was originally
trained for object recognition. DeepGaze2 worked especially well
when input images included people and faces, but not as well
on synthetic or artificial images. This is not surprising because
the datasets used to train and tune DeepGaze2 (ImageNet,
SALICON, and MIT1003) include few synthetic images, and
many faces and people. On the other hand, we can say it
generalizes surprisingly well given that almost no synthetic
images were used in its training. A concern about DNN-based
models is that the mechanisms underlying model performance
are notoriously difficult to understand. Related is their enormous
number of free parameters, more than 143 million for VGG-19
alone. While, in the right context, such over-parametrization can
be beneficial (Soltanolkotabi et al., 2019), it carries substantial
computational cost. In a recent study, Thompson et al. (2020)
argue that the truly impressive progress of DNNs over the last 8
years will be severely curtailed by the prohibitive cost required,
in monetary, environmental and other terms. They estimate

that, for instance in the field of image classification, lowering the
classification error on ImageNet rate from 11.5% (current state
of the art) to 5% (close to human performance) will increase the
training cost by a factor of 1013, to a staggering 1019 US Dollars,
on the order of hundred-thousand times the estimate of the 2020
world GDP, with a concomitant environmental impact. Clearly,
a different approach is needed. Given that biology has solved
the problem, at the cost of a power consumption of about 20W,
identifying mechanisms used by biological grains seems highly
promising. Therefore, the main purpose of our research is to
understand and model cortical mechanisms for attention and
scene understanding. For this reason, we take a first principles,
constructive approach, which may lead to better understating of
biological solutions of these problems.

The current study focuses on bottom-up attention only. Our
proposed models include only early stages of visual processing
that are thought as pre-attentive. This means that fixation
prediction of our models is valid only for relatively short
periods of observation (typically a few seconds) under free-
viewing or non-specified tasks. Also, the models are mostly
constructed to be compatible with primate neurophysiology.
Visual systems of humans and macaques have similar anatomical
organization (Sereno et al., 1995), and the early visual processing
is functionally homologous (De Valois et al., 1974). In addition,
the V4 region, which is essential for form and color perception
and attention, is similar in both species (Gallant et al., 2000).
While they have many similarities, there are also differences.
For instance, Einhäuser et al. (2006) claims that humans are
attracted more by higher-level features than monkeys. In the
current study, the models have been extended by incorporating
mid-level feature, i.e., texture, but still lack higher-order level
features such as human bodies, animals, faces, and written text,
which generally attract human fixations [an example where a
simple face detector is included in saliency computations is Cerf
et al. (2008)]. Another factor which can affect human attention is
familiarity. Studies have shown that unfamiliar target patterns are
easier to find than familiar patterns during visual search (Wang
et al., 1994; Greene and Rayner, 2001). Unfortunately, such effects
are difficult to incorporate in our models, among other reasons
because they lack a memory component.

One physiologically controversial point of our proposed
models may be that their fundamental elements are neurons
tuned to both color and orientation. This differs from the feature
integration theory of Treisman and Gelade (1980) in which these
combinations are not used as basic elements of pre-attentive
processes (Treisman and Gelade, 1980). Neurophysiological
studies, however, found that a sizable fraction of V1 neurons code
color and orientation jointly (Hanazawa et al., 2000; Friedman
et al., 2003; Johnson et al., 2008; Garg et al., 2019). The
functional reason for this coding scheme may be that it reflects
the statistics of natural scenes. Indeed, independent component
analysis shows that the majority of independent components are
oriented red-green and blue-yellow filters (most of the other
components are oriented intensity filters) (Tailor et al., 2000).
We also note that, although we formulate our models in terms
of receptive fields of “neurons,” all our conclusions remain valid
when the models are, instead, defined in terms of functional
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spatio-chromal units with the receptive field structures that we
use. Another limitation is that our models lose high-resolution
information due to a max-pooling operation. When we look
at the input image of Figure 1, we can effortlessly tell the
boundary of the pattern-defined object in close-to pixel-wise
manner although the edge cannot be defined by each pixel (the
oriented lines need several pixels to be defined). Themax-pooling
operation dilates the figure information and its precise shape is
lost. Pixel-wise accuracy is not important for saliency prediction
because human fixation measurements are not precise either. It
is, however, important for other applications such as detection
of salient objects. How the brain solves this problem is not clear,
but recurrent processing between V1 and V2 and possibly higher
areas may contribute to it as proposed in high-resolution buffer
theory (Lee and Mumford, 2003).

Dealing with center-bias is one of the difficulties when
evaluating visual saliency research. Whether the well-known
center preference of human observers should be included in
an algorithm or not depends on the purpose of a model. For
instance, to predict how website viewers fixate contents, a model
with center preference is suitable because the website is shown
in a framed display. On the other hand, in truly “free-viewing”
(frame less) environments, such as looking out over Times
Square, it is less meaningful to consider center-bias. In this
paper, we have used the DTC re-weighting process for the model
comparison in an attempt to neutralize this bias.

The proposed model has the advantage of being a relatively
simple extension of the proto-object saliency model which
is based on biologically-plausible mechanisms, and supported
by neurophysiological measurements (Zhou et al., 2000). In
addition, themodel does not need training data, although it needs
parameter adjustment. Because of its feed-forward nature, it can
also be readily implemented in hardware (Molin and Etienne-
Cummings, 2015; Thakur et al., 2017; Narayanan et al., 2019).
Although a strictly feed-forward architecture lacks biological
plausibility, it should be noted that the model does mimic
feedback pathways by opening feedback loops and reproducing
them in a feedforward manner for computational efficiency.

CONCLUSION

How texture is represented and processed in visual cortex is not
well understood. Here, we have implemented a simple nonlinear
texture feature detection mechanism inspired by Sutter et al.
(1995), Mareschal and Baker (1998), Freeman et al. (2013) and
incorporated it into a proto-object based saliency model. The

performance of the model has been validated against human
fixation data, and it shows substantial improvement over a
previously published proto-object based saliency model without
the texture feature channel, as well as over most state of the art
models with other architectures against that we compared it.

Texture is a complicated feature, and the model implemented
in this paper loses high-resolution information. Further ideas
gleaned from biological systems will need to be added to the
model to improve its performance in this respect. Predicting
where humans fixate can enhance effectiveness of advertisements,
traffic signs, virtual reality displays, and other applications. It
may also be used to identify atypical texture patterns in nature,
such as camouflage, because these models emulate how humans
see and humans are very good at performing such texture
segmentation tasks.
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