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Despite the recent progress in AI powered by deep learning in solving narrow tasks,

we are not close to human intelligence in its flexibility, versatility, and efficiency. Efficient

learning and effective generalization come from inductive biases, and building Artificial

General Intelligence (AGI) is an exercise in finding the right set of inductive biases that

make fast learning possible while being general enough to be widely applicable in tasks

that humans excel at. To make progress in AGI, we argue that we can look at the human

brain for such inductive biases and principles of generalization. To that effect, we propose

a strategy to gain insights from the brain by simultaneously looking at the world it acts

upon and the computational framework to support efficient learning and generalization.

We present a neuroscience-inspired generative model of vision as a case study for such

approach and discuss some open problems about the path to AGI.

Keywords: Recursive Cortical Network, AGI, generative model, neuroscience inspired AI, biologically guided

inductive biases

1. INTRODUCTION

Despite revolutionary progress in artificial intelligence in the last decade, human intelligence
remains unsurpassed in its versatility, efficiency, and flexibility. Current artificial intelligence,
powered by deep learning (LeCun et al., 2015; Schmidhuber, 2015), is incredibly narrow. For each
task that needs to be tackled, one has to laboriously assemble and label data, or spend an enormous
amount of computational power to let the system learn through trial and error. Compared to
humans, even extremely simple tasks require orders of magnitude more data to train, and the
performance of the trained systems remains way too brittle (Lake et al., 2016; Kansky et al., 2017;
Marcus, 2018; Smith, 2019). For these reasons, today’s AI systems are considered to be narrow,
while human intelligence is considered to be general. What would it take to build an artificial
general intelligence (AGI)?

To build AGI, we need to learn the principles underlying the data efficiency of the human brain.
The need for this can be argued from the viewpoint of the No Free Lunch theorem (Wolpert and
Macready, 1997). An algorithm’s efficiency at learning in a particular domain comes primarily from
the assumptions and inductive biases that the algorithm makes about that domain, and no single
algorithm can be efficient at all problems. The more assumptions an algorithm makes, the easier
learning becomes. However, the more the assumptions, the fewer the number of problems that can
be solved. This means that generality and efficiency of the brain has to be limited to certain class of
problems—the kinds of problems humans are good at solving efficiently with their current sensory
apparatus, and whatever generalizations could be derived from those principles to other domains
with the use of novel sensors (Bengio and LeCun., 2007; George, 2008; Locatello et al., 2019).
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To build machines with general intelligence, the question we
need to ask is this: What are the basic set of assumptions that
are specific enough to make learning feasible in a reasonable
amount of time while being general enough to be applicable to
a large class of problems? Our brain is proof that such a set of
assumptions exists. Looking into the brain helps to speed up our
search for theGoldilocks set of inductive biases, and to tease apart
the interdependent representational scaffolding by which they
need to be operationalized in a machine (George, 2017).

But just how should one look into the brain in search of
inductive biases and principles of general intelligence? Which
brain should one look into first? Should we start from simpler
creatures, like worms and flies, and work our way up to humans?
Even for mammalian brains, there is a bewildering array of
experimental findings in neuroscience, scaling several levels of
investigation from single neuron physiology to microcircuits of
several hundred cells to psychophysical correlates of intelligence
spanning several brain areas. It is not clear which of these
insights are relevant for machine learning and artificial
intelligence because some of the observations might relate to
the implementation substrate, or arbitrary constraints on the
amount of hardware. To be of use, we need principles that are
relevant for information processing (Marr, 1982). In this paper
we will address this problem and describe a systematic process
by which we can look at the brain for insights into building
general intelligence.

First, we will describe an evolutionary perspective through
which we could view the contemporary advancements and the
path to general intelligence. Then, we describe why common
sense is the holy grail of general intelligence and how even
perception and motor systems need to be considered in concert
with the goal of achieving common sense. Looking into the
brain should be from the point of gaining insights regarding
the innate biases and representational structures needed to
efficiently acquire, and manipulate commonsense knowledge
while interacting with the environment. We then describe a
systematic “triangulation” method for looking at the brain for
these kinds of insights. We exemplify this method using our
work on Recursive Cortical Network (RCN) (George et al.,
2017), a generative vision model that is built according to these
principles. We then discuss a few open questions regarding
general intelligence before offering closing thoughts.

2. GENERAL INTELLIGENCE: AN
EVOLUTIONARY PERSPECTIVE

2.1. Direct Fit on Isolated Tasks Does Not
Produce General Intelligence
From the origin of life circa 650 million years ago to now,
evolution has produced creatures of varying levels of complexity
and adaptive behavior. These behaviors are controlled by sensors
and circuits that were tuned for fitness over many generations
(Schneider, 2014). These building blocks are subsequently reused
to form of new, more complex organisms with more intricate
mechanisms. The result of this is a host of organisms that are
precisely tuned to the niches they live in. A frog is exceptional

at catching flies, and geckos are very adept at climbing walls.
However, most of these creatures rely on simple stimulus-
response mappings for their behaviors, without a need for
intricate internal models of the world they live in.

While these organisms exhibit sophisticated behavior
powered by intricate circuits, each circuit, co-evolved with
a particular sensory apparatus, is idiosyncratic. Reverse
engineering those circuits might only reveal the clever and
efficient implementations of specific functions rather than
general principles of intelligence. This situation is similar to
reverse engineering a highly specialized application specific
integrated circuit, or highly optimized code1. However complex,
these specialized circuits are not the seat of general intelligence.

Most of the credit for the flexible intelligence exhibited by
humans and other mammals go to the newest evolutionary
addition to our brains—the neocortex (Rakic, 2009). Necortex,
in conjunction with old brain circuits like thalamus and
hippocampus, allows mammals to build rich models of the world
that support flexible behavior under various task demands. In
the context of evolutionary history, neocortex is a recent event.
Animals with neocortex were not even the most dominant
ones on earth. For the longest time, dinosaurs dominated the
earth and mammals were relegated to a nocturnal niche, from
which they expanded only after the extinction of dinosaurs
(Maor et al., 2017)2.

The evolutionary history of general intelligence has many
parallels to the current situation in artificial intelligence. Deep
learning can be used to train the parameters of large multi-layer
artificial neural networks to map training data to desired labels
or actions. This is analogous to how evolution created different
animals. Just like evolutionary algorithms, gradient descent is
a general algorithm that can be used to fit the parameters of
a function approximator so that it can interpolate to represent
its stimulus space well (Hasson et al., 2020). Networks trained
using deep reinforcement learning and large amounts of data
can learn specific stimulus-response mappings that enable them
to outperform humans in specific versions of video games, but
struggle when the game is even slightly altered.

Each deep learning network trained for an application can be
thought of as an organism trained for its own niche, exhibiting
sophisticated-looking behavior without rich internal models. The
lesson from evolutionary history is that general intelligence was
achieved by the advent of the new architecture—the neocortex—
that enabled building rich models of the world, not by an
agglomeration of specialized circuits. What separates function-
specific networks from the mammalian brain is the ability to
form rich internal models that can be queried in a variety of ways
(Hawkins and Blakeslee, 2007; Buzsaki, 2019).

Compared to the diversity of old-brain circuits in different
animals, the neocortex is largely a uniform laminated sheet of
cells divided into ontogenetic and functional columns. Arguably,

1Something similar happens when evolutionary algorithms are used to discover

electronic circuits. The evolved circuits use clever coupling between transistors that

might be idiosyncratic to a particular wafer.
2If survival and dominance are what is needed, brute power and instincts can go

very far without great thinking capabilities.
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cortical columns can be considered as basic functional module
that is repeated throughout the cortex (Mountcastle, 2003).
Although regional and functional specializations exist, the
expansion in motor and cognitive capabilities of mammals and
humans have been largely achieved through an expansion of the
neocortical sheet (Rakic, 2009). The uniformity of the neocortex
gives support to the idea that a common set of principles
can be found to create general intelligence (Hawkins and
Blakeslee, 2007; Harris and Mrsic-Flogel, 2013). Functionally,
the neocortex, in combination with the hippocampal system
is responsible for the internalization of external experience
(Buzsaki, 2019), by building rich causal models of the world
(Pearl and Mackenzie, 2018). In humans and other mammals,
these models enable perception, action, memory, planning,
and imagination.

2.2. Common Sense Is the Holy Grail
Building rich models of the world and being able to query
that in context-appropriate ways is a requirement for general
intelligence. From the moment we are born, we begin using our
senses to build a coherent model of the world. As we grow, we
constantly refine our model and access it effortlessly as we go
about our lives. If we see a ball rolling onto the street, we might
reason that a child could have kicked it there.When asked to pour
a glass of wine, we would not search for a bottle opener if the
wine is already in the decanter. If we are told, “Sally hammered
the nail into the floor,” and asked whether the nail was vertical or
horizontal, we can imagine the scenario with the appropriate level
of detail to answer confidently: vertical. In each of these cases,
we are employing our unrivaled ability to make predictions and
inferences about ordinary situations. This capacity is what we call
common sense (Davis and Marcus, 2015).

Common sense arises from the distillation of past experience
into a representation that can be accessed at an appropriate level
of detail in any given scenario. Although commonsense is largely
treated as a language understanding problem, a large portion of
the required knowledge is non-verbal and stored in our visual
and motor cortices to form our internal model of the world
(Lee, 2015). For common sense to be effective it needs to be
amenable to answer a variety of hypotheticals—a faculty that we
call imagination. This leads us to causal generative models (Pearl
and Mackenzie, 2018), and inference algorithms (Pearl, 1988)
that can query these models flexibly (Lázaro-Gredilla et al., 2020).
Insights from the brain can help us understand the nature of
these generative models and how to structure them for efficient
learning and inference.

3. THE TRIANGULATION STRATEGY FOR
LEARNING LESSONS FROM THE BRAIN

Neuro and cognitive sciences produce a vast array of data every
year. It is natural for a machine learning researcher to get
intimidated by this complexity and conclude that nothing can be
learned from the brain that is of value to artificial intelligence.
Similarly neuroscientists who want to understand the brain could
feel disheartened by the variance in the experiments.

We believe there is a systematic way to overcome these
barriers to extract principles that are relevant for learning
and inference, while also understanding cortical circuits from
the view of information processing. The trick is to investigate
three aspects at the same time: the brain, the world, and the
computational framework (Figure 1). The world is not random.
Laws of physics determine how the world is organized, and the
structure of the brain circuits is tuned to exploit the regularity
of this world (Simoncelli and Olshausen, 2001). The match
between the brain and the world also has algorithmic advantages
(Conant and Ross Ashby, 1970). The triangulation strategy is
about utilizing this world-brain-computation correspondence:
When we observe a property of the brain, can we match that
property to a an organizational principle of the world? Can
that property be represented in a computational framework to
produce generalizations and learning/inference efficiency? If we
find an observation that can be explained from all three angles,
we can be reasonably confident that we have found a property
that is useful.

To further determine whether a property is useful, it has to be
incorporated into a model that solves problems from the world.
Solving real-world problems that the brain can solve is another
way in which we establish correspondence between all the three
corners of the triangle. While solving real-world problems, it is
important to test for the characteristics of the neocortex—model-
building, data-efficiency, and strong generalization. If we were
correct in our hypotheses about the inductive biases learned from
the brain, it would be verified by testing for these properties in the
real-world task performance of the model.

This triangle also helps us understand the different kinds of
models researchers build. Computational neuroscience models
often deal with just the observed phenomena from the brain,
often missing the connections with properties of the world, or
algorithmic principles, or both. Pure machine learning models
deal with only two vertices of the triangle, ignoring insights that
might be learned from the brain.

In the coming sections we will use this framework to analyze
the set of assumptions we used in our work on Recursive Cortical
Networks (RCN) (George et al., 2017), which is a neuroscience-
guided generative vision model that we developed. We argue that
simultaneously considering all three vertices of the triangle is
fruitful and advantageous.

4. RECURSIVE CORTICAL NETWORK: A
VISION MODEL GROUNDED IN
PRINCIPLES LEARNED FROM COGNITIVE
SCIENCE AND NEUROSCIENCE

4.1. What Kind of Visual Generative Model
Is Suitable for Common Sense?
Common sense requires storing a large amount of knowledge
about our world in our visual and motor systems and then
recalling those in the appropriate moments in the appropriate
level of detail. Consider again the sentence “Sally hammered
a nail into the floor,” and how you arrived at the answer for
the question whether the nail was horizontal or vertical. People
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FIGURE 1 | The triangulation strategy for extracting principles from the brain looks at three aspects at the same time.

answer this query by simulating the scenario of Sally, the floor,
and the action of pounding using a hammer, and then retrieving
the answer from the simulation (Zwaan and Madden, 2005).
Although the question and answer are presented in natural
language, most of the information for performing this simulation
are in the visual and motor systems. Answering the above query
is a typical example of common sense.

To support common sense, our perceptual and motor

experience need to be abstracted to concepts (Lázaro-Gredilla

et al., 2019) and linked to language, as described by Barsalou
in his work on perceptual symbol systems (Barsalou, 1999).

According to Barsalou, in addition to the usual tasks of object and
activity recognition, segmentation, reconstruction, etc., typically

associated with a visual system, for a visual generative model

need to have the following characteristics to support concept
formation and commonsense:

• Componential and compositional: The generative model

should be componential and compositional as opposed to
holistic andmonolithic. Photo realistic image generation is not
the goal of this generativemodel. Instead, the generativemodel

should allow for composing different elements of a scene—the
objects, object-parts, and backgrounds in different ways.

• Factorized: The generative model should have factorized
representations for different aspects of objects, backgrounds
and interactions. An example of factorization is shape and
appearance, or contours and surfaces.

• Hierarchical: The model contains multiple layers with
identical structure, with higher layers being formed by the
aggregation of pieces of the lower layers, in a recursive way.

• Controllable: The generative model should allow for top-down
manipulation of its different components.

• Flexible querying, and inference to best explanation: The
generative model should be able to perform inference to best

explain the evidence in the scene. Moreover, the generative
model should support flexible querying, not just the type of
query it was trained to answer.

Typical computer vision work often focuses on optimizing for a
particular query like classification, or segmentation. Even when
an underlying feature set is reused, the inference networks
are different for the different queries. Our goal in building
RCN (George et al., 2017) was different—we wanted to build
a probabilistic model on which recognition, segmentation,
occlusion reasoning, curve tracing etc., are different queries
on the same model and can be answered without specifically
amortizing a neural network for the particular query. This
meant simultaneously satisfying many functional requirements
(Table 1), and multiple tasks (Figure 5) instead of optimizing
for a single query-dependent objective. It is an encouraging sign
that many more recent models (Linsley et al., 2018; Kietzmann
et al., 2019; Yildirim et al., 2020) have started incorporating
insights from neuroscience toward building a unified general
model for vision.

We now consider the different properties of RCN from the
viewpoint of triangulation strategy where we describe their
neuroscience origins, their correspondence with the world, and
their computational underpinnings.

4.2. Shape Bias and Factorized
Representation of Contours and Surfaces
4.2.1. Biological Observation
The ventral visual pathway that is responsible for object
recognition and segmentation is known to be organized in
parallel interacting streams (Figure 2A) called blobs and inter-
blobs in the primary visual cortex, and stripes and inter-
stripes in the secondary visual cortex (DeYoe and Van Essen,
1988; Felleman and Van Essen, 1991). Blobs and inter-blobs
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TABLE 1 | Biological features and their computational counterparts that were simultaneously considered in the development of the RCN visual generative model.

Biological feature Computational/algorithmic reason Representation in RCN

Blobs and interblobs Curvelet-like smoothness of natural signals, an example

of which is contour-surface factorization

Structure of the contour-surface factor

Lateral connections between inter-blob

columns

Higher-order contour-continuity in natural signals Cloned structure of lateral connections for higher-order

interactions.

Object-based top-down attention Compositionality, modularity Only positive weights. Object-background factorization

Hierarchy Efficient learning and inference Hierarchically structured

Border-ownership coding Required when objects are represented in a factorized

and hierarchical manner

Two clones of each feature for border-ownership coding

Feedback connections Inference requires explaining away when the

representation is compositional

Message-passing algorithms automatically do explaining

away

Different dynamics for contour and

surface features

Convergence of message-passing depends on the

schedule

Biologically inspired message-passing schedule works better

are inter-digitated cortical columns where blobs represent
unoriented surface patches and inter-blobs predominantly
represent oriented contours (Livingstone and Hubel, 1988;
Shipp, 1995). This segregation persists into V2 and beyond
(Shipp and Zeki, 1989; Zeki and Shipp, 1989). What would be
the computational underpinnings and real-world correlates of
this observation?

Psychophysically, it is known that humans can recognize
shapes even if the surface appearances are altered significantly
from their canonical appearances. For example, people can
readily identify a banana that is made of rainbow colors or a chair
made of ice on their first encounters of those unusual appearances
(Figure 2B). Children exhibit a shape bias that make them
recognize shapes irrespective of appearance. The neurobiological
and psychophysical data points to a factorized representation of
shape and appearance (Kim et al., 2019). Children can recognize
line drawings of objects without being explicitly trained for those
(Hochberg and Brooks, 1962).

4.2.2. Property of the World
Is this kind of factorization a general principle that helps in
many situations or is it a vision-specific hack? It turns out that
cartoon + texture image decomposition is an idea suggested in
image processing research for the compression and restoration
of natural images (Buades et al., 2010). This idea relies on the
observation that images are piece-wise smooth in two dimensions
with patches of same appearance, and their discontinuities are
contours. More generally, studies by Chandrasekaran et al. (2004)
have suggested that natural signals, which include images, videos,
speech, shockfronts, etc. share smoothness constraints that are
similar, and can be encoded as a piecewise smooth function.More
precisely, each piece or surflet is a so-called horizon function,
defined as

f (x) =

{

1 if b(y) ≥ xN
0 if b(y) < xN

with functions b :[0, 1]N−1

→ [0, 1] and f :[0, 1]N → {0, 1}.

This formulation is motivaged in Chandrasekaran et al. (2004)
from a general perspective: “Real-world multidimensional

signals, however, often consist of discontinuities separating
smooth (but not constant) regions. This motivates a search for
sparse representations for signals in any dimension consisting
of regions of arbitrary smoothness that are separated by
discontinuities in one lower dimension of arbitrary smoothness.”
From this perspective, contour-surface factorization could be a
general principle that is used by the cortex to deal with natural
signals, and this bias could have been something discovered
by evolution.

This innate bias of the visual system could also explain why
humans are not very good at recognizing or remembering QR
codes. While these two dimensional patterns are now ubiquitous
because of the ease by which computer vision systems can reliable
detect them, people find them hard to parse or remember. That
would make sense, because a QR code is not a natural signal
of the kind the human visual system has an innate bias toward.
On the other hand, a convolutional neural network (CNN) can
be trained to classify QR codes, or even noise patterns, and this
could be indicative of the lack of human-like biases in a CNN.

4.2.3. Computational and Algorithmic Perspective
Factorizations in concordance with the structure of the data
allow for efficient learning, inference and generalization. Our
hypothesis is that the blob-interblob structure in the visual
cortex corresponds to a factorized representation of contours
and surfaces (Figures 2C,D) similar to the Cartoon+Texture
representation (Buades et al., 2010) proposed in image
processing. Earlier computational realizations of this idea
have include Markov Random Field models where the surface
interpolation process and the boundary detection process are
combined into an inter-active and concurrent system (Lee,
1995), or as an explicit neural network model (Grossberg, 2009).

4.3. Lateral Connections for Contour
Continuity
4.3.1. Biological Observation
Pyramidal neurons in the superficial layers of the visual
cortex have extensive inter-columnar lateral projections.
These connections link functionally similar regions: blobs
are predominantly connected to blobs and interblobs are
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FIGURE 2 | Contour-surface factorization. (A) The primary visual cortex has columns that are divided into blobs and interblobs, and the segregation remains in how

they project to V2 (image credit: Federer et al., 2009). (B) People can recognize objects with unusual appearances, even when they are exposed to it for the very first

time. (C) RCN consists of a contour hierarchy and a surface model. The surface model is a CRF. The factors between different surface patches encode surface

similarity in the neighborhood and those are gated by the contour factors. (D) Different surface patterns can be generated by instantiating a particular set of contours,

and then sampling from the surface model.
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FIGURE 3 | Lateral connections in the visual cortex and their computational significance. (A) Lateral connections project long distances and connect to columns that

are of similar orientation (Bosking et al., 1997). (B) Analysing the co-occurrence statistics of contours in natural images show that they have higher-order structure

than just pair-wise (image credit: Lawlor and Zucker, 2013). (C) Visualization of third-order structure in natural contours show that co-circularity and collinearity are

represented (image credit: Lawlor and Zucker, 2013). (D) Lateral connections in RCN enforce contour continuity. (E) Samples with and without lateral connections. (F)

The effect of flexibility of lateral connections at different levels in RCN.

predominantly connected to interblobs (Yabuta and Callaway,
1998). Within the interblob subsystem, patches of intrinsic lateral
connections tend to link columns sharing similar orientation
preferences (Figure 3A) (Malach et al., 1993). In addition,
neurophysiological experiments show that the neural responses

to oriented bars contained within the classical receptive field are
enhanced by coaxially placed flanking bars outside the classical
receptive field (Hess et al., 2015).

Psychophysics observations show that contour integration is
part of perception. When discrete line segments that follow
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Gestalt “good continuation” laws are embedded in a background
of randomly oriented line segments, people easily group together
the global contour (Hess et al., 2015). Computational researchers
have suggested that long-range horizontal connections in the
visual cortex are engaged in the geometrical computations
required for contour integration (Hess et al., 2003; Ben-Shahar
and Zucker, 2004) (Figure 3B).

4.3.2. Property of World’s Data
Contour continuity is an evident property of real-world objects,
where sharp corners happen less frequently than smooth
continuations. This is a particular case of the more general
preference for smoothness that we find in real data. This is
well-known by data science practitioners: when using a support
vector machine or a Gaussian process, the most common non-
linear kernel choice is the radial basis function. This choice
(whose spectral representation is also a Gaussian) amounts to
encoding a world in which low frequencies (smooth signals) tend
to dominate.

4.3.3. Computational and Algorithmic Perspective
Computationally, lateral connections and contour integration
(Zhaoping, 2011) play an important role in hierarchical
models with invariant representations by enforcing selectivity
that is lost via the pooling operation. The Hubel-Wiesel
model of stacking simple-cells for feature detection, and
complex cells for translation pooling is the underlying
mechanism for local transformation invariance in neocognitrons,
HMAX-models, HTMs, and CNNs. However, uncoordinated
pooling of features results in poor shape representations
because the different components that constitute a higher-
level feature can move independently (Geman, 2006).
In a hierarchical model that hopes to achieve invariance
through pooling needs to have lateral connections to
enforce selectivity.

Clonal neurons enable higher-order lateral interactions.

Clonally related excitatory neurons in the ontogenetic column
are known to share similar physiological functions, such
as visual orientation selectivity (Li et al., 2012; Ohtsuki
et al., 2012). Recent studies by (Cadwell et al., 2020)
suggest that, for pyramidal neurons in layer 2/3, shared
input from layer 4 could be the source of similarity in
orientation selectivity. Furthermore, these studies suggest
that integration of vertical intra-clonal inputs with lateral
inter-clonal input maybe a developmentally programmed
connectivity motif.

RCN offers a potential explanation for the computational
role of these clonal motifs. The contour integration association
field need to capture long-range dependencies like curvature
(Figure 3C), not just local collinearity provided by pairwise
association field (Ben-Shahar and Zucker, 2004). The clonal
neurons offer an efficient mechanism for capturing such long-
term dependence. In RCN, coordinating receptive fields at
different hierarchical levels is achieved by keeping separate
copies (Figures 3D–F) of lateral connections in the context of
different higher-level features; superposing these different lateral

connections by marginalizing over the parent features would give
rise to a pair-wise association field.

4.4. Hierarchy
4.4.1. Biological Observation
It is well-established that the visual cortex is a hierarchy
(Felleman and Van Essen, 1991). In the ventral stream,
information gets passed successively through visual areas V1, V2,
V4, and IT. The neurons in region V1 see only a small portion
of the visual field. In general the receptive field sizes increase as
you go up in the hierarchy. Physiological observations show that
neurons in V1 respond to local oriented edges, or local luminance
or color patches, whereas neurons in IT represent whole objects,
with intermediate levels representing contours and object parts
(Connor et al., 2007; Dicarlo et al., 2012).

4.4.2. Property of the World
Natural and man-made dynamic systems tend to have a nested
multi-scale organization, which might be a general property of
all physical and biological systems. According to Simon (1973),
building complex stable systems require the re-use of stable sub-
systems that can be assembled together to build larger systems.

4.4.3. Computational Perspective
According to the good regulator theorem (Conant and
Ross Ashby, 1970), it would make sense that the visual system
evolved to exploit the hierarchical structure of the visual world.
By mirroring the hierarchical structure of the world, the visual
cortex can have the advantage of gradually building invariant
representations of objects by reusing invariant representations
for object parts. Hierarchical organization is also suitable for
efficient learning and inference algorithms.

4.5. Feedback Connections, Recurrent
Processing, Inference, and Predictive
Coding
4.5.1. Biological Observations
Cortical connections are reciprocal. For every feedforward
connection, there is a corresponding feedback connection that
carries information about the global context. The origination,
termination, and intra-columnar projections of feedback
pathways follow layer-specific patterns that are repeated across
multiple levels of the visual hierarchy (Thomson and Lamy,
2007). The feedback pathway modulate the responses of neurons
in the lower-levels in myriad ways (Hochstein and Ahissar,
2002; Gilbert and Li, 2013). The feedback pathway, along with
lateral connections, shape the tuning of the neurons beyond
the classical receptive field by gradually incorporating global
contextual effects through recurrent computation (Gilbert and
Li, 2013). Feedback connections are implicated in texture-
segmentation (Grossberg and Mingolla, 1985; Roelfsema et al.,
1998), figure-ground separation (Hupé et al., 1998; Lamme et al.,
1999), border-ownership computation (Von der Heydt, 2015),
and object-based or feature-based attention (Tsotsos, 2008).
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4.5.2. Property of World’s Data
Natural signals have a high amount of variation. The same
underlying cause, the presence of an object, can manifest in many
different ways in sensory data based on the location, viewpoint,
lighting, shadows, and other influences on the scene. Any local
observation about the world is likely to be ambiguous because of
all the factors of variation affecting it, and hence local sensory
information needs to be integrated and reinterpreted in the
context of a coherent whole. Feedback connections are required
for this.

4.5.3. Computational and Algorithmic Perspective
Although there is rich data about the anatomy and physiology
of feedback connections, their functional roles haven’t
been fully integrated into a model in the context of real-
world problems. In RCN, feedback connections have three
main roles:

Vision as a generative model. Feedback connections are
key to treating perception as a generative model. Rather than
treating vision as a feed-forward cascade of filters, as in a
deep CNN, the generative model approach assumes that the
brain is building a model of the causal processes underlying
vision. In this perspective, perception is the process of inverting
this process through inference. The generative model can be
encoded efficiently in a probabilistic graphical model that mirrors
the hierarchical organization of the world. Inference can be
achieved efficiently through local message-passing algorithms
like belief propagation (Pearl, 1988). In this setting feedback
messages are just the top-down messages in a probabilistic
graphical model.

Explaining away and resolving ambiguity. A general
principle of vision is that local information is ambiguous
and that it needs to be integrated and explained in terms
of the global context. This is true even for CAPTCHAs. The
ambiguity of local evidence is not just at the local edge or local
contour level—even character-level percepts that make sense
locally could be in conflict with the best global explanation. To
evaluate the evidence in a scene to arrive at the approximate
best global explanation (approximate MAP solution), local
evidence has to be properly ’explained away’ in the global
context (Figure 4).

Binding based on top-down attention.An object is not always
presented as contiguous in space. Noise and occlusion can
separate out the parts of an object, but visual perception can
bind those parts together into a coherent whole. Feedback and
lateral propagation is required to support this kind of binding.
When multiple objects with different attributes (for example,
shape and color) are present in a scene, the attributes need to be
bound to the right object. Top-down attention enables this kind
of binding.

Top-down object-based attention is not based on spatial
separation of objects. It works even when objects are completely
overlapping in space. Being able to bind the contours and
attributes of overlapping objects imposes some architectural
constraints on the model. In RCN, these requirements translate
to positive only weights, and lateral connections.

4.6. Bringing It All Together: Structured
Probabilistic Model With Belief
Propagation for Inference
We discussed some example representational principles and
model constraints that can be learned from the brain by utilizing
the triangulation strategy we outlined earlier. These principles
are interconnected with each other, and the mutual constraints
that they offer can help in figuring out the whole puzzle just
like the different pieces of a jigsaw puzzle. Building a unified
model that brings all these principles together, testing them on
real world data, and iterating to improve the model and expand
its capabilities is one way in which we can work toward building
general intelligence. In this section we make a few remarks about
building the joint model.

4.6.1. Unified Vision Model, Multi-Task Performance,

and Out-of-Distribution Generalization
Solving text-based captchas was a real-world challenge problem
selected for evaluating RCN because captchas exemplify
(Mansinghka et al., 2013) the strong generalization we seek in
our models—people can solve new captcha styles without style-
specific training. In addition, we tested RCN for multiple tasks,
such as classification, segmentation, generation, reconstruction,
in-painting, and occlusion-reasoning—all using the same model,
and without task-specific training (Figure 5). We then compared
its performance against models that are optimized for the
specific tasks. Moreover, in each of these tasks we tested for
data-efficiency and for generalization out of the training set
distribution. Building a unified model might have the short term
disadvantage of not being the best compared to models that are
directly optimizing the task-relevant cost function, but in the
longer term these models are likely to win out due to their data
efficiency and strong generalization.

4.6.2. Message-Passing Inspired by Cortical

Dynamics
RCN was instantiated as a probabilistic graphical model (PGM)
(Pearl, 1988). PGMs provide a rigorous framework for specifying
prior knowledge, and uncertainty and inference are first class
citizens of the framework. Moreover, graphical models allow
the encoding of causality (Pearl, 2000). However, inference in
complex PGMs like RCNs can be very challenging. There are no
efficient algorithms that are theoretically guaranteed to give even
approximately correct answers when the PGMs have multiple
loops as is the case for RCNs.

The speed of cortical dynamics in visual perception points
to message-passing algorithms (Pearl, 1988; Lee and Mumford,
2003) as a plausible mechanism for inference. In addition
to the structural constraints learned from neuroscience, the
representational choices in RCN were determined under the
constraint that accurate inference should be possible using
message-passing. Scheduling of the messages have a significant
influence on the convergence and accuracy of loopy belief
propagation messages, and we found that cortical dynamics
(Lamme et al., 1999; Lee and Nguyen, 2001) can be used as
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FIGURE 4 | The need for explaining away in parsing visual scenes. (A) Local evidence suggests that the character is “m.” Incorporating global context shows that

“un” is a better explanation. Even if “m” is strong in a feed-forward pass of inference, its evidence needs to be explained-away. (B) Feedforward-feedback iterations

are used to explain away evidence to arrive at the globally best solution. Alternative partial explanations are hallucinated in the process of analyzing the scene.

a guide to design an advantageous propagation schedule. Such
constraints could be useful for future modeling as well.

4.6.3. Connections to Predictive Coding and the Free

Energy Principle
RCN is compatible with the overarching frameworks of Free
Energy Principle (Friston, 2010), and the observations regarding
predictive coding in the brain. Some variants of message-passing
algorithm are known to minimize approximations of the Bethe
free energy (Yedidia et al., 2001). The top-downmessages in RCN
can be thought of as predictions in a predictive coding model.
Many predictive coding models assume that the predictions
need to be subtracted from the bottom-up input, but those
assumptions are valid only in settings similar to a Kalman filter
model (Friston, 2010). RCN uses a more generalized version of
predictive coding where top-down messages are combined with
bottom-up evidence in the appropriate way depending on how
multiple causes interact to generate the data.

5. DISCUSSION: OPEN QUESTIONS
ABOUT BUILDING AGI

5.1. Is AGI Even Possible? Shouldn’t It Be
Called AHI?
We consider Artificial General Intelligence (AGI) to be the
artificial instantiation of human-like general intelligence. When
we understand the general principles behind the operation of the
human brain, we will be able to build machines that learn and
generalize like it, and that will be AGI. We know we can build it
because there is an existence proof.

Why don’t we call it Artificial Human Intelligence (AHI)
then? Since we are constructing this artificially, it will not have
some of the biology-induced arbitrary constraints of the human
brain. Perhaps our implementation can have unlimited working
memory. Perhaps our implementation can have a fast internet
interface directly hooked in. By instantiating the principles
of intelligence in a different substrate, we already make it

more general than AHI, which would be an exact replica of
human-like intelligence.

We know that human-intelligence exists, but that doesn’t
mean AHI can be built. Are we really interested in putting in
all the constraints and the same embodiment in our intelligent
machines so that we create AHI, and not AGI? We wager that it
would be simpler to create AGI.

Our brains are general, but that generality has limits.
The success of biological evolution in creating our brains
is not an existence proof for the same process resulting in
an arbitrarily powerful intelligence [call it Artificial Universal
Intelligence (AUI)]. Like perpetual machines, AUI is easy to
imagine, but infeasible to build because it depends on physically
impossible constructs like infinite computing power or infinite
amounts of data. Delineating the limits of generality of human
intelligence, and helping to understand which of those limits
are fundamental algorithmic limits as opposed to arbitrary
hardware constraints that biology had to adhere to is another
way in which cognitive science and neuroscience can help
AI research.

5.2. Don’t We Need a Precise Mathematical
Definition of AGI to Build One?
Researchers sometimes get hung up on the definition of
intelligence, and some argue that without a well-accepted
definition, progress cannot be made and the problem cannot be
worked on. We disagree with this characterization.

What was the definition of the first iPhone? Complex
products like iPhone do not get built from a one-
sentence, or multi-sentence definition. Instead, they are
built from functional requirements, that are also updated
iteratively. Not all functional requirements are nailed
down up front. Prototypes are built and iterated on,
and the functional requirements change based on the
built prototypes.

AGI does have functional specifications. We can reference
the learning, acting, and reasoning abilities of children to
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FIGURE 5 | (A) Object recognition and object segmentation are two entangled problems for which a joint solution is necessary. (B) Test data with types of noise that

were never seen during training degrade the performance of a CNN significantly more than RCN. (C) Occlusion reasoning increases the performance of RCN when

objects overlap and allows hidden edges of an object to be recovered. (D) An example of parsing by RCN on a real world image. (E) RCN can render novel variations

of characters after one-shot training. (F) A variational autoencoder and RCN try to reconstruct a digit in the presence of some type of noise that it was not trained for.

(G) RCN is a single vision model that can perform all the required functions, as opposed to a collection of different models solving each of them.

understand what the functional requirements of an AGI are,
and productive research programs can be built based on those.

Just like the built iPhone defines what the product is, the

final output of this research process will be the definition

of AGI.

5.3. Shouldn’t We Build a Worm-Level or
Wasp-Level Intelligence Before Building
AGI?
Spiders, worms, insects—they all exhibit very sophisticated
behavior using biological neural networks that are vastly simpler
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than our brains. How do they do this? We don’t even understand
these simple neural circuits, so how could we understand our
more complex brain? Shouldn’t we try to reverse-engineer the
neural circuit of a simpler animal, a spider, before we take on the
complexity of the mammalian brain? While this is a legitimate
question, the evolutionary history of intelligence described in
section 2, suggests that a path to general intelligence do not
necessarily need to go through these steps. We know that
evolution can produce sophisticated, but idiosyncratic, circuits
that function well in ecological niches. Reverse engineering the
circuit for a specific organism can be a very hard task in itself,
and achieving that might not give us much insight into the
function of another organism with a different circuit. In contrast,
the general uniformity of neocortex, and the preserved brain
structures across different species, can provide an easier path for
identifying general principles of general intelligence.

5.4. Are Artificial Neural Networks the Best
Model Class for Building Brain-Like
Intelligence
While artificial neural networks are excellent at function
approximation, building general intelligence requires model
building, inference to best explanation, and causal inference.
These are not natively supported in artificial neural networks.
On the other hand causal graphical models, and probabilistic
programming offer sophisticated tools that allow for model
building and inference. However, learning complex graphical
models remains a significant challenge. While ANN function
approximators can be learned with minimal set of assumptions, it
is possible that learning graphical models will require muchmore
inductive biases and structural assumptions than that are used
by contemporary machine learning researchers. Our view is that
the solution for AGI will need to combine tools from graphical
models, causal learning and inference, program learning, and
structure search, in addition to gradient-based optimization. The
representational structure might to be graphical, with accelerated
learning and inference obtained by combining it with neural
networks (Lázaro-Gredilla et al., 2020).

5.5. Do Hybrid Models Imply Neural
Networks for Perception and Symbols on
Top of Neural Networks for Reasoning?
One of the shortcomings of neural networks is the difficulty
in obtaining systematic generalizations that are explicit in
factorizations in graphical models or in symbolic structures.
Several researchers have suggested that the final solution for
general intelligence will have components that are neural-net-
like and components that are symbol manipulation-like. One
take on this is that neural networks will solve the pixel-to-
symbol problem, and that symbol-problems are then handled
by a symbol manipulating model, a view popularized as system-
1 and system-2 in Thinking Fast and Slow by Kahneman
(2011). We take the position that such strict separation between
perception and cognition is unlikely to be true. Problems in
perception still need dynamic inference, which means that the
reasoning components will need to go all the way down to

sensory regions, so that perception and cognition can work
together. In our opinion, hybrid models are more likely to
be a combination of graphical models, graph-structured neural
networks, causal inference, and probabilistic programs (Lázaro-
Gredilla et al., 2019). Neural networks will help to accelerate
inference and learning in many parts of these hybrid models.
In that perspective, system-1 and system-2 are different modes
of inference on the same underlying model rather than two
separate systems.

6. CONCLUSION

The brain is often touted in articles about AI as a source
of inspiration. However, the development process of new AI
algorithms or techniques is usually the opposite: solving a task
is used as a guide, and only then parallels with the brain are
sought for. A prime example of this are neural networks. Despite
their name, they were developed to solve the problem of curve
fitting, and it was only after they were successful at this task
that researchers started looking for ways in which the brain
could be biologically implementing them (Lillicrap et al., 2020).
Finding this biological support after the fact is indeed interesting,
but mostly inconsequential to the practical success and impact
of NNs.

In this work we claim that observing that AGI and the brain
are connected is not enough to make progress in the former, and
note several common pitfalls in the search for AGI, as well as
avenues for success.

A common pitfall is thinking that state-of-the-art task solving
can be equated to intelligence. Just because an approach is
solving a problem very well, it does not mean that the approach
is intelligent or taking us closer to intelligence. AGI will be
characterized by its generality at accomplishing a wide range of
tasks, and not by excelling at each and all of them. For each
task that AGI solves, we can expect a non-AGI solution to
outperform it.

A more fruitful approach might be to consider simultaneously
the insights from neuroscience (e.g., the factorized
representations of contours and surfaces), general real world
properties (objects actually being efficiently describable
as cartoon + texture), and the computational efficiency
of the corresponding models (more efficient learning and
generalization in models with this factorization). When
triangulating between these three elements, new computational
techniques can be devised. These might be more likely to
unlock generally applicable principles that take us closer
to AGI.

We have provided RCN as a concrete computational example
of success in this triangulation process. While it is relatively
easy to postulate abstract principles, we believe that it is more
inspiring to see how the whole process plays out all the way to
a concrete computational model that can tackle different vision
problems in an integrated manner.

Finally, we discuss some open questions about building AGI
and present arguments against some of them that are prevalent
in today’s mainstream approaches toward AGI. For instance,
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thinking that defining AGI mathematically is needed to be able
to develop it is usually hindering the progress in AGI instead of
fostering it. And the assumption that feed-forward NNs (and in
particular deep versions of it) are the best substrate for AGI is
devoting toomany resources to a particular computational model
that can be easily shown to not contain some of the key elements
required for AGI.
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