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Synapses are highly stochastic transmission units. A classical model describing this

stochastic transmission is called the binomial model, and its underlying parameters can

be estimated from postsynaptic responses to evoked stimuli. The accuracy of parameter

estimates obtained via such a model-based approach depends on the identifiability of

the model. A model is said to be structurally identifiable if its parameters can be uniquely

inferred from the distribution of its outputs. However, this theoretical property does not

necessarily imply practical identifiability. For instance, if the number of observations

is low or if the recording noise is high, the model’s parameters can only be loosely

estimated. Structural identifiability, which is an intrinsic property of a model, has been

widely characterized; but practical identifiability, which is a property of both the model

and the experimental protocol, is usually only qualitatively assessed. Here, we propose

a formal definition for the practical identifiability domain of a statistical model. For a given

experimental protocol, this domain corresponds to the set of parameters for which the

model is correctly identified as the ground truth compared to a simpler alternative model.

Considering a model selection problem instead of a parameter inference problem allows

to derive a non-arbitrary criterion for practical identifiability. We apply our definition to

the study of neurotransmitter release at a chemical synapse. Our contribution to the

analysis of synaptic stochasticity is three-fold: firstly, we propose a quantitative criterion

for the practical identifiability of a statistical model, and compute the identifiability domains

of different variants of the binomial release model (uni or multi-quantal, with or without

short-term plasticity); secondly, we extend the Bayesian Information Criterion (BIC), a

classically used tool for model selection, to models with correlated data (which is the

case for most models of chemical synapses); finally, we show that our approach allows

to perform data free model selection, i.e., to verify if a model used to fit data was

indeed identifiable even without access to the data, but having only access to the

fitted parameters.

Keywords: model selection, practical identifiability, structural identifiability, binomial, synapse

1. INTRODUCTION

Model selection is highly relevant to neuroscience, as neurons, dendrites, and synapses can be
represented by models with different levels of complexity and abstraction. When it comes to fitting
recorded data, predicting the output of a system to a given stimulus, or making sense of an observed
phenomenon, several possible models can be used: this raises the question of what makes a good
model. Finding the correct model is a crucial issue in studying the brain.
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Firstly, a good model needs to be sufficiently complex
to account for observed data, while being simple enough to
generalize to future observations. Competingmodels are typically
compared based on their ability to fit an observed data set,
while being penalized for their complexity (or number of
free parameters) to avoid overfitting. Different model selection
tools (Bayesian Information Criterion, Akaike Information
Criterion,...) are classically used to determine which model is the
best one to fit a data set (Daw et al., 2011).

Secondly, models also differ in their nature, and can be
classified as phenomenological, normative, or biophysical. On
the one hand, purely phenomenological models are useful for
relating the output of a system to its input, and can provide
a computationally efficient way to make prediction. However,
as they are solely based on the empirical relation between the
input and the output of the system, and not on its inner
biological principles, they lack interpretability. On the other
hand, normative and biophysical models can be computationally
challenging to fit on data, but are more realistic. In a normative
approach, the output of a system is computed from an objective
function which models its high-level functions and principles. As
opposed to this top-down approach, biophysical models aim at
precisely describing the low-level biological components of the
system. An interesting property of these biophysical models is
that their parameters correspond to real physical quantities: when
the parameters of a system cannot be measured directly, they
can be estimated by fitting a corresponding biophysical model on
recorded output data of the system, a procedure known asmodel-
based inference. By computing the likelihood of the data as a
function of the parameters, it is possible to follow a maximum-
likelihood approach to obtain a point estimate of the parameters
(Barri et al., 2016), or to compute the full posterior distribution
over them (Bird et al., 2016).

Such a parameter inference requires that the model used
is identifiable. Structural (i.e., model-based) identifiability is a
property of the model, regardless of experimental results. In a
structurally identifiable system, the dimension of the output is
sufficiently high with respect to the dimension of the parameters
vector to uniquely define it: the parameters can be non-
ambiguously inferred if the complete distribution of the output is
known. Structural identifiability has been widely studied in many
fields of physics and biology (Raue et al., 2009, 2011; Komorowski
et al., 2011; Koyama, 2012; Hines et al., 2014), and different
criteria exist to assess the structural identifiability of a model
(Massonis and Villaverde, 2020).

This theoretical property is not equivalent to practical (i.e.,
experiment-based) identifiability, which is a property of both
the model and the experimental protocol: a model which
is structurally identifiable might lead to a poor practical
identifiability of parameters if data points are noisy or scarce.
The accuracy of model-based methods for inferring the values of
parameters depends on the experimental protocol used to record
the data, as observations need to be sufficiently informative
to allow a correct estimation of the parameters. Contrary
to structural identifiability, a quantitative criterion is lacking
for practical identifiability, which is usually only qualitatively
assessed. Non-practical identifiability refers to regimes in which

parameters can only be loosely estimated; but one would need
to define what does “loose” mean. Such a definition could be
intrinsic to the model: a model could be considered as practically
identifiable given a certain experimental protocol if the expected
variance of its parameters’ estimate is below a threshold. But
this threshold would need to be arbitrarily defined. Here, we
propose an extrinsic yet non-arbitrary definition of practical
identifiability, by transforming a model identifiability problem
into a model selection problem.

A model is said to be practically identifiable when its
parameters can be correctly inferred given a certain experimental
protocol. But, as explained previously, different possible models
can be fitted on a data set. Recorded data need to be sufficiently
informative not only to give a correct estimate of the parameters
of a model, but also to select the correct model (i.e., the model
from which they have been generated). We argue that a model is
practically identifiable if and only if it is also correctly identified
as the model providing the best fit to the data. For a given
experimental protocol, we define the practical identifiability
domain of a statistical model as the set of parameters for which
the model is correctly identified as the ground truth compared to
a simpler alternative submodel.

Our proposed definition of practical identifiability can be
applied to any setting where submodels or a nested family of
models can be defined. Here, we apply it to the particular
problem of estimating the parameters of a chemical synapse. A
classical biophysical model used to describe the stochastic release
of neurotransmitter at chemical synapses is called the binomial
model (Katz, 1969), for which different variants of increasing
complexity (in term of the number of free parameters) can
be considered.

Different model-based approaches have been proposed
(Bykowska et al., 2019) for obtaining an accurate estimate
of the parameters describing a synapse (namely, its number
of independent release sites, their release probability upon
the arrival of a presynaptic spike, the quantum of current
elicited by one release event, etc.) These parameters cannot
be measured directly, but can be inferred using excitatory
postsynaptic currents (EPSCs1) recorded on the post-synaptic
side and elicited by experimental stimulation of the presynaptic
cell. By measuring their values before and after a stimulation
protocol, it is possible to study the mechanisms and loci of
synaptic plasticity (Costa et al., 2015, 2017a,b) and homeostasis
(Davis and Müller, 2015; Wentzel et al., 2018). On a more
theoretical level, a correct inference of synaptic parameters
is necessary to study the computational role of synaptic
stochasticity (Levy and Baxter, 2002; Guo and Li, 2012).
Finally, an accurate inference of synaptic parameters would
allow to clarify the role of synaptic transmission in different
diseases (Van Spronsen and Hoogenraad, 2010), such as mental
retardation (Pfeiffer and Huber, 2009), schizophrenia (Stephan
et al., 2006), Parkinson’s disease (Calabresi et al., 2006), autism
(Südhof, 2008), Alzheimer’s disease (Selkoe, 2002), compulsive

1It is also possible to perform model-based inference of synaptic parameters based

on post-synaptic spike trains instead of EPSCs, as in Ghanbari et al. (2017, 2020)
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behavior (Welch et al., 2007), and addiction (Kauer andMalenka,
2007).

Our contribution to the analysis of synaptic stochasticity
is three-fold. Firstly, we propose a definition for the practical
identifiability of a model of synaptic transmission, and compute
the identifiability domains of different variants of the binomial
release model. Besides, we observe that model selection criteria
are classically derived by assuming that recorded data are not
correlated, which does not hold for most models of chemical
synapse. We extend the Bayesian Information Criterion (BIC),
a classically used tool for model selection, to models with
correlated data. Finally, a proper description of the model
selection step is often missing in studies where a model based-
approach is used to infer synaptic parameters. We show that our
approach allows to perform data free model selection, i.e., to
verify if a model used to fit data was indeed identifiable even if
a proper model selection step had not been performed.

2. METHODS

2.1. Binomial Models of Neurotransmitter
Release
2.1.1. The Classical Binomial Model
The quantal nature of synaptic transmission was first unveiled in
Del Castillo and Katz (1954), in which the authors observed that
the postsynaptic responses to presynaptic stimulations were all
multiples of a small unit of current. They explained how the total
response is built up of several of these units, or quanta, each of
them arising from a single presynaptic release event. Upon the
arrival of an action potential in the presynaptic terminal, vesicles
are released with a given probability p. The binomial model (Katz,
1969) assumes that there areN independent release sites and that
for each site the release probability p is identical. Therefore, the
number of released vesicles ki after spike i is distributed according
to a binomial distribution. This model further assumes that each
vesicle release gives rise to a quantal current q, such that the
overall excitatory postsynaptic current is given by ei = qki + ǫ,
where ǫ models a measurement noise typically drawn from a
normal distribution with variance σ 2. Under the binomial model
described by its parameters N, p, q, and σ , the distribution of
EPSCs is given by

p(ei) =
N

∑

ki=0

p(ei|ki)p(ki)

where ki follows a binomial distribution with parametersN and p,
and ei conditioned on ki follows a normal distribution with mean
qki and variance σ 2. Postsynaptic responses are characterized by
their meanNpq and their variance q2Np(1−p)+σ 2. A first feature
of synaptic transmission is thus its stochasticity. Due to different
sources of noise, such as probabilistic vesicles release or recording
noise, postsynaptic recordings exhibit trial-to-trial variability.

2.1.2. Full Model of Synaptic Transmission
Although this simple binomial model accounts for synaptic
stochasticity, it does not allow to model its dynamics:

postsynaptic responses do not only depend on the parameters
of the synapse, but also on its previous activity. On the one
hand, successive presynaptic stimulations within a short time
interval will lead to a depletion of the readily-releasable vesicle
pool, and hence to reduced successive postsynaptic responses,
a phenomenon known as short-term depression. This can be
modeled by assuming that the number of available vesicles at time
i is ni ≤ N (while the simplified binomial model described above
assumes that all vesicles are readily releasable, and hence ni = N).
On the other hand, successive stimulations will gradually increase
the presynaptic calcium concentration, and hence the release
probability, which is called short-term facilitation.

Short-term depression and facilitation can be modeled using
the Tsodyks-Markram model (Tsodyks et al., 1998; Costa et al.,
2015). It consists in two ordinary differential equations, which
model the proportion of available vesicles ri and the release
probability ui at time i. ri is reduced by an amount uiri after each
presynaptic spike, and recovers back to 1 with a depression time
constant τD between each spike. Similarly, ui is increased by an
amount p(1− ui), and decays back to p (its baseline value) with a
facilitation time constant τF . Different values of the parameters p,
τD, and τF allow to represent different synaptic dynamics (either
depression, facilitation, or no plasticity at all).

However, such a deterministic approach to short-term
plasticity only allows to model averages, and neglects correlations
between successive postsynaptic responses. In recent studies
(Barri et al., 2016; Bird et al., 2016), models of synapses
incorporating both short-term plasticity and binomial models of
vesicles release and refill have been proposed. In these models,
the release probability ui evolves according to the equation of
the Tsodyks-Markram model, while each vesicle refills with a
probability 1 − exp(−1ti/τD), where 1ti is the time interval
between two successive presynaptic stimulations. This approach
allows to represent both the stochasticity and the dynamics of
neurotransmitter release, and to compute the likelihood of a set
of recorded data D given the parameters θ and the presynaptic
stimulation protocol 9 .

We consider a model of chemical synapse which encompasses
both short-term depression (STD) and facilitation (STF) (Barri
et al., 2016; Bird et al., 2016). Its parameters are (Figure 1A):

– N: the number of independent release sites [-]
– p: their initial release probability [-]
– σ : the recording noise. It encompasses both the noise

coming from the experimental apparatus (thermal noise of
the amplifier, electric line noise, etc.) and from the recordings
per se (such as fluctuations in the membrane potential of the
cell) [A]

– q: the quantum of current elicited by one release event [A]2

– τD: the time constant of vesicles refilling, and hence of short-
term depression [s]

– τF : the time constant of Ca2+ dynamics, and hence of short-
term facilitation [s]

2The outputs of a model of chemical synapse can be either electric postsynaptic

currents (EPSC) or potentials (EPSP). In the latter case, σ and q will be expressed

in [V] instead of [A].

Frontiers in Computational Neuroscience | www.frontiersin.org 3 September 2020 | Volume 14 | Article 558477

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Gontier and Pfister Identifiability of a Binomial Synapse

which defines a vector θ = (N, p, q, σ , τD, τF). A probability
conditioned on a parametrization θ is written pθ .

n = {ni}1≤i≤T , k = {ki}1≤i≤T , and D = {ei}1≤i≤T represent
respectively the number of available vesicles at the moment of
spike i, the number of vesicles released after spike i, and the i-
th recorded EPSC (Figure 1B). The experimental protocol 9 =
{t1, t2, . . . , tT} encompasses the times of presynaptic stimulation:
the time of the i-th spike is written ti and 1ti = ti − ti−1. For
simplicity, we will drop the dependency on 9 from the notations
of probabilities.

The probability of recording D is computed as the marginal
of the joint distribution of the observations D and the hidden
variables n and k:

pθ (D,n, k) = pθ (e1|k1)pθ (k1|n1)pθ (n1)

T
∏

i=2

pθ (ei|ki)pθ (ki|ni)pθ (ni|ni−1, ki−1) (1)

where pθ (ei|ki) is the emission probability, i.e., the probability to
record ei knowing that ki vesicles released neurotransmitter and
assuming a normally distributed recording noise3:

pθ (ei|ki) =
1

σ
√
2π

exp

(

− (ei − qki)
2

2σ 2

)

(2)

pθ (ki|ni) is the binomial distribution and represents the
probability that, given ni available vesicles, ki of them will indeed
release neurotransmitter:

pθ (ki|ni) =
(

ni
ki

)

u
ki
i (1− ui)

ni−ki (3)

where the release probability ui evolves as

ui = p+ ui−1(1− p) exp

(

−1ti

τF

)

(4)

with u1 = p. pθ (ni|ni−1, ki−1) represents the process of vesicles
refilling. During the time interval 1ti, each empty vesicle can
refill with a probability Ii:

pθ (ni|ni−1, ki−1) =
(

N − ni−1 + ki−1

ni − ni−1 + ki−1

)

I
ni−ni−1+ki−1
i (1−Ii)

N−ni

(5)
with

Ii = 1− exp

(

−1ti

τD

)

(6)

It is usually assumed that, at the beginning of the experiment, all
release sites are filled, and hence that n1 = N (Barri et al., 2016;
Bird et al., 2016).

3Other distributions can also be used for the emission probability. Barri et al.

(2016) assumed an inverse Gaussian to account for the observed right-skewness

of mEPSP (Bekkers et al., 1990; Bhumbra and Beato, 2013)

2.2. Models, Submodels, and Nested
Families
Definition 2.1. Model. For a given data set D and experimental
protocol 9 , a model M is defined as a triplet M = {2,π ,L}
where 2 is the space of parameters θ ∈ 2, π is the prior for
the parameters π(θ) = p(θ |M), and L is the likelihood of the
parameters L(θ |D) = p(D|θ ,M,9).

Examples: Different models can be derived from Equations
(1) to (6). We consider four models of decreasing complexity:

Model M3 is the full model with both STD and STF. Its
six parameters are N, p, q, σ , τD, and τF , and hence 23 =
N
∗ × [0, 1] × (R+)4. Its likelihood function L3 is obtained by

marginalizing out the hidden variables n and k:

L3(θ |D) =
∑

n,k

pθ (D,n, k) (7)

where pθ (D,n, k) is given by Equation (1).
ModelM2 has only short-term depression (and no short-term

facilitation). Its five parameters are N, p, q, σ , and τD, and hence
22 = N

∗ × [0, 1] ×(R+)3. Its likelihoodL2 can be derived from
(7) by further assuming that ui is a constant equal to p.

Model M1 shows no short-term plasticity at all, and can be
derived from model M2 by further assuming that Ii (defined in
6) is a constant equal to 1 (and hence ni = N). Its four parameters
are N, p, q, and σ , and hence 21 = N

∗ × [0, 1] × (R+)2. In this
setting, data points are independent and (7) becomes

L1(θ |D) =
T

∏

i=1





N
∑

ki=0

pθ (ei|ki)pθ (ki)



 (8)

with pθ (ki) =
(

N
ki

)

pki (1 − p)N−ki being the binomial

distribution;
Model M0 is a Gaussian model, in which EPSCs are simply

generated from a normal distribution parameterized by its mean
and variance. Its two parameters are µ and σ 2, and hence 20 =
R× R+. Its likelihood L0 is simply

L0(θ |D) =
T

∏

i=1

pθ (ei) (9)

with pθ (ei) = 1
σ
√
2π

exp
(

− (ei−µ)2

2σ 2

)

.

To ensure the completeness of the definition of the models,
we will assume for each parameter θ a uniform prior between
two values θmin and θmax (Bird et al., 2016). Note however that
the approximate identifiability domain defined in (17) does not
depend on the prior.

Definition 2.2. Submodels.Although ubiquitous in statistics (as
in the likelihood-ratio test or Pearson’s chi-squared test), the
notion of submodels (or nestedmodels) is rarely formally defined
in the literature (Edwards and MacCallum, 2012). It is usually
said that M0 is a submodel of M1 (or is nested within M1)
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FIGURE 1 | (A) Illustration of the binomial model. (1): the presynaptic button is artificially stimulated. Red vertical bars show 5 presynaptic spikes with a constant

interspike interval. (2): these evoked stimuli lead to neurotransmitter release. After spike i, ki vesicles (out of the ni vesicles from the readily-releasable vesicle pool)

release their neurotransmitter with a probability ui . (3): neurotransmitter bind to receptors and elicit a postsynaptic current. A single release event triggers a quantal

response of amplitude q. (4): the recorded postsynaptic response after spike i is the sum of the effects of the ki release events. EPSCs correspond to the amplitude of

each peak of the postsynaptic response to a presynaptic spike. (5): out of the N release sites, only ni are in the readily-releasable vesicle pool at the moment of spike i.

After releasing, vesicles recover with a time constant τD which determines short-term depression. (6): in the same time, each spike increases the calcium concentration

in the presynaptic button, and hence increases the release probability ui . This short-term facilitation is characterized by a time constant τF . (B) Generative model for

the dynamical binomial model where ni is the number of ready releasable vesicles and ki is the number of released vesicles at time i. ei is the EPSC amplitude at time ti .

if M0 can be obtained by constraining the parameters of M1

(Gottman, 1995). We propose the following formal definition,
that encompasses the space of parameters, their priors, and their
likelihood.

M0 = {20,π0,L0} is said to be a submodel of M1 =
{21,π1,L1} if

1. 20 ⊂ 21 (i.e. the parameters ofM0 also appear inM1)
2. π0(θ0) =

∫

21\20
π1(θ0, θ̃)dθ̃ , ∀θ0 ∈ 20 (i.e. M0 and

M1 share the same priors for the parameters they have in
common)

3. ∀θ0 ∈ 20, ∃θ̃ s.t. p(D|θ0,M0) = p(D|(θ0, θ̃),M1) with
(θ0, θ̃) ∈ 21 (i.e., M0 can be retrieved from M1 by
constraining its parameters).

We use the notationM0 � M1.

Examples: The model M2 with only short-term depression
is a submodel of M3 (which accounts for both depression and
facilitation). Indeed, they have the parameters N, p, q, σ , and τD
in common, and M2 can be retrieved from M3 by constraining
τF −→ 0. Similarly, the model without STP M1 is a submodel of
M2 where τD −→ 0; and the uni-quantal modelM0 is a submodel
of the multi-quantal modelM1 where p = 1 and µ = Nq.

We propose the following definitions to characterize the
nestedness of a family of models:

Definition 2.3. Nested family. F = {M0,M1, . . . ,Mn} is said
to be a nested family if

Mi � Mj, ∀0 ≤ i ≤ j ≤ n

2.3. Structural Identifiability
Definition 2.4. Structural identifiability domain. Consistently
with Raue et al. (2009) andMassonis andVillaverde (2020), let the
structural identifiability domain2S of amodelM = {2,π ,L} be
defined as:

2S = {θ ∈ 2 | ∀θ ′ ∈ 2, θ 6= θ ′ ⇐⇒ p(D|θ ,M) 6= p(D|θ ′,M)}
(10)

Similarly,M is said to be structurally identifiable if 2 = 2S.
If θ is in the structural identifiability domain of M, it can

be uniquely identified from p(D|θ ,M). For instance, a Gaussian
distribution of mean µ and variance σ 2 is uniquely defined by
its parameters θ = (µ, σ 2). Its structural identifiability domain
is thus 2S = R × R

+. Similarly, if N 6= 0, p 6= 0, p 6= 1, and
q 6= 0, the probability density of EPSCs under the binomialmodel
without short-term plasticityM1 is structurally identifiable if we
restrict 21 to N

∗ × ]0, 1[×(R∗
+)

2 (Figure 2).

2.4. Informative Domain
In some regimes, parameters may not be precisely inferred from
observations, even though the model is otherwise structurally
identifiable. Indeed, in practice we usually only have access
to a finite number of (possibly noisy) observations. Practical
identifiability thus differs from the structural identifiability
defined in section 2.3.

A definition for the practical identifiability of a parameter has
previously been proposed in Raue et al. (2009), along with an
approach for detecting practical non-identifiabilities based on the
profile likelihood (Venzon and Moolgavkar, 1988; Murphy and
Van der Vaart, 2000). The authors first define the likelihood-
based confidence intervals for the estimator θ̂i of the i-th

Frontiers in Computational Neuroscience | www.frontiersin.org 5 September 2020 | Volume 14 | Article 558477

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Gontier and Pfister Identifiability of a Binomial Synapse

FIGURE 2 | (A) Structural identifiability domain of the binomial model M1. This model, parameterized by θ = (N,p,q, σ ), is structurally identifiable if and only if N 6= 0,

p 6= 0, p 6= 1, and q 6= 0. These conditions are represented by the red hyperplanes in the N× p× q domain. (B) Two different sets of parameters θ0 and θ ′
0 may lead

to the same distribution of observations if taken out of the structural identifiability domain. If p = 1, the distribution of EPSCs under model M1 follows a Gaussian law

of variance σ 2 and mean Nq: different combinations of N and q can thus ambiguously describe it. Blue distribution: N = 5, p = 1, q = 1, σ = 0.2. Orange distribution:

N = 10, p = 1, q = 0.5, σ = 0.2. (C) Two different sets of parameters θ1 and θ2 will lead to different distributions when taken within the structural identifiability domain

of M1: its distribution is uniquely defined by its parameters. Blue distribution: N = 5, p = 0.5, q = 1, σ = 0.2. Orange distribution: N = 5, p = 0.4, q = 0.9, σ = 0.15.

parameter of a modelM:

Ci,1 = {θi | L(θ̂i|D)− L(θi|D) < 1}

where

L(θi|D) = max
θj 6=i

L(θ |D)

for a given threshold 1. Then, they propose the following
definition: A parameter estimate θ̂i is practically non-identifiable,
if the likelihood-based confidence region is infinitely extended in
increasing and/or decreasing direction of θi, although the likelihood
has a unique minimum for this parameter, meaning that the
decrease in likelihood compared to the optimal parameters
estimate stays below the threshold 1 in direction of θi.
When plotting the likelihood as a function of the parameters,
practical non-identifiability can be seen as an infinitely extended
flat valley, in which the decrease in likelihood stays below
1. The authors also describe an algorithm for computing
the profile likelihood and hence detecting such practical
non-identifiabilities: Structural non-identifiable parameters are
characterized by a flat profile likelihood. The profile likelihood of a
practically non-identifiable parameter has a minimum, but is not
excessing a threshold 1 for increasing and/or decreasing values of
θi (see Figure 3 in Raue et al., 2009).

An important limitation of this definition is to be data-
dependent: it only holds for a specific set of recorded data
D. Indeed, likelihood-based confidence intervals, and hence
practical identifiability, are defined with respect to a certain
data set D, and may thus vary for different realizations of the
experiment. However, an identifiability criterion can be made
data-independent by averaging it over all possible realizations
of D, i.e., by computing its expectation with respect to the
distribution p(D|θ∗,M,9). Such an averaged criterion would
correspond to the a priori expected identifiability before a specific
D is recorded.

Practical information about θ is a function of the experimental
protocol 9 : for a given 9 , the informative domain 2I(9) of a
modelM could be defined based on the variance of the estimator.

For instance, in a Bayesian setting, the domain 2I(9) could be
the set of parameters for which the expected informativeness of
the posterior distribution of the parameters (measured as the
Kullback-Leibler divergence between the posterior and the prior)
is above a threshold 1:

2I(9) = {θ∗ ∈ 2 | 〈DKL(p(θ |D,M,9) || p(θ |M))〉p(D|θ∗ ,M,9) ≥ 1}
(11)

Although data-independent, this definition suffers from the same
limitation as the one proposed in Raue et al. (2009): it requires
to set a specific threshold 1. Instead of defining an arbitrary
criterion 1 on the possible precision of parameters estimate, we
will derive our definition from a model selection argument.

2.5. Model Selection
In model selection, the plausibility of two competing models
M = {2,π ,L} and M′ = {2′,π ′,L′} based on observations D
can be assessed using the Bayes Factor (Kass and Raftery, 1995):

BM,M′ (D) = p(D|M)

p(D|M′)
=

∫

2
L(θ |D)π(θ)dθ

∫

2′ L
′(θ |D)π ′(θ)dθ

(12)

If the Bayes Factor is superior to 1, then the evidence for M is
higher than the evidence for M′. It is worth pointing out that
the Bayes Factor will not only favor models which provide a
good fit to the data, but also includes a tendency to favor simpler
models, a natural form of Occam’s Razor (Jefferys and Berger,
1991; MacKay andMacKay, 2003). Indeed, a complex model (i.e.,
a model with many independent parameters or with a broader
prior for its parameters) will be able to explain a larger set of
possible observed data than a simple model; but this comes at
the price of spreading its likelihood over a larger set of possible
outcomes. Hence, if twomodels fit the observed data equally well,
the simpler one will be favored.

2.6. Proposed Definition of Practical Model
Identifiability
To compute the identifiability domain of any model M

compared to another model M′, we introduce the Average Log
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FIGURE 3 | (A) Illustration of practical identifiability. Orange: theoretical distribution for model M1 parameterized with N = 5, p = 0.5, q = 1, σ = 0.2. Blue:

histogram of 2,000 simulated EPSCs generated using the same parameters. Parameters can be precisely inferred from the observations, which fit their theoretical

distribution. (B) Illustration of practical non-identifiability. Blue: histogram of 100 simulated EPSCs with N = 5, p = 0.5, q = 1, σ = 0.4. Due to the small number of

data points and high recording noise σ , the binomial parameters can only be loosely estimated, which is characterized by the fact that a Gaussian distribution (green)

will provide a better fit to the data than a binomial distribution (orange).

Bayes Factor:

BM,M′ (θ∗,9) = 〈logBM,M′ (D)〉p(D|θ∗ ,M,9) (13)

For a given parameter θ∗ and protocol 9 , modelM is said to be
practically identifiable compared to M′ if BM,M′ (θ∗,9) ≥ 0.
Intuitively, the identifiability domain of M compared to M′

corresponds to all the settings (parameters and protocols) for
which, on average, data generated from the ground truthM will
be better explained byM than byM′.

In contrast to the definition in Raue et al. (2009), our proposed
definition does not require to set a (possibly arbitrary) threshold
1. Instead, it is derived from a model selection criterion.
We argue that the parameters of a model M are practically
identifiable if M is itself practically identifiable. In some settings
(as for the nestedmodels of chemical synapse described in section
2.1), a family of submodels might naturally arise, while the choice
of a threshold 1 would be arbitrary.

Another interest of our approach is to be data-independent,

while the definition proposed in Raue et al. (2009) only holds
for a specific set of recorded data D. Indeed, we define practical

identifiability as a data-independent and intrinsic property of
the model M and experimental protocol 9 . As the log-Bayes
Factor in (13) is averaged over all possible realizations of D,

it corresponds to the a priori expected identifiability before

D is recorded. Our approach thus allows to define practical

identifiability domains:

Definition 2.5. Practical identifiability domain. Consider a
model M = {2,π ,L} and a submodel M′ = {2′,π ′,L′} of M.
For a given experimental protocol 9 , the practical identifiability
domain 2P(9) of M is the set of parameters θ∗ for which it is
identifiable compared to its submodel:

2P(9) = {θ∗ ∈ 2 | BM,M′ (θ∗,9) ≥ 0} (14)

Note that in the limit where the priors π and π ′ are highly peaked
(i.e., π(θ) = δ(θ − θ̄) and π ′(θ) = δ(θ − θ̄ ′)), the condition
BM,M′ (θ∗,9) ≥ 0 is always satisfied due to Gibbs’ inequality.
In this case we have 2P(9) = 2,∀9 . However, generically
the condition BM,M′ (θ∗,9) ≥ 0 is not always satisfied since
p(D|M) is not equal to p(D|θ∗,M). The latter is the probability
of observing D given M and a certain parametrization θ∗, while
the former is the marginal likelihood over all parameters (12).

Two examples can illustrate this correspondence between
model selection and parameter inference. Consider first the case
of data recorded from M1. If the experimental protocol is not
sufficiently informative (i.e., if data are scarce or noisy), not only
will the inference of synaptic parameters be poor, but a Gaussian
distribution will also provide a better fit than a binomial release
model to the data. Indeed, as [ei|ki] ∼ N(qki, σ ), in the absence
of recording noise (i.e., if σ = 0), the distribution of EPSCs
is a series of Dirac delta functions located at each multiple of
the quantal size qk for k ∈ {0, 1, . . . ,N}. In this ideal case, q
is clearly identifiable (Figure 3A). However, upon addition of a
recording noise of amplitude σ , EPSCs are normally distributed
around qk for k ∈ {0, 1, . . . ,N}, and the peaks on the histogram
corresponding to each multiple of the quantal size might overlap
if σ is sufficiently high with respect to q (Figure 3B).

Similarly, we can consider the example of a synapse which
shows short-term depression (STD) with a time constant τD
(model M2). If the presynaptic cell is stimulated with an inter-
spike intervals longer than τD, no depression will be visible in
the recorded data, and the true model with STD will not be
identifiable from a simpler binomial model without STD. In the
same time, it will impossible to correctly infer the value of τD.

Our proposed definition of practical identifiability and of the
identifiability domain of a model extend the landscaping
technique introduced in Navarro et al. (2004) as well
as the framework for testing identifiability of Bayesian
models introduced in Acerbi et al. (2014). Especially,
comparing the expected supports 〈log p(D|M)〉p(D|θ∗,M,9)

and 〈log p(D|M′)〉p(D|θ∗,M,9) of M and M′ (given that values
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are averaged over 〈·〉p(D|θ∗ ,M,9)) allows us to define a quantitative
criterion for identifiability.

The model evidence p(D|M) in (12) is often intractable
in practice for complex models, as it requires to integrate
marginals for each parameter. Different methods have been
proposed to approximate it: MCMC computations (Weinberg
et al., 2012), Savage-Dickey method (Wagenmakers et al., 2010),
supermodels (Mootoovaloo et al., 2016). A practical and time-
efficient approximation of the model evidence is given by the
Bayesian Information Criterion BICM(D) (Schwarz et al., 1978):

BICM(D) = −2 log p(D|θ̂ ,M)+ kM log(T) ≈ −2 log p(D|M)
(15)

where θ̂ = argmaxθ L(θ |D) is the maximum likelihood
estimator (MLE) of L(θ |D), kM = dim(2) is the number of
independent parameters of M, and T = |9| is the number
of data points in D. A detailed derivation is provided in
Supplementary Material. The BIC is the sum of two terms: a
likelihood term −2 log p(D|θ̂ ,M) which represents the ability of
the modelM to explain D, and a penalty term kM log(T) which
favors simpler models, as explained in section 2.5.

The BIC is commonly used as an approximation of the model
evidence p(D|M) in model selection: the model with the lowest
BIC is preferred over the others. The main advantage of using
the BIC is to transform a complex integration problem (i.e., the
computation of p(D|M)) into a simpler optimization problem
(i.e. the computation of θ̂). Besides, it allows to perform model
selection without the need to specify a prior for the parameters,
and is thus a popular tool for model selection (Daw et al., 2011).

As stated in Supplementary Material, the approximation
BICM(D) ≈ −2 log p(D|M) is only valid under the hypothesis
that data points are independent and identically distributed
(i.i.d.), which is not the case for models with short-term
plasticity. If data are correlated, we are left with the following
approximation, which does not simplify in the general case:

− 2 log p(D|M) ≈ −2 log p(D|θ̂ ,M)+ log(|H(θ̂)|) (16)

where H(θ̂) is the Hessian matrix of − log p(D|θ ,M) in
Equation (15).

We emphasize that the classical definition of the BIC (15)
should not be used if observations are correlated. Here, for
models in which output are not independent, we use the
approximation given by Equation (16), in which the term
kM log(T) in the BIC is replaced by log(|H(θ̂)|). In some settings,
the computation of the Hessian matrix can be challenging.
However, MCMC methods can be used to approximate H(θ̂),
even without an explicit expression for the gradient of the
function (Spall, 2005). In our case, a numerical method for
computing |H(θ̂)| is detailed in the Supplementary Material.

Using approximation (15) in definition (14) yields the
following approximation for the practical identifiability domain
in case the model evidence p(D|M) in (12) is intractable:

2̃P(9) = {θ∗ ∈ 2 | 〈BICM(D)〉p(D|θ∗,M,9)

≤ 〈BICM′ (D)〉p(D|θ∗,M,9)} (17)

3. RESULTS

3.1. Identifiability Domain of the Binomial
Model Without Short-Term Plasticity
We study here the conditions under which a binomial model
without short-term plasticity M1 can be correctly identified
from a Gaussian model having the same mean and variance
(M0). In order for the binomial model to be identifiable from
a Gaussian quantum-less distribution, the recording noise needs
to be sufficiently low compared to q for the peaks on the
histogram of recorded EPSC to be identified. We will thus plot
the identifiability domain as a function of the recording noise of
amplitude σ for a fixed q. The identifiability domain corresponds
to the points θ in the parameters space 21 for which the average
BIC ofM1 over all possible outputs ofM1 parameterized with θ

is lower than the average BIC ofM0.
Per se, the identifiability domain depends on all the parameters

ofM1, as well as on the experimental protocol. For simplicity and
in order to obtain a plot in 2 dimensions, we will only plot it as a
function of p and σ while holding other variables to a fixed value.
For a given experimental setup 9 (which encompasses only
the number of recorded data points T, the inter-spike intervals
playing no role in these models), the following Markov-Chain-
Monte-Carlo (MCMC) procedure is implemented:

1. A set of values p∗ and σ ∗ are chosen from the space of possible
values for p and σ ;

2. Using p∗ and σ ∗, 400 independent data sets (Di)1≤i≤400 are
generated fromM1. Each data set consists in T EPSCs;

3. For each Di, the BIC of both models are computed; these
values are averaged over i to compute an average BIC and
identifiability is assessed if M1 is preferred over M0, which
corresponds to the black dots in Figure 4A.

The procedure of plotting a complete identifiability domain
can be quite time-consuming. Indeed, it requires to span the
entire space of parameters; for each vector θ∗, to generate a
large number of independent data sets (Di); and for each of
these data sets, to compute the maximum likelihood estimator
θ̂ using the Expectation-Maximization algorithm (Barri et al.,
2016). Details on the computation of θ̂ are available in
Supplementary Material.

However, as both modelsM0 andM1 generate i.i.d. data, and
by making the approximation θ̂ ≈ θ∗ (i.e., by assuming that the
maximum likelihood estimator θ̂ will be close to the true value θ∗

from which data were generated), the condition that model M1

is identifiable (17) can be approximated as follows:

− 2T

∫

p(e|θ∗,M1) log p(e|θ∗,M1)de+ kM1
log(T) ≤

−2T

∫

p(e|θ∗,M1) log p(e|θ̂M0
,M0)de+ kM0

log(T) (18)

where θ̂M0
= (µ, σ 2) represents the mean µ ≈ N∗p∗q∗ and the

variance σ 2 ≈ N∗p∗(1−p∗)q∗2+σ ∗2 of the data generated from
M1.

The condition specified by inequality (18) can be checked
for any point θ∗ without the need to generate a large number
of independent data sets nor to compute the estimator θ̂ .
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Solving (18) numerically for σ allows to draw the border of
the identifiability domain of M1, represented as solid lines in
Figures 4A,B.

Several points are worth highlighting. Firstly, Figure 4A

shows a good agreement between the results of the MCMC
simulations (black dots) and those from the semi-analytical
method (18) (blue line). Secondly, as expected, Figures 4A,B
illustrate that the identifiability domain increases with the
number of data points T: intuitively, a larger data set
facilitates the correct identification of a complex model. Besides,
irrespective of the values of T and σ , for p = 0 and p = 1
the model M1 is structurally indistinguishable from a Gaussian
distribution (see Figure 2A). Finally, the maximum noise σ

which makes the binomial model M1 indistinguishable from a
Gaussian distribution M0 is larger for extreme values of p (close
to 0.9 or 0.1) than for p = 0.5. Indeed, in the latter case, the
distributions of EPSC will be symmetric (as in the upper panel
of Figure 4C), and hence just a little increase in recording noise
will be enough to cover the inter-peak intervals and make the
distributionGaussian-shaped. In the former case, the distribution
will be highly skewed, and thus difficult to approximate with a
normal distribution.

The same approach can then be extended tomore complicated
models, by defining their identifiability domains as the part of the
parameters plane where their average BIC will be lower than the
BIC of a simpler one.

3.2. Identifiability Domain of the Binomial
Model With Short Term Depression
We study here the conditions under which a binomial model
with short-term depression (M2) can be correctly identified from
a model without short-term plasticity (M1). In a first example,
we assume that the presynaptic cell is stimulated at a constant
inter-spike interval (ISI), which needs to be sufficiently short with
respect to the time constant τD to make depression visible. We
thus plot the identifiability domain as a function of both p and
τD. We use the same method as in 3.1: For each set of parameters
p∗ and τ ∗D, 400 independent data sets are generated from M2.
Both models M2 and M1 are fitted on them, and black dots in
Figure 5A correspond to the parameters for which the average
BIC ofM2 is lower than the average BIC ofM1.

As expected, we verify that the identifiability of M2 is
only possible when τD is sufficiently long with respect to the
inter-spike interval. Besides, if the release probability p is low,
correlations between recordings will be weak and the effect of
short-term depression will not be detectable. A major difference
between models M1 and M2 is that, in the latter, observations
{ei}1≤i≤T are not i.i.d.. The value of the i-th recorded EPSC is
a function of the number of available and released vesicles ni
and ki, which in turn depend on their previous values and on
the ISI 1ti. This has two main consequences. Firstly, using the
same approximation as in (18) would lead to a biased estimate
of the identifiability domain. Secondly, the classical definition of
the BIC (15) should not be used since observations are correlated.
Rather, we use Equation (16) to compare the evidence for M1

andM2 for a given data set.

Plotting the identifiability domain of a model also allows to
investigate how the identifiability depends on the experimental
protocol. For model M1, we already saw that the identifiability
domain increases with the number of data points T (see
Figures 4B,D): a larger data set is more informative and
allows for more reliable inference. In this case, T is the only
experimental variable, as observations {ei}1≤i≤T are i.i.d. On
the other hand, the identifiability domain of M2 will depend
not only on the number of data points, but also on the
stimulation protocol. We compare the constant stimulation
protocol (T data points with a constant inter-spike interval
ISI = 0.05s) of Figure 5A with a more realistic stimulation
protocol in Figure 5B. In electrophysiological recordings,
synaptic transmission is classically studied by stimulating the
presynaptic cell with short regular train of spikes at a given
frequency, followed by a recovery spike. This protocol is then
repeated several times (Costa et al., 2013; Barri et al., 2016; Bird
et al., 2016). Such periodic trains are more informative than a
constant stimulation protocol, as they allow to probe a broader
range of temporal dynamics.

In Figure 5B, we use 20 repetitions of a train of 4 spikes at
20Hz (ISI = 0.05s), followed by a recovery spike 0.5s later. This
protocol entails the same number of data points T = 100 as the
constant one, but allows to identify STD for a broader range of
depression time constants (namely, for τD < 0.3s). On the other
hand, since there are fewer successive stimulations within a short
time interval than in the constant protocol, depression can only
be identified when the release probability p is sufficiently high to
induce vesicle pool depletion.

3.3. Data Free Model Selection
In model-based inference of synaptic parameters, a crucial step
related to the estimation of the parameters is model selection,
which is usually performed in several steps:

1. Data D are acquired from a synapse using protocol 9 ;
2. A nested family of n + 1 possible models F =

{M0,M1, ...,Mn} is defined;
3. Each of these models is fitted on D to obtain n + 1 MLE

θ̂0, θ̂1, ..., θ̂n;
4. A model selection criterion (Bayes Factor, BIC, AIC...) is

computed to quantify and rank the fitness of eachmodel onD;
5. If Mi is the selected model, then its MLE θ̂i is selected as the

inference of synaptic parameters.

However, in many studies (Barri et al., 2016; Bird et al., 2016;
Ghanbari et al., 2017), such a model selection step is not
described. In this section, we investigate the possibility, having
only access to the inferred values θ̂ of the parameters and to the
description of the experimental protocol 9 , to verify that the
model used to infer θ̂ was indeed practically identifiable (i.e.,
to verify if a simpler model would have given a better fit to
the data).

We use the notation D for a set of data generated from a
model M parameterized with θ∗, and θ̂ the inferred parameters
obtained by fitting the parameters θ of model M on D. If θ∗ is
within the practical identifiability domain of M as we defined it,
it is then possible to correctly infer it from D, and hence θ̂ ≈ θ∗
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FIGURE 4 | (A) Identifiability domain of M1 as a function of p and σ . Blue line: domain of identifiability from Equation (18). On the left part of the blue line, the

recording noise σ is sufficiently low to identify M1. Black dots: values (p∗, σ ∗) for which the average BIC of 400 data sets results in the correct identifiability of M1.

Results obtained for N = 5, q = 1, and T = 100. (B) Identifiability domain of the binomial model M1 compared to a Gaussian distribution M0, computed from (18),

for different values of T. (C) To visualize the effect of σ on the data, this panel shows histograms of data generated from σ = 0.2 (1) and σ = 0.4 (2), alongside with

their theoretical distribution from Equation (8) (orange line in the upper panel) or when a Gaussian distribution is fitted on them (green line in the lower panel). In the

identifiability domain (1), quantal peaks are clearly visible. Outside of the identifiability domain (2), the binomial distribution becomes Gaussian-shaped. (D) Another

visualization of the identifiability domains displayed in (A,B). For different values of p, the maximum recording noise σ (i.e., the boundary of the identifiability domain) is

plotted as a function of the number of data points T. The identifiability domain increases with T: intuitively, a larger data set facilitates the correct identification of a

complex model.

will also be within the identifiability domain of M. Reciprocally,
if θ̂ is not in the identifiability domain of M, then a submodel
would have provided a better fit to the data D than M. Is it thus
possible to verify ifM overfits the data simply by verifying if θ̂ is
in its identifiability domain, without having access to the data.

This is illustrated in Figures 6A,B, whereM1 is fitted on data
generated from its submodel M0. For six different values of θ∗0
(Figure 6A), the inferred parameters are out of the identifiability
domain of M1 (Figure 6B), showing that data are indeed better
explained byM0 than byM1.

3.3.1. First Example: Application to the Data From

Katz et al. (1954)
We first apply our data free model selection method to the
seminal 1954 paper from Del Castillo and Katz (1954), in

which the quantal nature of neurotransmitter release is identified
for the first time. In order to observe mEPSP, they artificially
reduced the release probability p by lowering the external calcium
concentration. Although the quantal components of postsynaptic
potentials are clearly visible and thoroughly analyzed, it would
be interesting to verify, using our proposed model identifiability
analysis method, that the binomial model (i.e., a multi-quantal
distribution) indeed provides a better fit to the data than a simpler
Gaussian model (i.e., a uni-quantal distribution).

Data (Fatt and Katz, 1952) consist in 328 EPSPs recorded
at the neuro-muscular junction (NMJ) of a frog muscle. Fitting
the binomial model and running the Expectation-Maximization
algorithm on them yields N̂ = 42, p̂ = 0.013, q̂ = 0.875 mV ,

and σ̂ = 0.15 mV (and hence σ̂
q̂

≈ 17%). For this particular

example, we have not only access to the inferred parameters θ̂ ,
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FIGURE 5 | Identifiability domain of the binomial model with short-term depression M2 as a function of p and τD. Black dots correspond to the parameters for which

the average BIC of 400 data sets results in the correct identifiability of the depressed model. Results obtained for N = 5, q = 1, σ = 0.2, and T = 100. (A) Constant

stimulation protocol with an inter-spike interval ISI = 0.05s (red dotted line). (B) Stimulation protocol consisting in 20 repetitions of the same spike train: 4 spikes with

an inter-spike interval ISI = 0.05s followed by a recovery spike 0.5s later.

but also to the data: it is thus possible to directly compare the BIC
of a Gaussian (BICM0

= 764.95) and of a binomial (BICM1
=

470.37) distributions, which indeed confirms that data are better
explained by the binomial quantal model.

However, even without the data, we can verify that the point in
the parameter-protocol space specified by θ̂ (the inferred values
of the parameters) and 9 (the number of data points T =
328) is indeed within the identifiability domain of the binomial
model M1 compared to M0 (see Figure 6C), thus confirming
the multi-quantal nature of the recordings.

3.3.2. Second Example: Application to the Data From

Barri et al. (2016)
We then apply our method to the results presented in the 2016
paper from Barri et al. (2016), in which the complete binomial
model (with STD and STF) is fitted on recordings from layer 5
pyramidal neurons. They use a slight variation of the binomial
release model with short term plasticity described by Equations
(1)–(6), in which the emission probability does not follow a
Gaussian, but an inverse Gaussian distribution:

pθ (ei|ki) =
q3/2ki

√

2πσ 2e3i

exp

(

−q(ei − qki)
2

2σ 2ei

)

(19)

To verify that the data would not have been better fitted
by a simpler model (and hence, that the published estimates
of synaptic parameters are reliable), 100 synthetic data sets
were generated from the complete binomial model using the
stimulation protocol and the inferred values of the parameters
described in (Barri et al., 2016):

– 20 repetitions of the same stimulation protocol consisting in
8 presynaptic spikes at 20Hz followed by a recovery spike
500ms later;

– N∗ = 17, p∗ = 0.27, q∗ = 0.18 mV , σ ∗ = 0.06 mV ,
τ ∗D = 202ms, and τ ∗F = 449ms.

M0, M1, M2, and M3 were then fitted on the generated data.
Average values of their respective BIC are presented in Figure 7,
and confirm the identifiability of the model used in the study.

4. DISCUSSION

Obtaining an accurate estimate of the parameters of a system
from noisy and scarce observations is a crucial problem in
neuroscience. Especially, different methods have been proposed
for estimating the parameters describing a synapse (namely, its
number of independent release sites, their release probability
upon the arrival of a presynaptic spike, the quantum of current
elicited by one release event, the time constants of depression
and facilitation, etc...). Inferring their values allows to analyze
the locus of synaptic plasticity and homeostasis; to study possibly
synapse-related diseases; and more generally to investigate
learning, memory, and neural dynamics, which are mediated by
synaptic transmission.

It is usually impossible to measure directly these parameters.
However, they can be estimated by fitting a biophysical model
of synapse on currents recorded on the post-synaptic side and
elicited by experimental stimulation of the presynaptic cell. This
approach for estimating the parameters of a system is referred to
as model-based inference. As different competing models may be
used to describe the system and explain its output, model-based
inference of parameters thus raises the question of what makes a
good model.

Prior to any data recording, a required property for competing
models is identifiability. Although structural identifiability has
been widely studied, no quantitative criterion exists for practical
identifiability, which is usually only qualitatively assessed. Here,
we propose a definition for the practical identifiability of a
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FIGURE 6 | (A) Data sets were generated from a Gaussian model M0 (for six different means µ and variances σ 2). (B) A binomial model M1 was fitted on them. In

each case, inferred parameters (colored dots) are out of the identifiability domain of M1. It is thus possible to verify if a model used to fit data was indeed identifiable,

without having access to the data and only using inferred parameters. (C) Blue line: identifiability domain of the binomial model compared to a Gaussian distribution,

for N = 42 and T = 328, computed from (18). The red cross corresponds to the parameters inferred from (Del Castillo and Katz, 1954), and is indeed within the

identifiability domain.

FIGURE 7 | Average BIC of M0, M1, M2, and M3 when fitted on 100

independent data sets generated from M3 parameterized with N∗ = 17,

p∗ = 0.27, q∗ = 0.18 mV, σ ∗ = 0.06 mV, τ ∗
D = 202 ms, and τ ∗

F = 449 ms.

M3 has the lowest average BIC compared to its submodels, showing that the

parameters used to generate the data are indeed within the identifiability

domain of M3. As a consequence, we can infer that M3 indeed provided the

best fit to the data compared to its submodels, and that inferred parameters

presented in Barri et al. (2016) are reliable. The facilitating nature of the

synapse is illustrated by the fact that the BIC of M2 (the model with only STD

and no STF) is substantially larger than the one of M3.

model, based on its expected support given the distribution of
the data. We define the practical identifiability domain of a
statistical model as the set of parameters for which the model is
correctly identified as the ground truth compared to a simpler
alternative submodel, and we study the identifiability domains of
different models of synaptic release. In the process, we propose
an extension of the Bayesian Information Criterion (BIC) for
models with correlated data. The BIC is a widely used tool for
model selection, but it is derived by assuming that the outputs of
the system are mutually independent, which is not the case for
models of chemical synapse. Finally, we show that our approach
allows to perform data free model selection, i.e., to verify the
identifiability of a model without having access to the data.

The definition of practical identifiability we introduced here
differs from the influential contribution of Raue et al. (2009)
in two ways. Firstly, our definition is data-independent: it does
not only hold for a specific set of recorded data D. Indeed,
we define practical identifiability as an intrinsic property of the
model M and experimental protocol 9 . We actually define the
a priori expected identifiability before a specific D is recorded,
which allows to study how identifiability is affected by different
experimental protocols. Secondly, since our definition is derived
from a model-selection argument, it does not require to select
a possibly arbitrary threshold on the practical identifiability of
parameters. Rather, it is defined with respect to a particular
submodel. Although the choice of the submodel might itself be
arbitrary, we argue that nested models and families naturally
arise in commonly used statistical techniques, such as polynomial
regression (Edwards and MacCallum, 2012), or Generalized
Linear Models (GLM) (Pillow et al., 2008). Especially, the
widespread use of phenomenological models in neuroscience
(Kobayashi et al., 2009; Melanson et al., 2014; Wang et al., 2016;
Levenstein et al., 2020) makes the use of nested families and
submodels relevant.

Another limitation of our approach is its practical
implementation. As mentioned, the model evidence p(D|M),
on which our definition is based, is often intractable in practice
for complex models, and needs to be estimated. For practical
purpose, we used the Bayesian Information Criterion (BIC) to
compute the identifiability domains of our different models of
synapse. However, we acknowledge that the BIC only provides
a valid approximation of the model evidence when the number
of samples is sufficiently large. A future step would be to study
the robustness of our approach to different computations of the
model evidence or to other approximations, such as the Akaike
Information Criterion (AIC) (Burnham and Anderson, 2004).

Our identifiability domains are similar to the approach
adopted in Koyama (2012), in which the authors study under
which regime of rate fluctuation are the temporal variations
of a neuron firing rate correctly identified. Spike trains are
generated from a model of spiking neuron with a fluctuating
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firing rate (complex model); but under a certain value of rate
fluctuation, this model becomes indistinguishable from a model
of spiking neuron with a constant rate (simple model). Plotting
the identifiability of the fluctuating-rate model as a function
of the amplitude of rate fluctuation allows them to identify
which distribution of inter-spike intervals has the broader
identifiability domain (and thus maximizes the efficiency of rate
fluctuation transmission).

In model-based inference and parameter estimation, one is
often interested in obtaining theoretical bounds on the achievable
error performance. Such theoretical bounds allow to assess a
priori the possibility to correctly infer the parameters. A well-
known theoretical result is the Cramér-Rao bound (Van Trees,
2004; Van Trees and Bell, 2007), which provides a lower bound
on the variance of the parameter estimator. This bound, which
depends on the model, its parameters, and the experimental
protocol, may actually be too loose in practice, and does not
account for the threshold effect described in Kostal et al.
(2015). In many cases, as the number of data points increases,
the estimate error displays a threshold-like transition, from a
region of low performance to a region of high performance
where the Cramér-Rao bound is attained. Our definition of
practical identifiability also discriminates between regions of low
information (for small signal-to-noise ratios and sample size) and
high accuracy, provides a quantitative criterion to discriminate
them, and can be extended to the case of non-i.i.d. data. An
interesting future step would be to verify how the boundaries of
our proposed identifiability domains compare with the transition
threshold described in Kostal et al. (2015).

An interesting topic would be to study the practical
identifiability domain as the number of observations T
goes to infinity. In this asymptotic case, practical non-
identifiability means that the model cannot be identified,
even with an infinite amount of data. We can conjecture
that practical identifiability is equivalent to structural
identifiability in this asymptotic case, as hinted by Figure 4:
the identifiability domain increases with T. A future step
would be to verify if the practical identifiability domain of
a model is included in its structural identifiability domain,
and how it behaves when the number of observations T goes
to infinity.

We applied our analysis to four variants of the binomial
model, of increasing complexity: a Gaussian model (i.e., a uni-
quantal distribution); a binomial model without short-term
plasticity; a binomial model with only short-term depression;
and a binomial model with both short-term depression and
facilitation. A future step would be to extend our analysis
to further generalizations of the binomial model, in order to
account for parameters heterogeneity. Especially, the binomial
model assumes that the release probability and the quantal
amplitude are identical for each release site. It is however
possible to hypothesize that there are several pools of vesicles,
each having different parameters (for instance a fast depleting
pool and a slow depleting pool). There will be regimes
in which those sub-pools can be detected and other in
which the noise is too high or the experimental protocol
not informative enough to identify them, which can be

quantified using our definition of identifiability. Another possible
generalization of the binomial model is to assume that the
postsynaptic response to one vesicle release is not fixed, but
follows for instance a Gamma distribution (Bhumbra and
Beato, 2013) to account for variability in vesicles size and
neurotransmitter content.

Model selection is not only a first step in model-based
inference of synaptic parameters (as it is necessary to have
a reliable estimates of the parameters), but also a tool
to study the mechanisms of neurotransmitter release at a
chemical synapse. An alternative hypothesis (e.g., “this synapse
shows short-term plasticity”) can be compared to a null
hypothesis (“this synapse does not show short-term plasticity”)
by computing how well the complex model (i.e. with short-
term plasticity) explains the behavior of the synapse compared
to the simple model (i.e., without short-term plasticity). Testing
models of growing complexity allows to study the nature of
the synapse and to identify mechanisms of neurotransmitter
release. But the possibility to correctly select the model
that corresponds to the true behavior of the synapse will
depend on its parameters and on the experimental protocol
used to record data: there are regimes in which the specific
features of a model do not appear in the data. Such regimes
correspond to the identifiability domain of the model, and
studying them allows to draw conclusions on the nature of
the synapse.

As stated previously, the problem of inferring parameters
from noisy and scarce observations is not restricted
to synaptic parameters estimation, but is a crucial
question in neuroscience. Our proposed methodology
could also be applied to models of single neurons
(Koch, 2004; Jolivet et al., 2008; Gerstner and Naud,
2009; Mensi et al., 2012), neural population dynamics
(René et al., 2020), or calcium-driven vesicles fusion
(Schneggenburger and Neher, 2000; Lou et al., 2005; Sun
et al., 2007).

On a broader scale, instead of seeing parametric non-
identifiability as a statistical problem, we could consider it
as a biophysical feature. The total synaptic strength between
two cells is a function of both presynaptic (N, p) and
postsynaptic (q) parameters. Different combinations of these
parameters could lead to the same average postsynaptic
response: a presynaptic modification of the number of release
sites N can be compensated by an inverse modification
of the postsynaptic number of receptors affecting q. This
combined effect of presynaptic and postsynaptic plasticity
has been shown to enable reliable and flexible learning
(Costa et al., 2015) and homeostatic modulation (Davis and
Müller, 2015). More generally, the question of degeneracy,
defined as the ability of different elements to perform the
same function, could be addressed within the framework
of identifiability analysis (Drion et al., 2015; Rathour and
Narayanan, 2019).

Finally, our proposed definition of model identifiability is
paving the way toward Optimal Experiment Design (OED)
for model selection and parameter inference. The information
conveyed by the data about the ground truth model and its
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parameters depends on the experimental protocol: number of
recorded data points, stimulation frequency, etc. The goal of
OED is to optimize the experimental protocol in order to
maximize the possibility to discriminate between competing
models (Vanlier et al., 2014; Balietti et al., 2018) and the
precision of the inference of their parameters. An OED for
inferring the parameters of a given model maximizes the
mutual information between the data and the parameters
I(D, θ) (Huan and Marzouk, 2013). This quantity turns out
to be equal to the expected gain in information about θ

(defined as the Kullback-Leibler divergence between its prior
and its posterior), on which our proposed definition of the
informative domain (11) is based. Similarly, maximizing the
Average Log Bayes Factor (13) is equivalent to maximizing
the discriminability between the two models M and M′, and
hence finding an OED for model selection. As a thorough
theoretical preliminary analysis of the properties of the
competing models is a first step prior to model selection
and parameter inference (Asprey and Macchietto, 2000), we
believe that our theoretical contribution to model analysis will
contribute to the development of OED techniques for synaptic
transmission study.
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