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Humans quickly and accurately learn new visual concepts from sparse data, sometimes

just a single example. The impressive performance of artificial neural networks which

hierarchically pool afferents across scales and positions suggests that the hierarchical

organization of the human visual system is critical to its accuracy. These approaches,

however, require magnitudes of order more examples than human learners. We used

a benchmark deep learning model to show that the hierarchy can also be leveraged

to vastly improve the speed of learning. We specifically show how previously learned

but broadly tuned conceptual representations can be used to learn visual concepts

from as few as two positive examples; reusing visual representations from earlier in the

visual hierarchy, as in prior approaches, requires significantly more examples to perform

comparably. These results suggest techniques for learning even more efficiently and

provide a biologically plausible way to learn new visual concepts from few examples.
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INTRODUCTION

Humans have the remarkable ability to quickly learn new concepts from sparse data. Preschoolers,
for example, can acquire and use new words on the basis of sometimes just a single example (Carey
and Bartlett, 1978), and adults can reliably discriminate and name new categories after just one or
two training trials (Coutanche and Thompson-Schill, 2014, 2015b; Lake et al., 2015). Given that
principled generalization is impossible without leveraging prior knowledge (Watanabe, 1969), this
impressive performance raises the question of how the brainmight use prior knowledge to establish
new concepts from such sparse data.

Several decades of anatomical, computational, and experimental work suggest that the brain
builds a representation of the visual world by way of the so-called ventral visual stream, along which
information is processed by a simple-to-complex hierarchy up to neurons in ventral temporal
cortex that are selective for complex objects such as faces, objects and words (Kravitz et al., 2013).
According to computational models (Nosofsky, 1986; Riesenhuber and Poggio, 2000; Thomas et al.,
2001; Freedman et al., 2003; Ashby and Spiering, 2004) as well as human functional magnetic
resonance imaging (fMRI) and electroencephalography (EEG) studies (Jiang et al., 2007; Scholl
et al., 2014), these object-selective neurons in high-level visual cortex can then provide input
to downstream cortical areas, such as prefrontal cortex (PFC) and the anterior temporal lobe
(ATL), to mediate the identification, discrimination, or categorization of stimuli, as well as more
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broadly throughout cortex for task-specific needs (Hebart
et al., 2018). It is at this level where these theories of object
categorization in the brain connect with influential theories of
semantic cognition that have proposed that the ATL may act as
a semantic hub (Ralph et al., 2017), based on neuropsychological
findings (Hodges et al., 2000; Mion et al., 2010; Jefferies, 2013)
and studies that have used fMRI (Vandenberghe et al., 1996;
Coutanche and Thompson-Schill, 2015a; Malone et al., 2016;
Chen et al., 2017) or intracranial EEG (iEEG; Chan et al.,
2011) to decode category representations in the anteroventral
temporal lobe.

Computational work suggests that hierarchical structure
is a key architectural feature of the ventral stream for
flexibly learning novel recognition tasks (Poggio, 2012). For
instance, the increasing tolerance to scaling and translation
in progressively higher layers of the processing hierarchy due
to pooling of afferents preferring the same feature across
scales and positions supports robust learning of novel object
recognition tasks by reducing the problem’s sample complexity
(Poggio, 2012). Indeed, computational models based on this
hierarchical structure, such as the HMAX model (Riesenhuber
and Poggio, 1999) and, more recently, convolutional neural
network (CNN)-based approaches have been shown to achieve
human-like performance in object recognition tasks given
sufficient numbers of training examples (Jiang et al., 2006; Serre
et al., 2007a; Crouzet and Serre, 2011; Yamins et al., 2013, 2014)
and even to accurately predict human neural activity (Schrimpf
et al., 2018).

In addition to their invariance properties, the complex shape
selectivity of intermediate features in the brain, e.g., in V4
or posterior inferotemporal cortex (IT), is thought to span
a feature space well-matched to the appearance of objects in
the natural world (Serre et al., 2007a; Yamins et al., 2014).
Indeed, it has been shown that reusing the same intermediate
features permits the efficient learning of novel recognition tasks
(Serre et al., 2007a; Donahue et al., 2013; Oquab et al., 2014;
Razavian et al., 2014; Yosinski et al., 2014), and the reuse of
existing representations at different levels of the object processing
hierarchy is at the core of models of hierarchical learning in
the brain (Ahissar and Hochstein, 2004). These theories and
prior computational work are limited, however, to re use of
existing representations at the level of objects and below. Yet,
as mentioned before, processing hierarchies in the brain do
not end at the object-level but extend to the level of concepts
and beyond, e.g., in the ATL, downstream from object-level
representations in IT. These representations are importantly
different from the earlier visual representations, generalizing over
exemplars to support category-sensitive behavior at the expense
of exemplar-specific details (Bankson et al., 2018). Intuitively,
leveraging these previously learned visual concept representations
could substantially facilitate the learning of novel concepts, along
the lines of “a platypus looks a bit like a duck, a beaver, and
a sea otter.” In fact, there is intriguing evidence that the brain
might leverage existing concept representations to facilitate the
learning of novel concepts: in fast mapping (Carey and Bartlett,
1978; Coutanche and Thompson-Schill, 2014, 2015b), a novel
concept is inferred from a single example by contrasting it with a

related but already known concept, both of which are relevant to
answering some query. Fast mapping is more generally consistent
with the intuition that the relationships between concepts and
categories are crucial to understanding the concepts themselves
(Miller and Johnson-Laird, 1976; Woods, 1981; Carey, 1985,
2009). The brain’s ability to quickly master new visual categories
may then depend on the size and scope of the bank of visual
categories it has already mastered. Indeed, it has been posited
that the brain’s ability to perform fast mapping might depend
on its ability to relate the new knowledge to existing schemas
in the ATL (Sharon et al., 2011). Yet, there is no computational
demonstration that such leveraging of prior learning can indeed
facilitate the learning of novel concepts. Showing that leveraging
existing concept representations can dramatically reduce the
number of examples needed to learn novel concepts would not
only provide an explanation for the brain’s superior ability to
learn novel concepts from few examples, but would also be of
significant interest for artificial intelligence, given that current
deep learning systems still require substantially more training
examples to reach human-like performance (Lake et al., 2017;
Schrimpf et al., 2018).

We show that leveraging prior learning at the concept level
in a benchmark deep learning model leads to vastly improved
abilities to learn from few examples. While visual learning and
reasoning involves a wide variety of skills—including memory
(Brady et al., 2008, 2011), compositional reasoning (Lake et al.,
2015; Overlan et al., 2017), and multimodal integration (Yildirim
and Jacobs, 2013, 2015)—we focus here on the task of object
recognition. This ability to classify visual stimuli into categories
is a key skill underlying many of our other visual abilities. We
specifically find that broadly tuned conceptual representations
can be used to learn visual concepts from as few as two
positive examples, accurately discriminating positive examples
of the concept from a wide variety of negative examples;
visual representations from earlier in the visual hierarchy
require significantly more examples to reach comparable levels
of performance.

METHODS

ImageNet
ImageNet (www.image-net.org) organizes more than 14 million
images into 21,841 categories following the WordNet hierarchy
(Deng et al., 2009). Crucially, these images come from multiple
sources and vary widely on dimensions such as pose, position,
occlusion, clutter, lighting, image size, and aspect ratio. This
image set has been designed and used to test large-scale computer
vision systems (Russakovsky et al., 2015), including models of
primate and human visual object recognition (Yamins et al.,
2014; Schrimpf et al., 2018). We similarly use disjoint subsets of
ImageNet to both train and validate a modified GoogLeNet and
to train and test a series of binary classifiers.

To train and validate GoogLeNet, we randomly selected
2,000 categories from 3,177 ImageNet categories providing both
bounding boxes and more than 732 total images (the minimum
number of images per category in the Image Net Large Scale
Visual Recognition Challenge (ILSVRC) 2015), thus ensuring
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each category represented a concrete noun with significant
variation, as can be seen in Supplementary Table 1. One of the
authors further reviewed each category to ensure it represented
a concrete visual category. We set aside 25 images from each
category to serve as validation images and used the remainder as
training images. We thus used a total of 2,401,763 images across
2,000 categories for training and 50,000 images across those
same 2,000 categories for validation. To reduce computational
complexity, all images were resized to 256 pixels on the shortest
edge while preserving orientation and aspect ratio and then
automatically cropped to 256 × 256 pixels during training and
validation. While it is possible for this strategy to crop the object
of interest out of the image, previous work with the GoogLeNet
architecture (Szegedy et al., 2014) suggests that the impact on
performance is marginal.

To train and test our binary classifiers, we used the training
and validation images from 100 of the 1,000 categories from the
ILSVRC2015 challenge (Russakovsky et al., 2015). As with the
GoogLeNet images, all images were resized to 256 pixels on the
shortest edge while preserving orientation and aspect ratio and
then automatically cropped to 256 × 256 pixels during feature
extraction. These 100 test categories are all novel relative to the
2,000 training categories in that there are no exact duplicates
across the training and test categories. There are test categories
providing significant visual overlap with training categories,
such as car wheel sharing similar structure with bicycle wheel,
wheelchair, steering wheel, bicycle, Ferris wheel, and so on. It
is central to the hypothesis of this paper that these kinds of
visual similarities can be leveraged to more quickly learn new
categories. In this case, car wheel is an unknown category:
no category in the visual lexicon mastered by GoogLeNet
corresponds exactly to car wheel. It might be learned more
quickly, however, by noting that it is relatively visually similar
to bicycle wheel and wheelchair but relatively dissimilar to, for
example, fence, bugle, or footbridge. The particular pattern of
similarity and dissimilarity at the level of visual categories can be
used as a signature for identifying car wheels.

GoogLeNet
GoogLeNet is a high-performing (Szegedy et al., 2014) deep
neural network (DNN) designed for large-scale visual object
recognition (Russakovsky et al., 2015). Because prior work has
shown that the performance of DNNs is correlated with their
ability to predict neural activations (Yamins et al., 2013, 2014) and
that GoogLeNet in particular is a comparatively good predictor
of neural activity (Schrimpf et al., 2018), we use GoogLeNet as
a model of human visual object recognition. Because the exact
motivation for GoogLeNet and the details of its construction have
been reported elsewhere, we focus here on the details relevant
to our investigation. We used the Caffe BVLC GoogLeNet
implementation with one notable alteration: we increased the size
of the final layer from 1,000 to 2,000 units, commensurate with
the 2,000 categories we used to train the network. We trained the
network for ∼133 epochs (1E7 iterations of 32 images) using a
training schedule similar to that in Szegedy et al. (2014) (fixed
learning rate starting at 0.01 and decreasing by 4% every 3.2E5

images with 0.9momentum), achieving 44.9% top-1 performance
and 73.0% top-5 performance across all 2,000 categories.

Main Simulation
To study how previously learned visual concepts could facilitate
the learning of novel visual concepts, we trained a series of
one-vs-all binary classifiers (elastic net logistic regression) to
recognize 100 new categories from the ILSVRC2015 challenge.
The 100 categories, listed in Supplementary Table 2, were
chosen uniformly at random and remained constant across all
feature sets.

The primary hypothesis of this paper is that prior learning
about visual concepts can significantly improve learning about
new visual concepts from few examples. Learning new categories
in terms of existing category-selective features is thus of
primary interest, so we compared several feature sets to test the
effectiveness of learning from category-selective features relative
to other feature types. We specifically compared the following
feature sets:

• Conceptual: 2,000 features extracted from the loss3/classifier,
a fully connected layer of GoogLeNet just prior to the softmax
operation producing the final output.

• Generic1: 4,096 features extracted from pool5/7x7_s1, an
average pooling layer of GoogLeNet (kernel: 7, stride: 1) used
in computing the final output.

• Generic2: 13,200 features extracted from the loss2/ave_pool,
an average pooling layer of GoogLeNet (kernel: 5, stride: 3)
mid-way through the architecture used in computing a second
training loss.

• Generic3: 12,800 features extracted from the loss1/ave_pool,
an average pooling layer of GoogLeNet (kernel: 5, stride: 3)
early the architecture used in computing a third training loss.

• Generic1 + Conceptual: 4,096 Generic1 features combined
with 2,000 Conceptual features for a total of 6,096 features.

All features were selected for broad tuning to encourage
generalization. The Conceptual features—being as close to
the final output as possible but without the task-specific
response sharpening of the softmax operation—represent what
should be the most category-sensitive features of GoogLeNet
(i.e., individual features serve as more reliable signals of
category membership than features from other feature sets; see
Supplementary Data). The various Generic feature sets were
chosen as controls against which to compare the conceptual
features. Based on prior work using GoogLeNet, these layers
likely correspond to high-level visual cortex (e.g., V4, IT,
fusiform cortex) (Yamins et al., 2014; Schrimpf et al., 2018).
The Generic1 features act as close controls against which to
compare the conceptual features. These features provide a
representative basis in which many visual categories can be
accurately described while themselves being relatively category-
agnostic, as shown in Supplementary Data. We chose a
layer near the end of the network but before the fully
connected layers that recombine the intermediate features
into category-specific features. The GoogLeNet architecture
defines two auxiliary classifiers—smaller convolutional networks
connected to intermediate layers to provide additional gradient
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signal and regularization during training—at multiple depths
in the network. We define the Generic2 and Generic3
features using layers from these auxiliary networks that
correspond to the layer from the primary classifier used to
define Generic1.

We measured feature set performance by training a series
of one-vs-all binary classifiers (elastic net logistic regression)
for each feature set, meaning that each feature set served in a
sub-simulation as the sole input to the classifiers. For each feature
set, we trained 14,000 classifiers—one for each combination of
test category, training set size, and random training split—and
measured performance using d′. Our ImageNet ILSVRC-based
image set had 100 categories (see section “ImageNet” above).
Positive examples were randomly drawn from the target category,
while negative examples were randomly drawn from the other 99
categories. Because we were interested in how prior knowledge

helps with learning from few examples, we tested classifiers
trained with n ǫ {2, 4, 8, 16, 32, 64, 128} total training examples,
evenly split between positive and negative examples. To better
estimate performance and average out the effects of the classifiers’
random choices, we repeated each simulation by generating 20
random training/testing splits unique to each combination of test
category and training set size.

RESULTS

To explore whether concept-level leveraging of prior learning
leads to superior ability to learn novel concepts compared to
leveraging learning at lower levels, we conducted large-scale
analyses using state-of-the-art CNNs (we also conducted similar
analyses using the HMAXmodel (Riesenhuber and Poggio, 1999;
Serre et al., 2007b), obtaining qualitatively similar results, albeit

FIGURE 1 | A schematic of the GoogLeNet neural network (Szegedy et al., 2014) as used in these simulations (main figure) and a schematic of the network’s

Inception Module (gray inset on lower right). We modified the network to produce 2,000-way outputs, simulating representations for 2,000 previously learned

categories. We then investigated how well representations at different levels of the hierarchy supported the learning of novel concepts. To encourage generalization,

we wanted each layer to be broadly tuned, so we drew our conceptual layer not from the task-specific and sharply tuned final decision layer (Softmax), but the

immediately preceding layer. Multiples (i.e., x2 or x3) indicate several identical layers being connected in series.
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with overall lower performance levels). Specifically, we examined
concept learning performance as a function of training examples
for four feature sets (Conceptual, Generic1, Generic2, Generic3)
extracted from a deep neural network (GoogLeNet; Szegedy
et al., 2014) as shown in Figure 1. Based on prior work using
GoogLeNet, we hypothesize that the Conceptual features best
model semantic cortex (e.g., ATL), while the Generic layers best
model high-level visual cortex (e.g., V4, IT, fusiform cortex)
(Yamins et al., 2014; Schrimpf et al., 2018). We predicted that
higher levels would support improved generalization from few
examples, and in particular that leveraging representations for
previously learned concepts would strongly improve learning
performance for few examples. To test this latter hypothesis,
we modified the GoogLeNet architecture to perform 2,000-way
classification.We then trained the modified network to recognize
2,000 concepts from ImageNet (Deng et al., 2009), listed in
Supplementary Table 1. We examined the activations of each
feature set for images drawn from 100 additional concepts from
ImageNet, distinct from the previously learned 2,000 concepts
and listed in Supplementary Table 2.

For our scheme to work, conceptual features must support
generalization by being broadly tuned. All the feature sets we
analyzed are thus part of the standard GoogLeNet architecture
and come before the network’s final decision layer. The binary
classifiers we trained for this analysis, however, were separate
from GoogLeNet. We do not claim that they are part of the
visual hierarchy so much as we use them to straightforwardly
assess the usefulness of different parts of that hierarchy for
sample-efficient learning.

The concepts GoogLeNet learns are based on visual
information only and therefore do not capture the fullness of
the rich and nuanced concepts used in everyday cognition. Yet,
they provide a further level of abstraction beyond the object level
and could be used in a straightforward fashion to participate
in the downstream representations of supramodal concepts (see
section Discussion).

To test our hypothesis, we compared the performance of
each feature set for several small numbers of training examples.
The results in Figure 2 confirm the predictions: for small
numbers of training examples, feature sets extracted later in the
visual hierarchy generally outperformed features sets extracted
earlier in the visual hierarchy. Critically, as predicted, we see
that the Conceptual features dramatically outperform Generic1
features for small numbers of training examples (particularly
for 2, 4, and 8 positive examples, but including 16 and 32 as
well). In addition, Conceptual and Generic1 features outperform
Generic2, which outperforms Generic3. These results suggest
that combinations of Generic1 features are frequently consistent
across small sets of examples without generalizing well to the
entire category; patterns among categorical features, by contrast,
tend to generalize much better for small numbers of examples.

To verify this pattern quantitatively, we constructed a linear
mixed effectsmodel predicting d′ frommain effects of training set
size, and feature set, as well as an interaction between feature set
and training set size, with a random effect of category. A Type III
ANOVA analysis using Satterthwaite’s method finds main effects
of feature set [F(3, 55,873) = 9105.5, p < 0.001] and training set

FIGURE 2 | Mean performance (y-axis) of classifiers in our analysis by

category (dots) by feature set (color) and number of positive training examples

(x-axis). Performance in both plots is measured as d′. Cross bars show mean

across categories with bootstrapped 95% CIs.

size [F(6, 55,873)= 15,833.5, p < 0.001], as well as an interaction
between feature set and training set size [F(18, 55,873) = 465.1,
p < 0.001]. We further find via single term deletion that the
random effect of category explains significant variance [χ2(1) =
20,646.5, p < 0.001].

Having established a main effect of feature set, we further
analyzed differences in performance between feature sets by
computing pairwise differences in estimated marginal mean
performance. Critically, we found that the Conceptual features
outperformed Generic1, Generic2, and Generic3 features,
Generic1 outperformed Generic2 and Generic3 features, and
Generic2 outperformed Generic3 (ps < 0.001).

The interaction between feature set and training set size is
also supported by pairwise differences in estimated marginal
mean d′. Critically, we find that Conceptual features outperform
the Generic1 features for 2–32 positive training examples
(ps < 0.001) and marginally outperform them for 64 positive
training examples (performance difference = 0.041, p = 0.074).
Thus, as predicted, leveraging prior concept learning leads to
dramatic improvements in the ability of deep learning systems
to learn novel concepts from few examples.

DISCUSSION

A striking feature of the human visual system is its ability to learn
novel concepts from few examples, in sharp contrast to current
computational models of visual processing in cortex that all
require larger numbers of training examples (Serre et al., 2007b;
Yamins et al., 2014; Schrimpf et al., 2018). Conversely, previous
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models of visual category learning from computer science that
perform well for small numbers of examples (Fei-Fei et al., 2006;
Vinyals et al., 2016; albeit not at the level of current state-of-
the-art approaches) were not explicitly motivated by how the
brain might solve this problem and do not provide biologically
plausible mechanisms. It has been unclear, therefore, how the
brain could learn novel visual concepts from few examples. In
this report, we have shown how leveraging prior concept learning
can dramatically improve performance for few training examples.
Crucially, this performance was obtained in a model architecture
that directly builds on and extends our current understanding
of how the visual cortex, in particular inferotemporal cortex,
represents objects (Yamins et al., 2014): by using a “conceptual”
layer, akin to concept representations identified downstream
from IT in anterior temporal cortex (Binder et al., 2009; Binder
and Desai, 2011; Malone et al., 2016; Ralph et al., 2017) new
concepts can be learned based on just two examples. This
suggests that the human brain could likewise achieve its superior
ability to learn by leveraging prior learning, specifically concept
representations in ATL. How could this hypothesis be tested? In
case disjoint neuronal populations coding for related concepts
learned at different times can be identified, causality measures
such as Granger causality (Granger, 1969; Seth et al., 2015;
Martin et al., 2019) could provide evidence for their directed
connectivity. At a coarser level, longer latencies of neuronal
signals coding for more recently learned concepts relative to
previously learned concepts would likewise be compatible with
novel concept learning leveraging previously learned concepts.

Intuitively, the requirement for two examples to successfully
learn novel concepts makes sense as this allows the identification
of commonalities among items belonging to the target class
relative to non-members. However, the phenomenon of fast
mapping suggests that under certain conditions, humans can
learn concepts even from a single positive and negative example.
In contrast, in our system, performance for this scenario was
generally poor. Yet, theoretically, one positive and one negative
example should already be sufficient if the negative example is
chosen from a related category that would serve to establish a
crucial, category-defining difference, which is precisely what is
done in conventional fast mapping paradigms in the literature.
In the simulations presented in this paper, our negative example
was chosen randomly, so we would not necessarily expect good
ability to generalize from a single positive example. Yet, studying
how variations in the choice of negative examples can further
improve the ability to learn novel concepts from few examples is
an interesting question for future work that can easily be studied
within the existing framework.

Another interesting question is whether there are conditions
under which leveraging prior learning leads to suboptimal
results compared to learning with features at lower levels of
the hierarchy. In particular, Generic1 features are as good as
Conceptual features for larger numbers of training examples.
Future work could explore whether there is some point at
which features similar to Generic1 outperform learning based
on Conceptual features: for instance, when sufficiently many
examples are available, does it help to learn the category
boundaries directly based on shape rather than by relating

the new category to previously learned ones? Answering
these questions will be essential to understanding how the
brain leverages prior learning to efficiently establish new
visual concepts.
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