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In themain control room (MCR) of a nuclear power plant (NPP), the quality of an operator’s

performance can depend on their level of attention to the task. Insufficient operator

attention accounted for more than 26% of the total causes of human errors and is the

highest category for errors. It is therefore necessary to check whether operators are

sufficiently attentive either as supervisors or peers during reactor operation. Recently,

digital control technologies have been introduced to the operating environment of an

NPP MCR. These upgrades are expected to enhance plant and operator performance.

At the same time, because personal computers are used in the advanced MCR, the

operators perform more cognitive works than physical work. However, operators may

not consciously check fellow operators’ attention in this environment indicating potentially

higher importance of the role of operator attention. Therefore, remote measurement of an

operator’s attention in real time would be a useful tool, providing feedback to supervisors.

The objective of this study is to investigate the development of quantitative indicators

that can identify an operator’s attention, to diagnose or detect a lack of operator

attention thus preventing potential human errors in advanced MCRs. To establish a

robust baseline of operator attention, this study used two of the widely used biosignals:

electroencephalography (EEG) and eyemovement.We designed an experiment to collect

EEG and eye movements of the subjects who were monitoring and diagnosing nuclear

operator safety-relevant tasks. There was a statistically significant difference between

biosignals with and without appropriate attention. Furthermore, an average classification

accuracy of about 90% was obtained by the k-nearest neighbors and support vector

machine classifiers with a few EEG and eye movements features. Potential applications

of EEG and eye movement measures in monitoring and diagnosis tasks in an NPP MCR

are also discussed.

Keywords: electroencephalography, eye movements, machine learning, attention, human error, nuclear safety

1. INTRODUCTION

Attention is an important cognitive resource for information processing directly affecting
the quality of task performance (Wickens et al., 1998). According to the Nuclear Event
Evaluation Database (NEED), a database developed by Korea Institute of Nuclear Safety (KINS),
approximately 20% of the unplanned nuclear power plant (NPP) shutdowns between 2000 and
2011 in Korea were due to human errors (Lee et al., 2017). The operator’s insufficient attention
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accounted for more than 26% of the total cause of human errors,
which takes the biggest portion. Hence, the decreased attention
of an NPP main control room (MCR) operator could lead to a
decrease in their situational awareness, which could result in a
poor reactor operating performance and ultimately cause critical
human errors.

Recently developed NPP designs include fully digitalized
instrumentation and control (I&C). These upgrades are expected
to enhance plant and operator performance. Advanced MCRs
based on digital I&C technology create a completely different
operating environment from the existing MCR configurations
(Choi et al., 2019).

MCR operators are required to monitor several information
sources, such as indicators, alarms, controllers, and mimic
displays, but they have a limited capacity of attention (Wickens
et al., 1998; Ha et al., 2016). Selective attention to important
information is therefore required to effectively understand
the current reactor operating status (Mumaw et al., 2000).
MCR operators therefore allocate their attention resources and
selectively pay attention to relevant and important information
to understand the system status.

MCR operators’ tasks involve cognitive activities of
monitoring and detecting the environment, diagnosing
situations, and decision making (Yang et al., 2017; Kim and
Seong, 2019). MCR operators generally monitor the plant status
and diagnose and respond to the plant status for abnormal
operation (Kim et al., 2020b).

There is a direct relationship between operation and attention,
and that is why either a supervisor or peers observe other
operators to check whether they are sufficiently attentive.
However, this method requires significant labor and may be
subjective. The problem could be exacerbated in an advanced
MCR, where personal computer-based workstations make it
difficult for a supervisor to detect fellow operators’ attention
states (Savchenko et al., 2017). In this situation, remote
measurement of attention would be a useful tool providing real-
time feedback to the supervisor.

Recently, the analysis of electroencephalography (EEG) and
eye movements have been used to assess variations in the
attention state of subjects during the execution of cognitive tasks
in various fields (Jung et al., 2017, 2019; Kim et al., 2018; Pei et al.,
2018).

Liu et al. (2013) determined whether students remain attentive
throughout instruction during the learning process based on
their EEG signals. To describe the learning environment,
Standard English class material was used as experiment material.
A classification accuracy of 76% was obtained through the
support vector machine. The authors explained that if teachers
identify whether students are attentive, they can remind students
to remain focused, thereby improving students’ learning effects.

Heuer and Hallowell (2015) suggested the eye movement
method to index attention allocation in people with aphasia.
Auditory sentence comprehension and visual search tasks
were performed. The authors observed differences in
attention allocation between groups with and without
aphasia depends on task complexity in single- and dual-
task conditions. They suggested that utilizing information

from eye movements has promising potential for clinical
assessment applications.

Pallavi and Harish (2016) implemented a driver’s attention
monitoring system using EEG signals. The EEG signals were
monitored and analyzed by using a brain sense headband that
transmits the information to the controller wirelessly using the
Bluetooth module. The warning tone would be triggered to
prevent accidents when the drowsiness condition occurred to
the driver. The authors explained that their EEG based-attention
monitoring system can be used to indicate driving attention
and drowsiness.

To date, the potential benefits of studying EEG and eye
movements together to understand operator’s attention in NPP
tasks has not been pursued. As MCR operators perform cognitive
activities by using information obtained through visual channels,
we evaluated the use of both EEG signals and eye movements (as
supportive biosignal) to establish a robust baseline to determine
the plausibility of developing an attention monitoring system in
this paper. Using two sets of data to monitor human attention
may help to improve the accuracy in model predictions and
contribute to overall human error reduction.

In this research, performing nuclear tasks based on the use
of a nuclear simulator was investigated. Although this is not
completely the same as with the tasks of a professional MCR
operator in NPP, this could provide similar environment of an
MCR operator and raise the level of psychological involvement
of the subjects during the experiments. To reflect and mimic
operations in an advanced MCR, this study designed general
tasks and nuclear simulator tasks as the basis for collecting
relevant EEG and eye movement data. The collected data
were analyzed for feature extraction and classification model
development based on the use of machine learning algorithms.

2. METHODS

This study constructed a hypothesis to investigate the
identification of the attention of advanced MCR operators.
The hypothesis is that there will be a significant difference in
an operator’s biosignals between the presence and absence of
attention while performing general tasks as well as the tasks
related to nuclear reactor operations.

2.1. Experimental Design
To test this hypothesis, study subjects were asked 38 questions
as general tasks and 72 questions specific to nuclear reactor
operations based on the use of the nuclear simulator. EEG and eye
movement data were collected during the experimental sessions
and analyzed with respect to the testing hypothesis.

2.1.1. General Tasks
Oh and Lee (2013) investigated the potential causes of human
errors in an advanced MCR where PC-soft controls are heavily
relied on for reactor operation. They found that observation,
omission, search and decision, and memory and decision failures
are four major factors related to human errors. The authors
also designed four experimental tasks to investigate the role of
these factors. These tasks were used with slight modification

Frontiers in Computational Neuroscience | www.frontiersin.org 2 December 2020 | Volume 14 | Article 596531

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Kim et al. Biosignal-Based Attention Monitoring

FIGURE 1 | Examples of general tasks.

in the current study as general task questions. Examples of
these questions are illustrated in Figure 1. For example, the
observation trial questions ask the subject how many words
in a list (“taost,” “traet,” “trust,” “twist”) have typographical
errors [answer: two words (toast and treat) have typographical
errors]. The omission trial questions ask the subject to find the
omitted numbers from a matrix where the numbers between
1 and 9 are presented in a random order. The search and
decision trial questions ask the subject to check the number
in a specific position in a 5X5 matrix. The memory and
decision trial questions ask the subject to recall a specified
number in a 5X5 matrix and compare it with the number
provided. A total of 38 questions were used in the general
task session, including eight observation trials, six omission
trials, 16 search and decision trials, and eight memory and
decision trials.

As shown in Figure 2, each trial followed the same sequence
of screen changes: a fixation cross to prepare the subject for
the trial, a blank screen, a question (e.g., “What is the number
in row 3, column 5?”), a blank screen, a picture related to
the question (e.g., a matrix of numbers with 5 rows and 5
columns), a blank screen, an answer to the question provided
by the instructor (in each trial, the subjects answered the
trial questions and were given an opportunity to compare
their answer with the answer provided by the instructor.),
and a blank screen followed by a two checklist questions to
be answered by the subject via keyboard. The first checklist
question was “Was there an error in the instructor’s answer?”
with the choice of yes or no. The second question was
“How attentive were you in answering the previous question?”
with these multiple-choice options: very attentive, moderately
attentive, somewhat attentive, only slightly attentive, or not at
all attentive.

2.1.2. Nuclear Simulator Tasks
The second group of trials used soft controls in an advancedMCR
mock-up called the Windows-based Nuclear Plant Performance
Analyzer (Win-NPA). Win-NPA is a compact nuclear simulator
capable of simulating 53 malfunctions in nuclear reactor
operations (Kim et al., 2000; Sohn et al., 2011). Although the
simulator is not a full scope simulator, many researchers have
used it to simulate operations in an advanced MCR (Choi et al.,
2018; Kim et al., 2020c). The interface of the Win-NPA is fully
digitalized to make the experimental environment similar to the
environment in an advanced MCR.

Various types of human error can occur in an advanced NPP
MCR. This study examines operation omission, wrong object
selection, and wrong operation as part of conducting nuclear
simulator tasks (Kim et al., in press). Operation omission can
be defined as failing to execute a step in an operating procedure
(e.g., mistakenly taking steps 1, 2, 4, and 5 in a procedure, leaving
out step 3). Wrong object selection is a failure to select a target
object and instead select a different object. An example of the
wrong operation is pressing an “OPEN” button instead of a
“CLOSE” button.

The types of scenarios used in the experiment in association
with identifying human error occurrence were normal operating
scenarios (i.e., startup and shutdown) as well as two accident
scenarios [i.e., a loss of coolant accident (LOCA) and a steam
generator tube rupture (SGTR)]. If a LOCA occurs in an NPP, the
pressurizer’s (PZR’s) pressure, temperature, and the water level
will decrease, and containment radiation will increase. Similarly,
if an SGTR occurs in an NPP, the PZR’s pressure, temperature,
and the water level will decrease, and the steam generator (SG)
water level will increase. Prior to the experiment, the subjects
were instructed that it was training session for education to avoid
the higher workload or decision burden for accident scenarios.
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FIGURE 2 | Experiment paradigm of general tasks.

To focus on evaluating the attention of the subjects, the scenarios
used in the experiment was not required to recover the accident
but was required to monitor and diagnose the situation.

To analyze the cognitive behavior of the subjects during the
trials, this study defined four groups of areas of interest (AOI,
or specific operating parameters of interest) as shown in the red
rectangles of Figure 3; these are (1) pressure, wide-range water
level, and narrow-range water level of SG1, (2) pressure, wide-
range water level, and narrow-range water level of SG2, (3) PZR
pressure and water level, and (4) reactor power. Furthermore,
there is an additional condition that insert a broken indicator
(BI) to make deviations from the training contents. While faced
with a scenario (normal operation, LOCA, or SGTR), the subject
must focus on the four groups of AOI to monitor indicators or
find a BI. Collectively, this study provides 18 startup scenarios,
18 shutdown scenarios, 18 LOCA scenarios, and 18 SGTR with
each having six scenarios of finding BIs.

Each subject acted as an operator, specifically a reactor
operator or a turbine operator. Each subject took part in a session
of 72 operator action trials, 36 involving normal scenarios, and 36
involving the two accident scenarios. As shown in Figure 4, each
trial followed this screen sequence: a fixation cross to prepare the
subject for the trial, a blank screen, a question (e.g., “Can you
find a broken indicator?”), a blank screen, a video related to the
question (e.g., a video of the LOCA scenario), a blank screen,
the instructor’s answer [e.g., PZR pressure indicator is broken
(PZR P is BI)], a blank screen, a checklist with two questions to
be answered by the subject via keyboard. As in the case of the
general task session, the first checklist question was “Was there
an error in the supervisor’s answer?” with the choice of yes or no.
The second question was “How attentive were you in answering
the previous question?” with these multiple-choice options: very
attentive, moderately attentive, somewhat attentive, only slightly
attentive, or not at all attentive.

As the study requires labeling of the experimental data as
either presence of attention (PoA) or absence of attention (AoA)
for classificationmodel development, the answers to the checklist
questions were used to identify the attention levels of the subjects
during the experimental sessions.

2.2. Subjects of the Experiment
Because the tasks performed in this study require sufficient
knowledge in nuclear reactor systems, the experimental subjects
were recruited among the college/graduate students majoring
in nuclear engineering. It was required for the subjects to have
completed one of the two courses: “Introduction to Nuclear
Engineering” or “System Engineering of Nuclear Power Plants.”
In the end, 30 volunteer students (27 male and three female)
from the Department of Nuclear and Quantum Engineering at
Korea Advanced Institute of Science and Technology (KAIST)
participated in the experiments. They were also screened against
a history of eye problems, neurological disorders, mental
disorders, or alcohol or drug dependence. None of the students
were disqualified from the screening.

Before conducting the experimental sessions, the research
staff explained the experimental procedures to the subjects,
as required by the KAIST Institutional Review Board (IRB)
guideline. The subjects read an information sheet and signed an
agreement regarding the data collection process. All subjects were
required to sleep more than 6 h and not to drink caffeine or
alcohol for at least 24 h before the experiment.

Prior to performing the experiment, there was a 30 min
training session by the experiment instructors, who have
considerable expertise with the Win-NPA system. This training
session included conducting simple tasks to show how tomonitor
and diagnose simulator scenarios. The actual experiment was
conducted only for the subjects who answered more than six out
of eight questions correctly in the pre-test. It turned out that one
student did not pass the pre-test. After further studies, the student
was qualified and participated in the experiment.

2.3. System Architecture for Classification
2.3.1. Data Acquisition
Studies indicate that among various frequency bands of EEG, an
increase in the gamma band and a decrease in the alpha band
are associated with subjects’ paying attention to tasks (Pascucci
et al., 2018). In eye movements, an increase in the fixation
count and fixation duration is often referred to as an increase
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FIGURE 3 | Schematic diagram of nuclear simulator tasks with four groups of AOI.

FIGURE 4 | Experiment paradigm of nuclear simulator tasks.

in the attention level (Holmqvist et al., 2011). Based on these
observations, we acquired the relevant EEG and eye movement
data to evaluate the attention status of the subjects.

EEG signals were measured using a Neuron-spectrum 4/P
(Neurosoft Ltd., Russia). Each subject was fitted with an Ag/AgCl
electrode cap arranged with an extended international 10-20
system. The EEG data from 21 channels (Fp1, Fp2, Fpz, F3, F4,
F7, F8, Fz, C3, C4, Cz, T3, T4, T5, T6, P3, P4, Pz, O1, O2, and Oz)
were recorded, as shown in Figure 5, at a sampling rate of 500
Hz. Reference electrodes were placed on both earlobes. During

the experiment, the electrode impedances of all the channels were
kept below 5 k�.

The eye movements were measured by using a Tobii X120
eye tracker. The eye tracker was located beneath the computer
monitor, monitoring the subject’s field of vision. The seating
position was adjusted according to the subject’s height. Since the
eye tracker is non-invasive and operates remotely, the device did
not interfere with the subject’s task performance.

After adjusting the seating position, the Tobii X120 was
calibrated. Calibration required the subjects to move their eyes
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FIGURE 5 | Brain areas corresponding to the 10/20 electrode positions.

to five specific spots, i.e., each of the four corners and the
center of the monitor screen. These eye movements were tracked
using a standard five-point calibration option in the Tobii Eye
Tracker Extension for Presentation software. Eye movement was
recorded with a sampling frequency of 120 Hz. Because EEG and
eyemovement data collection are sensitive to light and sound, the
experimental environment blocked light and sound to support
the subject’s concentration. The EEG and eye movement data
were synchronized in time by using the Neurobehavioral Systems
presentation software.

2.3.2. Channel Selection
The EEG signals are generally categorized as delta (δ), theta (θ),
alpha (α), beta (β), and gamma (γ ) based on signal frequencies
(Zeng et al., 2015). The δ frequency (1–4 Hz) appears in
cognitive processes related to the detection of salient stimuli in
the environment. The θ frequency (4–8 Hz) is related to visual
selective attention. The α frequency (8–13 Hz) primarily reflects
visual processing in the brain (Klimesch et al., 2011). The β

frequency (13–30 Hz) focuses on neural correlates of attention
and concentration (Wang et al., 2017). The γ frequency (30–
50 Hz) reflects working memory and attention (Klimesch et al.,
2008). These EEG indicators were measured on various parts
of the brain to represent different brain functions. This study
focused on describing functions related to the frontal, temporal,
and parietal lobes as well as the Brodmann Areas (BAs).

As shown in Figure 5, each area of the brain is responsible
for a specific function. The frontal lobes play a role in
many processes, such as motivation, intention, attention, and
concentration. The temporal lobes are believed to be of
central importance in memory processing and discrimination of
complex visual stimuli (Klimesch et al., 1994). The parietal lobes
are associated with the detection of salient new events in the
environment and in sustaining attention on task goals. BA 10 is
the frontopolar area responsible for central executive processes
such as memory, emotion, and integration of the information
(Peng et al., 2018).

The brain areas that correspond to the 10/20 electrode
positions can vary and include the frontal area (with Fp1, Fp2,
Fpz, F3, F4, F7, F8, Fz, C3, C4, and Cz), the temporal area (with
T3, T4, T5, and T6), the parietal area (with C3, C4, Cz, P3, P4,
and Pz), and the BA 10 area (with Fp1, Fp2, and Fpz).

2.3.3. EEG and Eye Movement Preprocessing
To remove artifacts in the collected EEG data, data preprocessing
was performed based on Makoto’s preprocessing pipeline using
EEGLAB (Delorme and Makeig, 2004). The line noise was
removed by the CleanLine plugin (Mullen, 2012). Bad channels
were rejected using the Clean Rawdata plugin, and continuous
data were corrected using artifact subspace reconstruction
(ASR). The Adaptive Mixture Independent Component Analysis
(AMICA) program and the postAmicaUtility toolbox were used
for independent component analysis (ICA) (Palmer et al., 2012).
The artifacts from body movement, rolling eyeballs, and blinking
were excluded from the analysis based on visual inspections of
each component.

The preprocessed data were divided into 38 epochs of 5 s for
each general task and 72 epochs of 5 s for each nuclear simulator
task. A total of 110 epochs of 5 s per channel were collected and
used for subsequent analysis.

The eye movement data are made up of x, y coordinates with
each data point’s associated timestamp. These raw data were used
to obtain information about fixation count and fixation duration.
Preprocessing of eye movement data includes conversion of gaze
position data from pixels to millimeters, removal of blinks and
artifacts, and removal of outliers.

2.3.4. Feature Extraction
To support the development of a machine learning algorithm,
this study extracted a set of features that describe subjects’
EEG and eye movement responses. These features were then
used to classify the presence and absence of attention using the
classification model. The EEG features used were extracted from
the frequency domain (Tang et al., 2013).

The frequency domain features were calculated using the
Discrete Fourier Transform (DFT). The transformed data were
categorized into five frequency bands, δ, θ , α, β , and γ . A relative
power value was calculated for each channel by dividing the
power of each frequency band by the total power from the five
frequency bands.

In the case of eye movement data, fixation was defined as a
pause, of 150 ms, in eye movement over a specific region of the
visual field. In the nuclear simulator tasks, a question was asked
referring to four groups of AOI (SG1, SG2, PZR, and reactor
power). All fixations occurring during the 5 s video relevant to
the question were measured but only the fixations on specific
group of AOI were considered for analysis. If the subject looked
at other groups of AOI, these fixations were not included in the
analysis. The analysis consisted of calculating the total number of
fixations on the relevant group of AOI and the time duration of
these fixations per task.

This study used each of the five frequency domain features
from each channel of the EEG measurements and two features
extracted from the eye movement data as summarized in Table 1.

Frontiers in Computational Neuroscience | www.frontiersin.org 6 December 2020 | Volume 14 | Article 596531

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Kim et al. Biosignal-Based Attention Monitoring

TABLE 1 | Features extracted from the EEG and eye movement data.

Biosignals Feature types Extracted features

EEG Frequency domain Relative power of δ, θ , α, β, and γ

Eye movements Fixation domain Total number of fixations in the

relevant AOI (fixation) and total time

spent on the relevant AOI fixation

(duration)

TABLE 2 | P-values for the EEG indicators showing differences between the AoA

class and the PoA class for all general tasks while viewing pictures.

Indicator Frontal Temporal Parietal BA 10

Relative power of δ 0.633 0.587 0.545 0.535

Relative power of θ 0.420 0.597 0.606 0.011*

Relative power of α 0.008* 0.521 0.242 0.587

Relative power of β 0.010* 0.229 0.304 0.143

Relative power of γ 0.372 0.521 0.457 0.592

P-values less than 0.05 are identified with an asterisk.

3. RESULTS

3.1. Statistical Analysis
Using the answers to the two checklist questions in both the
general and nuclear simulator task sessions, this study labeled the
collected EEG signals and eye movement data into the PoA class
and the AoA class. Trials with the answer “very attentive” and
“moderately attentive” with correct responses for the task were
labeled as the PoA class, and those with “somewhat attentive”
were not used in the classification. The AoA class was defined
for the following two conditions. First, the trials with the answer
“only slightly attentive” or “not at all attentive” in the second
question of the checklist were labeled as the AoA class regardless
of the correctness of the answer to the first question. Also,
the cases with incorrect responses to the first question of the
checklist were also labeled as the AoA class by assuming that the
wrong answer was due to a lack of attention. This may involve
misclassification as the subject could have answered the question
wrong under full attention. But the number of cases under this
category was very small and is not expected to affect the outcome
of the study. In summary, there were 2656 PoA cases, 578 AoA
cases, 12 cases of potential misclassification, and 54 removed
cases due to artifact removal. To examine the effect of possible
misclassification with the 12 cases, this set was treated as both the
AoA class and the PoA class in the analysis. The results showed
statistically insignificant difference with and without these 12
cases both in the analysis of the general tasks and the nuclear
simulator tasks.

The results from the Welch’s t-test for the general task
questions are shown in Table 2. Results indicated that statistically
significant differences exist in several of the EEG signals between
the AoA class and the PoA class. These EEG signals were the
relative power of the α and β bands from the frontal lobes and the
relative power of the θ band from the BA 10. Asmentioned above,
frontal lobes are related to attention and concentration, and BA

TABLE 3 | P-values for the EEG indicators showing differences between the AoA

class and the PoA class for all Win-NPA tasks while watching videos.

Indicator Frontal Temporal Parietal BA 10

Relative power of δ 0.214 0.051 0.036* 0.546

Relative power of θ 0.576 0.995 0.638 0.131

Relative power of α 0.662 0.051 0.619 0.039*

Relative power of β 0.598 0.003* 0.041* 0.462

Relative power of γ 0.443 0.015* 0.057 0.019*

P-values less than 0.05 are identified with an asterisk.

10 is responsible for memory and integration of information. The
α, β , and θ bands are related to visual processing, concentration,
and visual selective attention, respectively. As shown in Figure 6,
the θ band was significantly increased across the BA 10 in the
AoA class. Also, the α band was significantly increased and the
β band was significantly decreased across frontal lobes in the
AoA class.

The EEG signals collected during the Win-NPA tasks also
showed significant differences (based on the Welch’s t-test)
between the AoA class and the PoA class as shown in Table 3.
Because visual processing of information is important cognitive
activities during the nuclear simulator session, EEG signals
recorded from the brain regions related to visual processing,
such as on temporal lobes and parietal lobes, showed significant
differences between the AoA class and the PoA class. Also,
EEG signals from BA 10, which is associated with memory
and integration of information showed a significant difference
between the AoA class and the PoA class, similar to the
observations from the general tasks. As shown in Figure 7, the
δ band was significantly decreased across parietal in the AoA
class while watching the videos. The α band was significantly
increased across BA 10 in the AoA class. This result is
consistent with previous studies that alpha desynchromization
promotes information processing in the brain (Klimesch,
2012). Similarly, the β band was significantly increased across
temporal and parietal lobes in the AoA class. The γ band
was significantly decreased across temporal and BA 10 in the
AoA class.

As shown in Tables 2, 3, the number of statistically significant
indicators was three in the general tasks and six in the nuclear
simulator tasks. The fact that the nuclear simulator tasks
required professional knowledge and higher concentration levels
compared to the general tasks may have resulted in a larger
number of significant indicators between the AoA class and
the PoA class in the nuclear simulator tasks. Additionally, it is
noticeable that, unlike the general tasks, the nuclear simulator
tasks showed statistically significant differences in the EEG
signals from the temporal and parietal lobes, which are related
to visual attention.

The observed differences in the attention level between the
AoA class and the PoA class during the general tasks and
nuclear simulator tasks were utilized for classification model
development by applying machine learning algorithms.
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3.2. Classification
Feature selection is the process of selecting a subset of features
that contribute the most to the construction of the classification
model through including and excluding features present in the
data. The feature selection was achieved by using the default
parameters of the Variable Selection using Random Forests
(varSelRF) technique (Diaz-Uriarte, 2007). The varSelRF uses
both backwards variable elimination and selection based on the
potentially highly correlated variables. As described in the feature
extraction section, five features from the frequency domain in the
EEG data and two features from eye movement data were used
for classification.

To classify the data, both the classifiers of the k-nearest
neighbors (kNN) and support vector machine (SVM) were used.
Theses classifiers are widely used in various fields to classify EEG
data (López-Gil et al., 2016). The kNN is a supervised learning
algorithm for classifying objects based on the closest training data
in the feature space. As a non-parametric method, it performs
classification based on comparing testing data with training data.
The SVM is a supervised learning algorithm and formulates a
separating hyperplane. Themethod is applied to solve a quadratic
optimization problem in the feature space. Kernel SVM finds
the optimum hyperplane into a higher dimensional space, which
ensures that the distance between margins is maximum. This
study specifically used the radial basis function (RBF) kernel to
project input vectors into a Gaussian space.

30% of the study observations were randomly selected and
used as testing data, and 70% of the observations were used as

training data for classification model development. The average
classification accuracy using the developed model was calculated
through the classification results of testing data.

Table 4 summarizes the results as classification accuracy of
the developed model for the case of the general tasks. The
classification accuracy was calculated as an average across the
total brain, frontal lobes, and BA 10 based on statistical analysis.
When the five EEG frequency domain features were used, the
average classification accuracies of the kNN and SVM classifiers
were 84.6–86.7 and 87.0–87.4%, respectively. From the results, it
is noticeable that the average classification accuracy of using BA
10 data only is comparable to that of using the total brain and
frontal lobes data, which use a greater number of channels.

Table 5 summarizes the average classification accuracy of the
developed model between the AoA class and the PoA class
in the nuclear simulator tasks. The classification accuracy was
calculated as an average across the total brain, temporal lobes,
parietal lobes, and BA 10 based on statistical analysis. When

TABLE 4 | Average classification accuracy of the AoA class and the PoA class in

the general tasks using the frequency domain features (Unit: %).

Brain areas kNN SVM

Total brain 85.8 87.4

Frontal lobes 86.7 87.0

BA 10 84.6 87.2

FIGURE 6 | The relative power of EEG frequency bands between the AoA class and the PoA class in different regions of the brain for all general tasks. Blue bars

represent the PoA class and the red bars represent the AoA class. Brain areas with P-values less than 0.05 are identified with an asterisk. (A) Relative power of delta,

(B) relative power of theta, (C) relative power of alpha, (D) relative power of beta, and (E) relative power of gamma.
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FIGURE 7 | The relative power of EEG frequency bands between the AoA class and the PoA class in different regions of the brain for all Win-NPA tasks. Blue bars

represent the PoA class and the red bars represent the AoA class. Brain areas with P-values less than 0.05 are identified with an asterisk. (A) Relative power of delta,

(B) relative power of theta, (C) relative power of alpha, (D) relative power of beta, and (E) relative power of gamma.

TABLE 5 | Average classification accuracy of the AoA class and the PoA class in

the nuclear simulator tasks using the frequency domain features (Unit: %).

Brain areas kNN SVM

Total brain 86.5 87.8

Temporal lobes 86.5 87.6

Parietal lobes 86.2 87.4

BA 10 86.8 87.2

the five EEG frequency domain features were used, the average
classification accuracies of the kNN and SVM classifiers were
86.2–86.8 and 87.2–87.8%, respectively. From the results, it is
also noticeable that the average classification accuracy of using
the BA 10 data is comparable to that of using the data from the
total brain, temporal lobes, and parietal lobes which use a larger
number of channels. The BA 10 is related to visual processing and
attention functions.

The results again confirm that visual processing and attention
play an important role in understanding visual-based nuclear
relevant tasks. On the basis of statistical analysis and classification
results from the general tasks and the nuclear simulator tasks, the
null hypothesis is rejected.

This study also compared the average classification accuracy
between the case of using only the EEG data and the case of using
both the EEG and eye movement data. Table 6 summarizes the
comparison of the average classification accuracy of the AoA class

TABLE 6 | Average classification accuracy in the total brain when using EEG only

and when using EEG with eye movements in the nuclear simulator tasks using the

frequency domain features (Unit: %).

Biosignals kNN SVM

EEG 86.5 87.8

EEG with eye movements 89.1 90.1

and the PoA class between the two cases in the nuclear simulator
tasks. The average classification accuracy was calculated for the
total brain area.

The average classification accuracies of the kNN and SVM
classifiers were about 86-87% for the use of EEG data only, and
89–90% for the combined use of the EEG and eye movement
data, respectively. The average classification accuracy of using
both the EEG and eye movement data is about 3% higher than
using only the EEG data. Although the increase is not great, these
results may indicate the potential of the eyemovement data as the
supportive biosignal to evaluate MCR operators’ attention.

4. DISCUSSION

4.1. Applications
The proposed system could be utilized to provide a real-time
monitoring of the attention levels of nuclear reactor operators
during operations in the MCR. Such monitoring capability may
help to enhance overall performance of the reactor operating
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team without interfering with their operating duties or functions.
Such capability may also provide opportunities to prevent or
detect human errors, particularly in terms of an advanced
NPP MCR.

Applying the proposed concept in an NPP MCR requires
a high degree of information security in data utilization. The
process of obtaining and transmitting EEG and eye movement
data should be protected to prevent tampering or unauthorized
acquisition of the data. For this reason, application of the
proposed system to an advanced MCR can be through wired
data transmission in conjunction with a secure USB or using the
Intranet or using one-way data transmission and reception (this
is because Wi-Fi and Bluetooth tools are not allowed in NPPs).

Another application of the proposed approach is to support
operator training. The operators’ performance during training
sessions can be monitored in real-time as suggested in the
study. Based on the analysis of the data, individually tailored
recommendations can be provided to the trainees conserving the
privacy of the data. Also, effectiveness of the existing training
programs can be assessed by using the proposed approaches for
program enhancement.

4.2. Biosignal and Channel Selection
In this study, use of all the available EEG channels and their
potentially associated features were not considered under the
consideration of avoiding overfitting of the machine learning
algorithm. In fact, taking economic and ergonomic aspects into
consideration, recording a full set of EEG data may not be
desirable (Kim et al., 2020a). To examine this point, this study
compared the EEG results from the total brain (21 channels) to
the BA 10 (three channels: Fp1, Fp2, and Fpz).

Comparison of the classification accuracies from using various
brain channel data indicated that using all available data or
channels was not necessary for the given task, i.e., classification
of attention levels. As shown in Table 5, the average classification
accuracies of using only the BA 10 data are comparable to
those of using the total brain data. This suggests that an
EEG measurement implementation in the form of helmets may
be possible with the use of only the BA 10 channels. Such
implementation could suffice the data required for the advanced
MCR application.

Furthermore, the average classification accuracy of the
developed model from the combined use of the EEG and eye
movement data was just 3% higher than the case of using the
EEG data only (Table 6). Although the increase in classification
accuracy is not significant from the use of additional eye
movement data, the use of eye movement data may be important
for human error reduction as looking at the right AOI is an
important part of decision making by a nuclear operator.

While this study indicated the plausibility of using the EEG
and eye movement data for attention monitoring based on
mockup tasks with students as subjects, future study will consider
using a full-scale simulator with professional reactor operators.

5. CONCLUSION

This study investigated the development of biosignal-based
attention monitoring system for the purpose of preventing
human error at NPP MCR. The system is based on a
classification model for the presence or absence of operator
attention. We designed general tasks and nuclear simulator
tasks mimicking the situations in NPP MCR as the basis of
model development. During these tasks, each subject’s attention
levels were examined and analyzed from their biosignals to
develop the classification model. The biosignals used were
the five frequency band EEG data and eye movement data.
Through the use of the developed model, we demonstrated that
the presence or absence of human attention can be classified
with up to 90% in accuracy. The proposed methods could be
adopted to other industrial applications for the purpose of human
performance enhancement and/or human error reduction based
on attention monitoring.
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