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Recurrent neural networks with associative memory properties are typically based on
fixed-point dynamics, which is fundamentally distinct from the oscillatory dynamics of
the brain. There have been proposals for oscillatory associative memories, but here
too, in the majority of cases, only binary patterns are stored as oscillatory states in
the network. Oscillatory neural network models typically operate at a single/common
frequency. At multiple frequencies, even a pair of oscillators with real coupling exhibits
rich dynamics of Arnold tongues, not easily harnessed to achieve reliable memory
storage and retrieval. Since real brain dynamics comprises of a wide range of spectral
components, there is a need for oscillatory neural network models that operate at
multiple frequencies. We propose an oscillatory neural network that can model multiple
time series simultaneously by performing a Fourier-like decomposition of the signals. We
show that these enhanced properties of a network of Hopf oscillators become possible
by operating in the complex-variable domain. In this model, the single neural oscillator
is modeled as a Hopf oscillator, with adaptive frequency and dynamics described
over the complex domain. We propose a novel form of coupling, dubbed “power
coupling,” between complex Hopf oscillators. With power coupling, expressed naturally
only in the complex-variable domain, it is possible to achieve stable (normalized) phase
relationships in a network of multifrequency oscillators. Network connections are trained
either by Hebb-like learning or by delta rule, adapted to the complex domain. The
network is capable of modeling N-channel electroencephalogram time series with high
accuracy and shows the potential as an effective model of large-scale brain dynamics.

Keywords: supercritical Hopf oscillator, power coupling, complex coupling, normalized phase difference, fourier
decomposition, complex valued oscillator, complex Hebb’s rule, generative model

INTRODUCTION

Currently, there are two prominent approaches to characterizing the neural code: the instantaneous
rate or frequency at which the neuron fires action potential (“the spike frequency code” or the
“rate code”) and the time of the occurrence of action potential (“spike time code”). The former
assumes the information is processed/encoded over a larger time scale conveyed by average number
of spikes fired in a given duration forms the basis of a large class of neural networks called the rate
coded neural networks (Lippmann, 1990; Ruck et al., 1990; Lawrence et al., 1997). Whereas the
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latter believe that the precise timing of the action potential
fired by a neuron encodes the ongoing activity, giving rise
to a broad class of spiking neural network (Maass, 1997a,b;
Izhikevich, 2003, 2004; Ghosh-dastidar and Lichtenstein, 2009).
These two classes of neural networks are capable of universal
function approximation and well explored (Maass, 1997a;
Auer et al., 2008). They have been reported to solve a wide
range of information processing problems like vector space
transformation, dimensionality reduction, sequence processing,
memory storage as an attractor and autoencoding (Hopfield,
1982; Frasconi et al., 1995; Kohonen, 1998; Trappenberg, 2003;
Schmidhuber, 2015).

The third class of neural code, dubbed the oscillation coding
(Fujii et al., 1996) also has been around for more than two
decades. However, it has not been adopted in modeling literature
as extensively as the first two types of neural code. Oscillation
coding is based on the idea that not single-neuron activity,
but the synchronized collective activity of a neural ensemble is
the true building block of the brain’s activity. Unlike the rate
code, which is often represented as a continuous signal encoding
information as an average neural activity, or the spike time code,
which is often described as a train of delta functions, oscillation
code is a smooth signal that is said to be composed of distinct
frequency bands. Oscillation coding also offers an opportunity
to represent important temporal phenomena like temporal
binding via transient synchrony (Wang and Terman, 1995, 1997;
Shi et al., 2008) or rhythmic behaviors such as locomotion
(Ermentrout and Kopell, 1989). There have been comprehensive
and valorous attempts to describe all brain function in terms
of the oscillatory activity of neural ensembles (Draguhn, 2004;
Buzsáki et al., 2012). However, since existing literature does
not commit to the exact size of a “neural ensemble,” activity
measured at different scales goes by different names, including
local field potentials (LFPs), electrocorticograms (ECoGs),
electroencephalograms (EEGs), etc.

Since oscillations are ubiquitous in the brain, one would
naturally expect nonlinear oscillator models to be used
extensively to describe brain function. However, models of brain
function often use sigmoidal neurons (to represent the rate code),
spiking neuron models (to represent the spike time code), or
more detailed conductance-based or biophysical models. In the
field of neural signal processing, for example, a large body of
literature depicting various deep neural network architectures
such as recurrent neural network, convolutional neural network
and deep belief network have been used for EEG signal processing
and classification at various scales which found application in
the following areas: brain-computer interface, epilepsy, cognitive
and effective monitoring, etc. (Craik and He, 2019; Roy et al.,
2019). Nonlinear oscillators are used exclusively for describing
oscillatory phenomena like rhythmic movements or feature
binding by synchronization. In an attempt to correct this bias,
it would be a worthwhile modeling exercise to construct general
networks of nonlinear neural oscillators that can be used to
describe a wide range of brain functions.

The coupling strategies between a pair of neurons
differ depending on the neuronal dynamics defined by the
mathematical representation of the neural code. Biophysical

neuron models employ biophysically detailed synapse models for
coupling whereas the spiking neuron models employ elementary
single exponential alpha function or double exponential function
for coupling (Destexhe et al., 1994). Various two-variable
oscillator models such as FitzHugh Nagumo model, Van der
Pol, Wilson-Cowan, Kuramoto and Hopf oscillator principally
employ what may be described as “real coupling strategy”
(Campbell and Wang, 1994; Toral et al., 2003; Low et al., 2005;
Izhikevich, 2007; Breakspear et al., 2010; Hoff et al., 2014; Sadilek
and Thurner, 2015). In real coupling strategy, only the main
variables (x1 and x2) of the two oscillators interact directly.
Delayed real coupling strategies have also been explored for
several of these oscillator models (Wirkus and Rand, 2002; Saha
and Feudel, 2017). The averaged behavior of pulse-coupled
oscillators has also been analyzed (Ermentrout and Kopell, 1991).
On the contrary, in the complex coupling strategy (Hoppensteadt
and Izhikevich, 2000), the two variables of the oscillator (x and
y) are combined to form a complex variable (z = x + iy), and the
complex state of one oscillator influences the complex state of
the other. In this case, both x and y variables of one oscillator
influence the x and y variables of the other.

In this paper, we describe a general trainable network of neural
oscillators. For the oscillator model, we choose the simple Hopf
oscillator. One reason behind the choice of the Hopf oscillator is
the elegant form its description assumes in the complex variable
domain. We show that it is important to operate in the complex
domain in order to define some of the novel modeling features
we introduce in this paper. Particularly, we introduce the concept
of “power coupling” by which it is possible to achieve robust
phase relationships among oscillators with very different intrinsic
frequencies. The proposed network of oscillators can be trained to
model multi-channel EEG, thereby demonstrating the potential
to evolve into a large-scale brain model.

The outline of the paper is as follows. Section “Prior Work:
Complex Coupling” begins with the definition of Hopf oscillator
in the complex domain and show how to adapt the intrinsic
frequency of the oscillator to that of a sinusoidal forcing signal.
Section “A Pair of Hopf Oscillators With Complex Coupling”
describes the dynamics of a pair of coupled Hopf oscillators
and shows the advantages in coupling with a complex coupling
constant. Section “Coupling Two Hopf Oscillators With Different
Natural Frequencies” highlights the difficulties in coupling a pair
of Hopf oscillators with very different intrinsic frequencies, and
Section “Power Coupling” Between a Pair of Hopf Oscillators”
shows how the difficulties can be overcome by adopting “power
coupling.” Gathering all the modeling elements developed so
far, Section “Adaptive Hopf Oscillator With Complex Input
or Complex Adaptive Hopf Oscillator” describes a network of
oscillators that can model multi-channel EEG. A discussion of the
work was presented in the last section.

A Network of Complex-Valued
Oscillators With Complex Coupling and
Power Coupling
The canonical model of Hopf oscillator without any external
input is described as follows in complex state variable
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representation
(
state variable : z = rei∅; ; i =

√
−1
)
, Cartesian

coordinate representation
(
state variables : x, y

)
and polar

coordinate representation (state variables : r,∅) respectively:
Complex state variable representation:

ż = z
(

α+ iω+ β1|z|2 +
εβ2|z|5

1− ε|z|2

)
Cartesian coordinate representation:

ẋ = x
(

α+ β1r2
+

εβ2r5

1− εr2

)
− ωy

ẏ = y
(

α+ β1r2
+

εβ2r5

1− εr2

)
+ ωx

Polar coordinate representation:

ṙ = αr + β1r3
+

εβ2r5

1− εr2

∅̇ = ω

Depending on the parameter values (α, β1, β2),
the autonomous behavior of the oscillator principally
falls into four regimes: critical Hopf regime
(α = 0, β1 < 0, β2 = 0), supercritical Hopf regime
(α > 0, β1 < 0, β2 = 0), supercritical double limit
cycle regime

(
α < 0, β1 > 0, β2 < 0, local maxima > 0

)
and subcritical double limit cycle regime(
α < 0, β1 > 0, β2 < 0, local maxima < 0

)
(Kim and Large,

2015). The critical Hopf regime has a stable fixed point at the
origin and has the ability to show a stable resonating response
to the complex sinusoidal input (Feiω0t). The supercritical Hopf
regime has an unstable fixed point at the origin and a stable
limit cycle at r =

√
α
|β1|

. In the supercritical double limit cycle
regime, the system exhibits two limit cycles, one of which is stable
while the other being unstable. In the subcritical Hopf regime,
the system has one stable fixed point at the origin. However, it
has the ability to show stable oscillation under the influence of
complex sinusoidal input whose frequency is not too different
from that of the oscillator (ω− ω0 < ε). Throughout the rest
of the paper, we will be using supercritical Hopf regime (with
α = µ, β1 = 1, β2 = 0), which can be defined as follows:

Complex state variable representation:

ż = z
(
µ+ iω− |z|2

)
Cartesian coordinate representation:

ẋ = x
(
µ− r2)

− ωy

ẏ = y
(
µ− r2)

+ ωx

Polar coordinate representation:

ṙ = µr − r3

∅̇ = ω

We now present a series of results related to a single oscillator,
a coupled pair, and a network of Hopf oscillators in the
supercritical regime defined above.

Prior Work: Complex Coupling
Single Oscillator With Adaptive Frequency
It has been previously shown that when a Hopf oscillator
is influenced by a real sinusoidal input signal, it can adapt
its natural frequency to the frequency of the input signal
if it follows the following dynamics (Righetti et al., 2005).

ż = z
(
µ+ iω− |z|2

)
+ εIext (t) (1a)

ω̇ = −εIext (t) sin∅ (1b)

Given, z = re∅ = x+ iy. It can be recognized that the Hopf
oscillator is perturbed by a real input signal Iext (t) with
coupling strength ε. At steady-state r reaches

√
µ for

ε = 0. If Iext (t) = I0sin (ω0t + ϕ) (I0, ω0, and ϕ are the
magnitude, frequency and phase offset of the sinusoidal input
signal), the natural frequency, ω, adapts to the frequency
ω 0.

Adaptive Hopf Oscillator With Complex Input or
Complex Adaptive Hopf Oscillator
When a Hopf oscillator is influenced by a complex sinusoidal
input signal, the natural frequency of the oscillator can adapt
to the frequency of input if the natural frequency of the
oscillator is updated according to the following equation:

ż = z
(
µ+ iω− |z|2

)
+ εIext (t) (2a)

Iext (t) = I0ei(ω0t+ϕ)

ω̇ = −ε
(
real (Iext (t)) sin∅ − img (Iext (t)) cos∅

)
(2b)

ω̇ = −εI0sin (∅ − ω0t − ϕ) (2c)

In this scenario, Iext (t) is a complex sinusoidal signal.
It is straight forward to derive the learning rule for the
natural frequency of the oscillator if eq. 2a is represented
in the Cartesian and polar coordinate forms, respectively, as
follows:

ẋ =
(
µ− r2) x− ωy+ εI0cos(ω0t + ϕ)

ẏ =
(
µ− r2) y+ ωx+ εI0sin(ω0t + ϕ) (2a1)

ṙ =
(
µ− r2) r + εI0cos (ω0t + ϕ− ∅)

∅̇ = ω+
εI0
r

sin (ω0t + ϕ− ∅) (2a2)
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In the phase plane representation, it can be observed from
eq. 2a2 that the influence caused by the input perturbation
on the oscillator phase is εI0

r sin (ω0t − ∅). Whereas from the
Cartesian coordinate system representation (eq. 2a1) it can be
observed that the overall influence of the external perturbation
on the phase point along the tangential axis of the limit
cycle (−→e∅ ),

−→
P∅ is (to understand the vector notations refer to

Figure 1):

r
−→
P∅ = real (εIext (t)) sin∅ − img (εIext (t)) cos∅

= εI0cos (ω0t + ϕ)sin∅ − εI0sin (ω0t + ϕ)cos∅

−→
P∅ =

εI0
r

sin (∅ − ω0t − ϕ)

This motivates us to adapt the learning rule for the
natural frequency of the oscillator, as proposed in eq.
2c, by dropping the magnitude of oscillation because of
the same reason as described by Righetti et al. (2006).
We have simulated the eqs. 2a-2c and observed that
the proposed learning rule for the natural frequency of
the oscillator allows it to adapt to the frequency of the
input complex sinusoidal signal, as shown in the following
Figure 2.

A Pair of Hopf Oscillators Coupled Through Real
Coupling
When two Hopf oscillators with equal natural frequencies are
coupled with the real coupling coefficient as described below (eq.
3), they are going to phase lock in phase (0) or out of phase
by (2n+ 1)π depending on the polarity of the coupling and
initialization. (for proof refer to Supplementary Appendix 1)

ż1 = z1
(
µ+ iω1 − |z1|

2)
+W12real (z2) (3a)

ż2 = z2
(
µ+ iω2 − |z2|

2)
+W21real (z1) (3b)

where W12 is the real coupling coefficient from 2nd oscillator
to 1st one, and W21 is the real coupling coefficient from 1st to
2nd. In the stated scenario, both of the oscillators have identical
natural frequencies, ω1 = ω2. This, with real-valued coupling, a
pair of Hopf oscillators with equal intrinsic frequencies can only
produce two possible values of phase difference.

A Pair of Hopf Oscillators With Complex Coupling
When two Hopf oscillators with identical natural frequencies are
coupled bilaterally through complex coefficients with Hermitian
symmetry, they can exhibit phase-locked oscillation at a
particular angle similar to the angle of complex coupling

FIGURE 1 | Considering the circle as the limit cycle of the Hopf oscillator, e∅ is the unit vector along increasing azimuth angle (∅), er is the unit vector along radius (r),
P is the overall external input perturbation, P∅ and Pr are the external input perturbation along e∅ and er respectively. The analogy is drawn from Righetti et al. (2006).
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FIGURE 2 | Equations 2a-c is simulated for µ = 1,ω (0) = 40,ω0 = 30, ε = 0.9, I0 = 1, ϕ = π
4 , dt = 0.001 sec for 1000 s. (A) Depicts the variation of y(t) w.r.t

img (Iext (t)) at various time instants. (B) Depicts the variation of x(t) w.r.t real (Iext (t)) at various time instants. (C) It can be observed that the natural frequency of the
Hopf oscillator adapts to the frequency of the input signal.

coefficient. (for proof refer to the Supplementary Appendix 2).

ż1 = z1
(
µ+iω−|z1|

2)
+Wz2 (4a)

ż2 = z2
(
µ+iω−|z2|

2)
+W∗z1 (4b)

where z1 = r1ei∅1 , z2 = r2ei∅2 and W = Aeiθ, W∗=Ae−iθ to be
the coupling coefficient (A and θ being the magnitude and the
angle of complex coupling coefficient), in polar coordinate system
representation:

ṙ1 =
(
µ− r1

2) r1 + Ar2 cos (∅2 − ∅1 + θ)

∅̇1 = ω+ A
r2

r1
sin(∅2 − ∅1 + θ) (4a1)

ṙ2 =
(
µ− r2

2) r2 + Ar1 cos (∅1 − ∅2 − θ)

∅̇2 = ω+ A
r1

r2
sin(∅1 − ∅2 − θ) (4b1)

At steady-state ∅1 − ∅2 approaches any of the solutions 2nπ+ θ

depending on the initial conditions [∅1 (0) and ∅2 (0)], whereas
the magnitude of the complex coupling coefficient determines the
rate at which the phase-locking occurs. ψss (where, ψ = ∅1 − ∅2
and ψss is the steady state value of ψ) attains solution 2nπ+ θ

for the following initial condition 2nπ− (−π+ θ) < ∅1 (0) −
∅2 (0) < 2nπ− (π+ θ ).

Simulated Result
To verify the above result, we have simulated eqs. 4a1 and 4b1
numerically by Euler integration method on MATLAB platform
with 4t = 1 msec. It can be observed from the plot (refer to the
Figure 3) that the steady-state phase difference between the two
oscillators (ψss) is either achieving θ or 2π+ θ depending on the
whether it was initialized in the intervals θ− π < ψ (0) ≤ θ+ π

and θ+ π < ψ (0) ≤ 2π+ θ respectively.

Training Rule for the Complex Coupling
When a pair of complex sinusoidal inputs with identical
frequency is presented to a pair of coupled Hopf oscillators with
complex coupling and identical natural frequencies (eq. 4), and
when the complex coupling coefficient is adapted according to
eq. 5, the angle of the coupling coefficient approaches the phase
difference of the external inputs. In other words, the complex
coupling learns the phase relationship of the external inputs.

To train the complex coupling coefficient, a Hebbian like
learning rule can be used as follows:

τWẆ = −W + z1z2
∗ (5)

The polar coordinate representation:

τWȦ = −A+ r1r2cos (∅1 − ∅2 − θ) (5a)

τW θ̇ =
r1r2

A
sin(∅1 − ∅2 − θ) (5b)
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FIGURE 3 | Two Hopf oscillators, dynamics of which is defined in the eqs. 4a1 and 4b1 simulated with ω = 5, µ = 1, A = 0.5, θ = π
4 for various initial conditions

(−π < ∅1 (0) − ∅2 (0)− θ ≤ 3π) depicting that ψss (= ∅1ss − ∅2ss) can reach any of the following solutions 2nπ+ θ depending on the initial condition.

We have limited the scope of our study only to θ dynamics
by assuming Ȧ = 0. Assuming τW is the time constant for the
specified learning dynamics. A similar adaptation of the Hebb’s
rule was used earlier to train connections in a complex version
of the Hopfield network (Hopfield, 1982). When the dynamics
of two Hopf oscillators is defined by eq. 4 (with no external
input), and the complex coupling coefficient is trained according
to eq. 5 with very small value of A (|W|) , θ

(
angle (W)

)
learns ∅1 (0)− ∅2 (0). From eq. 4, it can be interpreted that
∅1 (t) ≈ ωt + ∅1 (0) and ∅2 (t) ≈ ωt + ∅2 (0) (Assuming A�
1), similarly from eq. 5, we can see that θ or angle(W) learns
angle (z1z2

∗) or ∅1 (t)− ∅2 (t) ≈ ∅1 (0)− ∅2 (0). It is shown in
the Supplementary Appendix 3 that the nonzero symmetric
steady state solution (r1ss = r2ss 6= 0, θ−ψss) is r1ss =

√
µ+ A,

ψ = 2nπ+ θ, which is a stable node.
On the other hand, in a network of two coupled oscillators

driven by separate external sinusoidal forcing as described in the
following eq. 6 with the same frequency as the natural frequency
of the two oscillators but any phase offset (ϕ1,ϕ2) will drive
those oscillators to oscillate at the same phase as the external
sinusoidal forcing (∅1 ≈ ωt+ϕ1 and ∅2 ≈ ωt+ϕ2), provided
very low magnitude of the complex coupling coefficient (A� 1).

ż1 =z1
(
µ+iω−|z1|

2)
+Aeiθz2+I01ei(ωt+ϕ1)

ż2 =z2
(
µ+iω−|z2|

2)
+Ae−iθz1+I02ei(ωt+ϕ2) (6)

Under the influence of external input, the angles of z1 and z2 (∅1
and ∅2 respectively) tend to ωt + ϕ1 and ωt + ϕ2, respectively.
When the complex coupling coefficient is trained according to
eq. 5, the angle(W) or θ learns angle (z1z2

∗) or ∅1 (t)− ∅2 (t) ≈
ϕ1 − ϕ2. During training, A must be kept low (A� 1) so that
z1 and z2 dynamics is influenced only by the intrinsic oscillatory
dynamics and the forcing signal. During testing, however, the
external input is removed, A is again increased so that the phase

difference between the oscillators is stable and determined by the
coupling constant.

Simulated Result
The proposed Hebb like learning rule (eq. 5) allows the angle
of complex coupling weight (θ) to learn the phase difference
between the complex sinusoidal inputs driving each of the
oscillators for very low magnitude of the complex coupling
weight (A� 1). To verify this, eq. 6 is simulated for the set
of parameters as described in the following Figure 4. It can be
observed that θ learns the phase difference between the complex
sinusoidal input signals (ϕ1 − ϕ 2).

Novel Contributions: Power Coupling
Coupling Two Hopf Oscillators With Different Natural
Frequencies
A different kind of dynamics can be observed when two
sinusoidal oscillators with different natural frequencies are
coupled with real coupling coefficient. A pair of Hopf oscillators
with real coupling shows Arnold tongue behavior which may be
described as follows: the two oscillators entrain to commensurate
frequencies (having a simple integral ratio) for specific ranges
of the coupling strength, and the range of frequencies for which
the entrainment occurs widens with the strength of the coupling
coefficient (Izhikevich, 2007). There are whole ranges of the
coupling strength and the natural frequencies where there is no
specific phase relationship at all. Therefore, it is not easy to get a
stable phase relationship between two Hopf oscillators with very
different frequencies and real coupling.

The situation is a bit more facile with Kuramoto oscillators
(Izhikevich, 2007). When a pair of Kuramoto oscillators are
coupled according to the equation shown below, their natural
frequencies converge to a particular frequency in between their
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FIGURE 4 | (A) Network schematic of dynamics represented in eq. 6 where the complex coupling coefficient is trained according to eq. 5. (B) It can be verified that
for the following set of network parameters θ learns ϕ1 − ϕ2. I01 = I02 = 0.3, ϕ1 =

π
4 , ϕ2 =

π
6 , ω = 5, A = 10−5, η = 1

dt , dt = 0.001.

natural frequencies, depending on the coupling strength.

∅̇1 = ω1 + K1 sin(∅2 − ∅1)

∅̇2 = ω2 + K2 sin(∅1 − ∅2)

Let, K1 and K2 be the real coupling strengths in the
forward and backward directions, respectively. The phase
difference between the two oscillators (∅ = ∅1 − ∅2) reaches
a steady-state value if K1 + K2> |ω1 − ω2| which is satisfied
by the relationship sin ∅∗ = ω1−ω2

K1+K2
where ∅∗ be the steady-

state phase difference. Notably, both of the oscillators reach
a periodic solution with frequency ω∗=K1ω2+K2ω1

K1+K2
. In this

scenario, although synchronization at a particular intermediate
frequency with a particular phase difference is ensured, the
natural frequency of oscillation is not maintained, i.e., to phase
lock at a particular angle, the oscillation of both the oscillators
had to converge at a particular intermediate value. A network
of such Kuramoto oscillators (eq. 7a) with natural frequencies
drawn from a Gaussian distribution with constrained standard
deviation can show increased phase synchrony among the
oscillators when the isotopic coupling strength (K) exceeds a

threshold (Breakspear et al., 2010).

∅̇i = ωi +
K
N

N∑
j=1

sin
(
∅j − ∅i

)
(7a)

reiθ =
1
N

N∑
j=1

ei∅j

Thus, we can see that the dynamics of a pair of coupled
Hopf oscillators become dramatically more complicated when we
relax the equality relationship between the natural frequencies
of the coupled oscillators. We can visualize a simple, desirable
extension of the dynamics of a pair of coupled oscillators with
distinct natural frequencies. When the natural frequencies are
equal, we found that the phase difference equals the angle of the
complex coupling factor. However, when the natural frequencies
are unequal, there cannot be a phase difference in the usual sense
(∅1 − ∅2), although when the coupled oscillators are entrained
in the m : n ratio, the phase difference has been defined as
m∅1 − n∅2 (where, m, n are integers). Therefore, one may define
a quantity called “normalized phase difference” as follows:

ψ12 = −ψ21 =
∅1

ω1
−
∅2

ω2
(7b)
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Let ψ12 and ψ21 be the normalized phase difference of 1st
oscillator w.r.t 2nd oscillator and vice versa. Is it possible to relate
the normalized phase difference with the angle of the complex
coupling coefficient? It turns out that such a relationship is not
possible even with the complex coupling of eq. 4. To this end, we
extend the complex coupling to a new form of coupling we label
“power coupling” as described below.

“Power Coupling” Between a Pair of Hopf Oscillators
A pair of sinusoidal oscillators (Hopf or Kuramoto oscillator)
can entrain at a specific normalized phase difference if they are
coupled through complex “power coupling” coefficient according
to the following eqs. 8a and 8b at a particular value dependent
on the angle of complex “power coupling” coefficient, natural
frequencies of the coupled oscillators and the initial values of
the phase angle of those oscillators (for proof please refer to
Supplementary Appendix 4).

Coupling a pair of Hopf oscillators through power coupling:

ż1=z1
(
µ+iω1−|z1|

2)
+A12e

i θ12
ω2 z2

ω1
ω2 (8a)

ż2=z2
(
µ+iω2−|z2|

2)
+A21e

i θ21
ω1 z1

ω2
ω1 (8b)

where, A12e
i θ12

ω2 =W12 is the weight of power coupling from 2nd

oscillator to the 1st oscillator and A21e
i θ21

ω1 =W21 is the weight of
power coupling from 1st oscillator to the 2nd oscillator.

The polar coordinate representation:

ṙ1 =
(
µ− r1

2) r1 + A12r2
ω1
ω2 cos ω1

(
∅2

ω2
−
∅1

ω1
+

θ12

ω1ω2

)
(8a1)

∅̇1 = ω1 + A12
r2

ω1
ω2

r1
sin ω1

(
∅2

ω2
−
∅1

ω1
+

θ12

ω1ω2

)
(8a2)

ṙ2 =
(
µ− r2

2) r2 + A21r1
ω2
ω1 cos ω2

(
∅1

ω1
−
∅2

ω2
+

θ21

ω1ω2

)
(8b1)

∅̇2 = ω2 + A21
r1

ω2
ω1

r2
sin ω2

(
∅1

ω1
−
∅2

ω2
+

θ21

ω1ω2

)
(8b2)

The schematic of the coupling architecture is elaborated in the
following Figure 5.

Based on eqs. 8a2 and 8b2, we understand that two modified
Kuramoto oscillators may be coupled using power coupling as
follows:

∅̇1 = ω1 + A12sin ω1

(
∅2

ω2
−
∅1

ω1
+

θ12

ω1ω2

)
∅̇2 = ω2 + A21sin ω2

(
∅1

ω1
−
∅2

ω2
+

θ21

ω1ω2

)
(9)

Power Coupling Among N Hopf Oscillators
Similarly, the dynamics of the ith oscillator in a network of N
supercritical Hopf oscillators coupled through power coupling
can be represented as:

żi = zi
(
µ+ iωi − |zi|2

)
+

N∑
j=1 3 j 6=i

Aije
i
θij
ωj zj

ωi
ωj (10)

Let Wij = Aije
i
θij
ωj be the weight of power coupling from the jth

oscillator to ith oscillator.
The polar coordinate representation is:

ṙi =
(
µ− ri2

)
ri +

N∑
j=1 3 j6=i

Aijrj
ωi
ωj cos ωi

(
∅j

ωj
−
∅i

ωi
+

θij

ωiωj

)
(11a)

∅̇i = ωi +

N∑
j=1 3 j6=i

Aij
rj

ωi
ωj

ri
sin ωi

(
∅j

ωj
−
∅i

ωi
+

θij

ωiωj

)
(11b)

FIGURE 5 | The schematic network representation of eq. 8. There is a kind of frequency transformation occurring at the power coupling synapse because of the
following term in the dynamical eq. 8: ωj

ωi
. At the power coupling synapse, this frequency-transformed version of the oscillation from jth oscillator is weighted by the

power coupling weight Wij = Ae
i
θij
ωj to convert the forcing signal from jth oscillator to ith oscillator and vice versa.
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Therefore, the dynamics of the ith oscillator in a network of N
number Kuramoto oscillators coupled through power coupling
can be represented as:

∅̇i = ωi +

N∑
j=1 3 j6=i

Aijsin ωi

(
∅j

ωj
−
∅i

ωi
+

θij

ωiωj

)
(12)

We may appreciate the difference in the second term in eqs. 7a
and 12. ψ̇ij

′s (defined in eq. 7b) can be obtained from eqs. 8a2, 8b2
and 11b for a network of two oscillators and also for the general
case of N(> 2)Hopf oscillators respectively:

ψ̇12 =
A12

ω1

r2
ω1
ω2

r1
sin ω1

(
∅2

ω2
−
∅1

ω1
+

θ12

ω1ω2

)

−
A21

ω2

r1
ω2
ω1

r2
sin ω2

(
∅1

ω1
−
∅2

ω2
+

θ21

ω1ω2

)
(13a)

ψ̇ij =

N∑
k=1 3 k6=i

Aik

ωk

rk
ωi
ωk

ri
sin ωi

(
∅k

ωk
−
∅i

ωi
+

θik

ωiωk

)

−

N∑
k=1 3 k 6=j

Ajk

ωk

rk
ωj
ωk

rj
sin ωj

(
∅k

ωk
−
∅j

ωj
+

θjk

ωjωk

)
(13b)

At steady state, ψ12 and ψij

(
=
∅i
ωi
−
∅j
ωj

)
can attain any of the

possible solutions of the above eqs. 13a,b.
For a network of any arbitrary N number of Hopf oscillators

as described in eqs. 10 and 11 under the constraint eiθij=e−iθji
or θij=−θji,Aij=A,µ= 1, ψ′ijs can achieve the following desirable
solution:

ψij
∗
=

θij

ωiωj
(13b.s)

for certain initial conditions.
However, there can exist other solutions for which the sum of

the terms on the right-hand side of eqs. 13a,b is zero, without
all the individual terms being zero. That is eq. 13b.s above is not
satisfied. We call these solutions spurious solutions.

Whether the final solution is a desirable or a spurious solution
depends on the initial conditions. Therefore, the solution ψij

∗ can
be achieved only for certain initial values of ∅ ′is.

Two Hopf Oscillators With Power Coupling
Under the following constraints
θ12=θ,θ21=−θ,A12=A21=A,µ= 1, some of the steady-state
solutions of eq. 13a where both entities on the right-hand side of
eq. 13a is zero, is as follows:

ψ12ss =
θ

ω1ω2
±

n1π

ω1
=

θ

ω1ω2
±

n2π

ω2

following the specification: n1
n2
=

ω1
ω2

. It can be noticed that n1 =

n2 = 0 gives us the desired solution, as mentioned in eq. 13b.s.
Let σ12 = ψ12 −

θ
ω1ω2
=
∅1
ω1
−
∅2
ω2
−

θ
ω1ω2

, so, σij = ∅iωi
−
∅j
ωj
−

θij
ωiω j

.

From the following Figure 6A it can be verified that ψ12
and σ12 attain θ

ω1ω2
=
−1.8968

5×10 ≈ −0.038 and zero solution
(the desired solution as mentioned before) respectively for
the initialization specified in the figure caption. To check the
dependency of σ12ss on the initial values of ∅1 and ∅2, ∅1 (0)
and ∅2 (0) space is discretized at4∅1 (0) = 4∅2 (0) = 0.1, in the
interval 0 < ∅1 (0) ,∅2 (0) ≤ 2π and eqs. 8a1, 8a2, 8b1, 8b2 is
simulated for 200 s to ensure the steady-state to be achieved for
various combinations of ∅1 (0) and ∅2 (0). From the following
Figure 6B it can be observed that σ12ss achieves the following
solutions: 0,± 2π

ω1
; for n1 = 0, 1 or n2 = 0, 2

(
=

ω2n1
ω1
= 2n1

)
independent of θ .

Three Hopf Oscillators Coupled Through Power
Coupling
We now explore the solution space numerically for a three-
oscillator system. When three Hopf oscillators are coupled
according to the eq. 10 or 11 (N = 3) with θ′ijs, chosen as
θij = θi − θj ∀ 0 < θi, θj ≤ 2π (i.e., θij = −θij), at steady state
σij achieves one of the possible solutions depending on the
initializations (∅i(0)′s). The ∅̇i dynamics of the three oscillators
can be expressed in the following form.

∅̇1 = ω1 + A12
r2

ω1
ω2

r1
sin ω1

(
∅2

ω2
−
∅1

ω1
+

θ12

ω1ω2

)

+A13
r3

ω1
ω3

r1
sin ω1

(
∅3

ω3
−
∅1

ω1
+

θ13

ω1ω3

)
(14a)

∅̇2 = ω2 + A23
r3

ω2
ω3

r2
sin ω2

(
∅3

ω3
−
∅2

ω2
+

θ23

ω2ω3

)

+A21
r1

ω1
ω3

r2
sin ω2

(
∅1

ω1
−
∅2

ω2
+

θ21

ω1ω2

)
(14b)

∅̇3 = ω3 + A31
r1

ω3
ω1

r3
sin ω3

(
∅1

ω1
−
∅3

ω3
+

θ31

ω1ω3

)

+A32
r2

ω3
ω2

r3
sin ω1

(
∅2

ω2
−
∅3

ω3
+

θ32

ω2ω3

)
(14c)

At steady-state ψ̇ij = 0, where ψij =
∅i
ωi
−
∅j
ωj

or ψ̇ij =
∅̇i
ωi
−

∅̇j
ωj

: Assuming µ = 1, Aij = A and eiθij is a Hermitian matrix(
i.e., eiθij = e−iθji

)
,

˙ψ12ss = −
1
ω1

sin ω1

(
ψ12ss −

θ12

ω1ω2

)
+

1
ω1

sin ω1

(
ψ31ss −

θ31

ω1ω3

)
+

1
ω2

sin ω2

(
ψ23ss −

θ23

ω2ω3

)
−

1
ω2

sin ω2

(
ψ12ss −

θ12

ω1ω2

)
= 0
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FIGURE 6 | (A) The variation of ψ, ψ̇ , and ψ− θ
ω1ω2

w.r.t time is plotted by simulating eqs. 8a1 and 8b1 for the following set of parameters and initial conditions.
ω1 = 5,ω2 = 10,A = 0.05, θ = −1.8968, ∅1 (0) = 3.7008, ∅2 (0) = 2.3106. (B) It can be verified that depending on the various combinations of initial conditions
(0 < ∅1 (0) ,∅2 (0) ≤ 2π), σ12ss can reach one of the solutions ± 2n1π

ω1
= ±

2n2π
ω2

. For the following set of parameters, simulated results show that σ12ss reaches one

of the following three solutions 0,± 2π
ω1

or ± 4π
ω2

or ± 1.257. Simulation parameters: ω1 = 5,ω2 = 10,A = 0.2, θ = 2.9644.

˙ψ23ss = −
1
ω2

sin ω2

(
ψ23ss −

θ23

ω2ω3

)
+

1
ω2

sin ω2

(
ψ12ss −

θ12

ω1ω2

)
+

1
ω3

sin ω3

(
ψ31ss −

θ31

ω1ω3

)
−

1
ω3

sin ω3

(
ψ12ss −

θ12

ω1ω2

)
= 0

˙ψ31ss = −
1
ω3

sin ω3

(
ψ31ss −

θ31

ω1ω3

)
+

1
ω3

sin ω3

(
ψ23ss −

θ23

ω2ω3

)
+

1
ω1

sin ω1

(
ψ12ss −

θ12

ω1ω2

)
−

1
ω1

sin ω1

(
ψ31ss −

θ31

ω1ω3

)
= 0

The trivial and desirable solution set for the above equation is:
ψ∗12= θ12

ω1ω2
, ψ∗23= θ23

ω2ω3
, ψ∗31= θ31

ω1ω3
or σ∗12=σ23

∗=σ∗31=0

However, like before in eq. 13a, there are several spurious
solutions for which the entire right-hand sides of eqs. 14a, 14b,
14c are zero, without each of the individual terms being zero
separately. So, σij can achieve any of the possible solutions
satisfying the above equation. It appears that finding the spurious
solutions analytically are not possible.

To verify this numerically eq. 11 was simulated for the given
set of network parameters: ω1 = 4,ω2 = 7,ω3 = 10, Aij = A =

0.2, θ =

 0 1.3871 1.576
−1.3871 0 0.1889
−1.576 −0.1889 0

 and the initial values of

∅
′
is in the range 0 < ∅i (0) ≤ 2π with 4∅i (0) = 0.1 for 100 s to

let the system achieve a steady-state. It can be observed from eq.
14 that the possible solutions of σijss do not depend on θij but
on the natural frequencies of the oscillators (ωi). The following
Figure 7 summarizes the dependency of σijss on ∅i (0) and ∅j (0)
where it can be observed that σ12ss, σ23ss, and σ31ss achieve any of
the 5, 3, 4 solutions respectively (mentioned in the figure caption)
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FIGURE 7 | Equation 11 is simulated for 100 s for the network parameter values mentioned previously to check for what combinations of initial values of ∅′i s, σij ss’s
reaches, which of the solutions of eq. 14. (A) and (B) depicts that for various initial values of ∅1and ∅3 in between 0 to 2π, σ31ss attains 4 possible solutions:
0.3235, −0.0036,−0.4576, −1.3652, similarly from (C-F) it can be seen that for various initial values of ∅1,∅2 and ∅2,∅3 in between 0 to 2π, σ12ss and σ23ss

attains the 0.99, 1.465,1.6307, 1.9426, −0.0046 and 0.0633, 0.6855, −0.6751 solutions respectively, satisfying eq. 14.

and particular combinations of these solutions satisfy the above
equation. For a given initial value of ∅1, ∅2 and ∅3, σijss’s attained
one of the solutions and for a confined subspace of ∅1(0), ∅2(0)
and ∅3(0) under space 0 ≤ ∅i (0) < 2π, σijss’s attained the zero or

desired solution
(
σ∗ij

)
.

Hebbian Learning for the N-Oscillator System With
Power Coupling
We may extend the Hebbian learning of complex coupling (eq.
5), to the case of power coupling as follows.

τWẆij = −Wij + zi
(
zj∗
)ωi

ωj (15a)

The polar coordinate representation:

τWȦij = −Aij + rirj
ωi
ωj cos

(
ωi

(
∅i

ωi
−
∅j

ωj
−

θij

ωiωj

))
(15b)

τW θ̇ij =
ωjrirj

ωi
ωj

Aij
sin
(

ωi

(
∅i

ωi
−
∅j

ωj
−

θij

ωiωj

))
(15c)

We have limited the scope of our study only to θij dynamics
by assuming Ȧij = 0. Let τW be the time constant of the above
learning dynamics. It is shown both analytically and numerically
that ωj times angle

(
Wij

)
or θij tries to learn ∅iωj − ∅jωi when the

weight of the power coupling is trained according to eq. 15 (for
proof, please refer to Supplementary Appendix 5). Similarly, as
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it was previously shown during the training or phase encoding
of the complex coupling coefficient with very small fixed value
of Aij (magnitude of complex coupling coefficient), θij (angle of
complex coupling coefficient) learns ∅i (0)− ∅j (0)

(
≈ ∅i − ∅j

)
for arbitrary values of ω (constraining the natural frequencies
to be identical). When the power coupling weight is updated
according to eq. 15 under the same constraint as Aij �

1 and Ȧij = 0, θij learns ∅i (0)ωj − ∅j (0)ωi when there is
no external input.

From eq. 11, it can be interpreted that ∅i (t) ≈ ωit + ∅i (0)
for Aij � 1. So, when a network of sinusoidal oscillators coupled
according to eqs. 10 or 14 with the power coupling weights (W′ijs)
trained according to eq. 15, θij learns ∅i (0)ωj − ∅j (0)ωi(≈
∅iωj − ∅jω i).

In such a network when individual oscillators(
z′is or ∅

′
is
)

are driven by complex sinusoidal forcing
(Iext i = I0iei(ωit+ϕi) for the ith oscillator) and the power coupling
weights are trained as stated, θij learns ϕiωj − ϕjωi as with
Aij � 1, Ȧij = 0 and I0i � Aij. ∅′is are approximately same as
ωit + ϕi. The dynamics of such a network of supercritical Hopf
oscillators is defined below:

żi = zi
(
µ+ iωi − |zi|2

)
+

N∑
j=1 3 j 6=i

Aije
i
θij
ωj zj

ωi
ωj + Iext i (16)

Iext i = I0iei(ωit+ϕi)

Polar coordinate representation:

ṙi =
(
µ− ri2

)
ri +

N∑
j=1 3 j 6=i

Aijrj
ωi
ωj cos ωi

(
∅j

ωj
−
∅i

ωi
+

θij

ùùiωj

)
+I0icos (ωit + ϕi − ∅i) (17a)

∅̇i = ωi +

N∑
j=1 3 j 6=i

Aij
rj

ωi
ωj

ri
sinωi

(
∅j

ωj
−
∅i

ωi
+

θij

ωiωj

)

+
I0i
ri

sin (ωit + ϕi − ∅i) (17b)

The dynamics of such a network of Kuramoto oscillators:

∅̇i=ωi+

N∑
j=13j6=i

Aijsinωi

(
∅j

ωj
−
∅i

ωi
+

θij

ωiωj

)
+I0isin (ωit+ϕi−∅i) (18)

Simulated Result
When two Hopf oscillators are coupled through power coupling
with very weak coupling coefficient

(
Aij � 1

)
as described

above in eq. 16, θij learns ∅i (0)ωj − ∅j (0)ωi while there
is no external input (Iext i = 0) and θij learns ϕiωj − ϕjωi

when ith oscillator is forced by complex sinusoidal external
perturbation. The following simulation results support the stated
argument (Figure 8).

A Network of Oscillators With Adaptive Frequency
and Trainable Lateral Connections
A pair of coupled adaptive Hopf oscillators driven by distinct
complex sinusoidal inputs are capable of adapting their natural
frequencies to the frequencies of the complex sinusoidal input
signals. The trainable power coupling weight can encode
the normalized phase difference between the two complex
sinusoidal input signals.

When a pair of Hopf oscillators coupled through trainable
power coupling coefficient (eq. 15) are driven by complex
sinusoidal inputs (eq. 16), they adapt their natural frequencies
according to eqs. 2b or 2c, ωj times the angle of power coupling
coefficient Wij (power coupling weight from jth oscillator to
ith oscillator) or θij can learn the normalized phase difference
between the complex sinusoidal input signal. If Iext i is the
complex sinusoidal input signal driving ith oscillator, then the
normalized phase difference among them is:

ψij
I
=

angle (Iext i)
ω0i

−
angle

(
Iext j

)
ω0j

When the following dynamics is simulated for N=2 it can
be verified that θij learns ϕjω0i − ϕiω0j after ωi, the natural
frequency of ith oscillator learns the frequency of the input signal
ω0i (described in Figure 9).

żi = zi
(
µ+ iωi − |zi|2

)
+

N∑
j=1 3 j 6=i

Aije
i
θij
ωj zj

ωi
ωj + εIext i (19a)

Iext i = I0iei(ω0it+ϕi)

τWẆij = −Wij + zi
(
zj∗
)ωi

ωj (19b)

ω̇i = −εI0isin (∅i − ω0it − ϕi) (19c)

A Network for Reconstructing a Signal by a
Fourier-Like Decomposition
In the previous sections, we have described a network
of oscillators in which the natural frequencies and lateral
connections can be trained. We now add a feature to the
network of Section “A Network of Oscillators With Adaptive
Frequency and Trainable Lateral Connections” and make it learn
an unknown signal by performing a Fourier-like decomposition.

To this end, we construct a reservoir of Hopf oscillators
(Figure 10A). It consists of a network of Hopf oscillators
with trainable lateral connections (eq. 15) and trainable natural
frequencies (eq. 20b). In addition, there exists a linear weight
stage between the oscillators and the output layer. The natural
frequencies of the oscillators adapt themselves to the nearest
significant component in the input signal. The lateral connections
involving power coupling, encode the (normalized) phase
relationships among the oscillators. The output weights represent
the amplitudes of the oscillatory components corresponding to
the oscillators. A similar network architecture and dynamics for
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FIGURE 8 | When two Hopf oscillators (z1, z2) coupled through power coupling according to eq. 16 (for N=2 and Iext i = 0), the schematic of the network is
elaborated in panel (A), with the parameters ω1 = 5,ω2 = 10, A12 = A21 = 0.0001, θ12 (0) = 1.657, θ21(0) = −1.657 and the power coupling weights are trained
according to eq. 15, keeping the magnitude of the power coupling weight

(
Aij
)

constant, ωj times the angle of power coupling, θij learns ∅i (0)ωj − ∅j (0)ωi or
∅iωj − ∅jωi . Here ∅1 (0) = 1.2046, ∅2 (0) = 2.7008, and τW = 103. It is clear from the plot (B) that θ12 reaches ∅1ω2 − ∅2ω1 and θ21 reaches ∅2ω1 − ∅1ω2 w.r.t
time. When two such Hopf oscillators as described in the previous simulation are forced by an external complex sinusoidal perturbation as described in eq. 16
(Iext i 6= 0) with the following parameters ω1 = 5,ω2 = 10, A12 = A21 = 0.0001, θ12 (0) = −2.513, θ21(0) = 2.513, τW = 103 and Iext1 = 0.5ei

(
5t+ π

4

)
,

Iext2 = 0.5ei
(
10t+ π

6

)
, θ12, and θ21 learn ϕ1ω2 − ϕ2ω1 = −5.7131 and ϕ2ω1 − ϕ1ω2 = 5.7131 respectively (C). (D) It can be verified that the difference between θ12

and ∅1ω2 − ∅2ω1 as well as θ21 and ∅2ω1 − ∅1ω2 becomes zero w.r.t time.

FIGURE 9 | Equations 19a-c are simulated for the following set of parameters:ω01 = 20, ω02 = 30, ω1 (0) = 30, ω2 (0) = 40, A12 = A21 = 0.0001,
θ12 (0) = −1.7884, θ21 (0) = 1.7884, τW = 103, ε = 0.9 and Iext1 = ei

(
20t+ π

4

)
, Iext2 = ei

(
30t+ π

6

)
. It can be verified that θij learns ϕjω0i − ϕiω0j after the ω′i s learns the

corresponding ω′0is.
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FIGURE 10 | The schematic of the network where (A) a reservoir of N number of adaptive Hopf oscillators similar to the network proposed by Righetti et al. (2005)
with additional asymmetric power coupling connections between the oscillators, each of which is driven by the same error signal e(t) between the D(t), teaching
time-series signal and P(t), the linear summation of the oscillations of each of the oscillators in the reservoir through the real feed-forward connection weights,
elaborated in eq. 20. (B) The network architecture of 2nd phase of training with the same reservoir of oscillators with tuned natural frequencies and trained power
coupling weights in the 1st phase of training. Ypi is the predicted output signal at the ith output node. Complex feed-forward weights W f ′

ij s connecting jth oscillator to

the ith output node, are trained in batch mode according to eq. 23.

adaptable central pattern generator (aCPG) has been proposed
by Righetti et al. (2005), the detailed comparison of which is
discussed in Section “Discussion.”

To reconstruct the teaching time-series signal at the output
summation node, the error signal that drives each of the
oscillators drives the phase offset to the desired phase offset
associated with the corresponding frequency present in the
teaching time-series signal. The activation and learning dynamics
of the network are given below.

żi = zi
(
µ+ iωi − β1|zi|2

)
+

N∑
j=1 3 j 6=i

Wijzj
ωi
ωj + εe (t) (20a)

Wij = Aije
i
θij
ωj

ω̇i = −ηωe (t) sin∅i (20b)

α̇i = ηαe (t) ricos∅i (20c)

τWẆij = −Wij + zi
(
zj∗
)ωi

ωj 3 Ȧij = 0 (20d)

e (t) = D (t)− P(t) (20e)

P (t) =
N∑
i=1

αicos∅i

Let D (t) be the teaching time-series signal with a finite
number of frequencies (D (t) =

∑N
i=1 aicos (ωit + ϕi) where ϕi

be the phase offset associated with ith frequency component),
zi = riei∅i , α′is are the real feed-forward weights from ith oscillator
to the output summation node, τW , ηω and ηα are the time
constant of the learning dynamics for power coupling coefficient,
the learning rate of the natural frequency of the oscillators and
the real feed-forward weights from oscillators to the output
summation node respectively, P (t) is the reconstructed signal
at the output summation node. The numerical simulation of
the proposed network (Figure 10A describes the schematic) is
elaborated in the following Figure 11.

We propose a similar network for Fourier decomposition of
complex time series signal with a finite number of frequencies
(assuming D (t) =

∑N
i=1 aie

i(ωit+ϕi)), which is an extension of
the network proposed in section “A Network of Oscillators
With Adaptive Frequency and Trainable Lateral Connections.”
The proposed network is comprised of a reservoir of complex
adaptive Hopf oscillators coupled through trainable power
coupling weights, and driven by distinct complex sinusoidal
inputs with arbitrarily different frequencies. The network is
capable of learning the frequencies and encode the normalized
phase relationship among the oscillatory components of the input
signal. It is driven by the error signal between the complex
teaching signal and the linear summation of complex activations
of the Hopf oscillators. The dynamics of the network is described
in the following equations.

żi = zi
(
µ+ iωi − β1|zi|2

)
+

N∑
j=1 3 j 6=i

Wijzj
ωi
ωj + εe (t) (21a)

Wij = Aije
i
θij
ωj
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FIGURE 11 | Equations 20a-e is simulated with the following parameters D(t) = 2cos
(
4t+ π

2

)
+ 1.5cos

(
8t+ π

5

)
+ 1.8 cos

(
12t+ π

12

)
, Aij = 10−5, ηω = 0.1,

ηα = 10−4, τW = 104, ε = 0.5, N = 3, dt = 10−3 sec. (A) The network learned signal at the output summation node P (t) and the D (t) signal at various 10 s of
time interval. (B) The natural frequencies of the three oscillators learn the three frequency components present in the teaching signal. (C) ωj times the angles of the
complex power coupling weights (θij) learn ϕiωj − ϕjωi . (D) The real feed-forward weights αi ’s learn ai ’s.

ω̇i = −ηω

(
real (e (t)) sin∅i − img (e (t)) cos∅i

)
(21b)

α̇i = ηα

(
real (e (t)) ricos∅i + img (e (t)) risin∅i

)
(21c)

τWẆij = −Wij + zi
(
zj∗
)ωi

ωj 3 Ȧij = 0 (21d)

e (t) = D (t)− P(t) (21e)

P (t) =
N∑
i=1

αizi

The schematic of the network is identical to the network
described in Figure 10A, and the simulated result for a
D (t), which contains three frequency components is as
follows (Figure 12).

A Generative Network Which Is Capable of Modeling
EEG Signals
The proposed network is capable of modeling an arbitrary
number of signals with an overlapping frequency spectrum.
It is trained in two phases. In the first phase, a network
exactly similar to the one in the previous section (Section
“A Network for Reconstructing a Signal by a Fourier-Like
Decomposition”) is used to encode the constituting frequency
components of one of the input signals. During this phase,
the natural frequencies (ω′is), the real feed-forward weights
(α′is) as well as the power coupling weights

(
W′ijs

)
of a

network of N Hopf oscillators are trained using the same
learning rule described in the previous section (eq. 20). One
key difference compared to the previous section is that the
teaching signal in the present scenario is aperiodic (frequency
spectrum is continuous) and has a finite duration. To overcome
this issue, the limited duration teaching EEG signal is presented
repeatedly to the network over multiple epochs. This helps the
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FIGURE 12 | Equations 21a-e are simulated for a teaching signal constituting three frequency components with the parameters
D (t) = 2ei

(
4t+ π

2

)
+ 1.5ei(8t+ π

5 ) + 1.8ei
(
12t+ π

12

)
,Aij = 10−5,ηω = 0.1,ηα = 10−4, τW = 104, ε = 0.5,N = 3, dt = 10−3 sec. (A) The real part of the network learned

signal at the output summation node P (t) and the D (t) signal at various 10 s of time interval. (B) The natural frequencies of the three oscillators learn the three
frequency components present in the teaching signal. (C) ωj times the angles of the complex power coupling weights

(
θij
)

learn ϕiωj − ϕjωi . (D) The real
feed-forward weights αi ’s learn ai ’s.

network to learn some sort of Fourier decomposition of the
teaching signal.

In the second phase of training, the trained reservoir of
oscillators tries to reconstruct M number of signals at the
corresponding M output nodes assuming these M signals are the
outcome of the same underlying process (producing signals with
frequencies confined to a certain frequency band) by training the
complex feed-forward weights connecting N oscillators of the
reservoir to the M output nodes. The schematic of the network
architecture (Figure 10B) and the corresponding learning rules
are described below.

First Phase of Learning
During the first phase of learning, an identical network with
identical learning dynamics as described by eq. 20 is used.
The only fundamental difference between the previous and
present scenario is that D (t) is a limited duration aperiodic or
quasiperiodic signal compared to the previous case where D (t)

was an infinite duration periodic or quasiperiodic signal. i.e.,
there can be an infinite number of frequency components present
in D (t) as the frequency spectrum of an aperiodic signal is
continuous (refer to Figure 14A). So, the Fourier decomposition
using the proposed network can be accomplished by discretely
sampling the continuous frequency spectrum.

Second Phase of Learning
In this phase, the supervised batch mode of learning is used to
train the complex feed-forward weights, Wf , defined as follows.
Here Kij and ζij are respectively the magnitude and angle of
the complex feed-forward weights. The derivation for the batch
update rule for Kij and ζij as described in eq. 22 is given in the
Supplementary Appendix 6.

Wf
ij = Kijeiζij (22a)
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FIGURE 13 | (A) In the first phase of training the oscillatory reservoir network (Figure 10A) with three oscillators is trained using the following teaching signal and
learning parameters: D(t) = A1 cos(ω1t+ ∅1)+ A2 cos(ω2t+ ∅2)+ A3 cos(ω2t+ ∅2), Aij = 10−1, ηw = 10−1, ηα = 10−4, τw = 104, ε = 0.5, N = 3,
dt = 10−3 sec, nepoch = 15. The network produced and the original teaching signal and their magnitude spectrum respectively after the last epoch (15) of training.
(B) After the second phase of training, the network (Figure 10B) is able to reconstruct the M = 5 output signals (Ydi for i = 1 to M) with identical frequency
components but randomly chosen amplitude (Ai ) and phase offset (∅i ) with high accuracy. Learning parameters: ηK = 3× 10−5,ηζ = 10−6, no. of epochs for the
batch mode of learning = 10000.

Ypi (t) = real

 N∑
j=1

Wf
ije

i∅j

 (22b)

4Kij = (−1)ηK
∑
t

(
Ydi (t)− Ypi (t)

)
cos

(
∅j(t)+ ζij

)
(22c)

4ζij= (−1)ηζ

∑
t

(
Ydi (t)− Ypi (t)

)(
−Kijsin

(
∅j (t)+ ζij

))
(22d)

Simulation Results
At first, the proposed network is simulated to model an arbitrary
number of quasiperiodic signals with identical frequency
components. The desired signal (D (t)) consisting of three
frequency components (provided ωi

ωj
is not an integer) with

a duration of 20 s is used for learning. The network output
P (t) signal (after the first phase of learning) and the respective
frequency spectrum is plotted in Figure 13A. After the second
phase of training, the desired and the network reconstructed
signals are plotted in Figure 13B, and the training parameters are
described. One crucial condition has to be met in order to achieve
an accurate reconstruction: All the oscillators in the reservoir has
to be initialized at zi (0) = 1.

The network performance is tested on low pass filtered (cut
off frequency of 5 Hertz) EEG data collected from a human
subject while performing mind wandering task (Grandchamp
et al., 2014). In the first phase, the network encodes N
number of frequency components of an EEG signal collected
from one channel of EEG recording during the mentioned

experiment. There is a constraint imposed on the magnitude
of the lateral power coupling weights as shown in Figure 14.
This constraint allows only oscillators with nearby frequency
components to interact with each other as initially, the natural
frequencies of these oscillators are sorted at an increasing order
after sampling from a uniform probability distribution ranging
between 0 and 5 Hertz.

In the second phase, the network tries to reconstruct the EEG
signals collected simultaneously from the other channels during
the same experiment. A set of EEG signals from 5 other channels
are reconstructed by the network. The reconstruction accuracy of
the modeled EEG signals depends on the number of oscillators
in the oscillatory layer and the number of desired signals to
be reconstructed. Using complex weights for the feed-forward
connections is a key factor as it helps to learn the amplitude, as
well as phase of the Fourier decomposition of the EEG signal to
be reconstructed, provided the frequency components are already
learnt in the encoding phase.

DISCUSSION

The unique contribution of the proposed network of complex
neural oscillators is the notion of power coupling by which
it becomes possible to achieve a stable normalized phase
relationship between two oscillators with arbitrary natural
frequencies. With such a feature as the backbone, it is possible to
construct a network of oscillators that can learn to reconstruct
multiple time series signals. Another positive feature of the
proposed model is the biological feasibility of the learning
mechanisms. The lateral connections in the oscillatory reservoir
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FIGURE 14 | (A) The reconstructed signal by the network of 100 oscillators after 30 epochs, the teaching signal, and the respective frequency spectrum in the first
phase of training. In this phase of training, the D (t) signal is an EEG signal of duration 10 s, and the exactly similar EEG signal is presented for consecutive 30
epochs. The learning parameters are: Aij = 10−1 for |j − i| < 5 and Aij = 0 for |j − i| ≥ 5 ηω = 0.1, ηα = 10−4, τW = 104, ε = 0.5,N = 100, dt = 10−3 sec
nepoch = 30. (B) After the second phase of training, the network reconstructed and the original EEG signals collected from 5 channels during the same experiment
from which D (t) for the first phase of training was collected and the corresponding frequency spectrum. Learning parameters: ηK = 3× 10−5, ηζ = 10−6, no. of
epochs for the batch mode of learning = 1000.
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are trained by a Hebb-like rule, while the forward connections are
trained by a modified delta rule adapted to the complex domain.
Experimental observations reveal that local interaction occurs
at the single neuron level through single synapse whereas long-
range interaction occurs between various cortical areas mediated
by multiple synapses (Supplementary Figure 6). At single-cell
level the synaptic property can define the relative phase difference
between tonically firing presynaptic and postsynaptic neurons.
Neuronal population-level interaction between various cortical
areas can facilitate cross-frequency coupling ensuring a certain
phase relationship (Hyafil et al., 2015) between the LFP activity
of different frequencies of the respective cortical areas.

Other Complex Valued Network Models
There is a vast literature pertaining to complex-valued neural
network models, which are produced by extending their real-
valued counterparts to the complex domain. Complex feed-
forward networks trained by the complex backpropagation
algorithm, complex Hopfield network, complex self-organizing
maps are examples of such models. Complex formalism plays
a key role in linear systems theory in which both systems and
signals can be represented as complex functions. As a special
case of this, in electrical circuit theory, oscillations are modeled
as complex numbers called phasors, that represent the phase of
the oscillations. Therefore, there is a longstanding association
between complex numbers and oscillations. Nevertheless,
complex-valued neural network literature did not seem to have
exploited this association. For the most part, complex-valued
neural networks operate like 2n dimensional versions of their
n-dimensional real-valued counterparts. The proposed model
attempts to take an important step in filling this lacuna. By
describing oscillations in the complex plane, and invoking the
power coupling principle, it is able to elegantly overcome some
of the difficulties involved in harnessing the dynamics of multi-
oscillator networks with real coupling.

Network models of complex-valued oscillators have
been described before. For example, subsequent studies by
Hoppensteadt and Izhikevich (1996, 2000) have shown that
weakly connected network of complex oscillators with identical
natural frequencies and self-adjoint matrix of complex coupling
coefficient can achieve any arbitrary phase difference between two
oscillators. It has also been shown that such network can store
and retrieve at least one memory pattern in terms of the phase
difference of the oscillators by enabling the Hebbian-like learning
rule of the complex coupling coefficient as given in eq. 5. Recent
study by Kim and Large (2021) has extended the steady-state
stability analysis of such a pair of oscillators to the special case of
frequency detuning (ω1 6= ω2) for a range of parameter space. In
the same study (Kim and Large, 2021), the authors have proposed
a generalized framework for a pair of coupled multifrequency
complex oscillators (Hoppensteadt and Izhikevich, 1997) with a
Hebbian like learning rule for the complex coupling coefficient.
Unlike the proposed power coupling strategy, the coupling is
defined for oscillators with natural frequencies near the resonant
condition: mω1 = nω2, where m and n are integer numbers.
Similar steady-state stability analysis of such a pair of complex
oscillators (for n = 2, m = 1 and higher order) shows that the

angle of the complex coupling coefficient (θij) learns m∅1 − n∅2
for �12 = mω1 − nω2 = 0, and increases/decreases linearly
or rotates for �12 6= 0 at steady state. However, neither of the
study extended the result to the case of interacting oscillators
with very different natural frequencies (|mω1 − nω2| > ε, where
ε is a small positive number), as we have done using power
coupling. Table 1 summarizes the comparison between four
different coupling strategies between a pair of complex Hopf
oscillators. Comparison is made principally w.r.t two dynamical
properties: entrainment and synchronization and Hebbian like
plasticity of the coupling coefficient and the coupling term
influencing the oscillator dynamics. Frequency entrainment is
the dynamical phenomena when the natural frequency of two
coupled autonomous oscillators converges to an intermediate
frequency (Pikovsky et al., 2001). Whereas the synchronization
has been defined here in a more general sense: any coupled
oscillators can exhibit synchronization if they maintain any of
the phase relationships (∅i − ∅j, m∅i − n∅j, ∅iωi

−
∅j
ωj

) constant
at steady-state with or without being entrained. A network of
complex-valued oscillators that can store patterns as oscillatory
states was described in Chakravarthy and Ghosh (1996). The
model also proposed a complex form of Hebb’s rule, similar
to the one used in the current study. However, the model of
Chakravarthy and Ghosh (1996) was limited in its capability
by the fact that all the oscillators in the model have a common
frequency. A representation of synaptic strength using a complex
weight, instead of the usual real weight, has an added advantage
in representing the temporal relationships underlying neural
dynamics. We have recently shown (Chakravarthy, 2020) that
the imaginary part of the complex weight captures the temporal
asymmetry between the activities of pre- and post-synaptic
neurons in a manner akin to the weight kernel of Spike Time
Dependent Plasticity (STDP) mechanism (Bi and Poo, 1998).

It may be said that the network of Section “A Generative
Network Which Is Capable of Modeling EEG Signals”
achieves a discrete approximation of the continuous spectra
of the signals that are reconstructed by the network. The
greater the number of oscillators in the network, the
tighter is the approximation. In this approximation, the
trainable real feed-forward weights (αi) of the network
learn the amplitude spectrum of D (t). The angle of the
power coupling weight learns normalized phase differences,
ϕi
ωi
−

ϕj
ω j

.

Analogous Trainable Central Pattern Generator
Model and Comparison
It has previously been shown in Righetti et al. (2005) that,
when a network of supercritical Hopf oscillators driven by the
reconstruction error signal, individual oscillators are tuned to
the nearest frequency components in the target time series.
In the network (net-1: schematic is described in Figure 2,
and the network dynamics and the learning dynamics is given
in eqs. 4 to 8 of Righetti et al., 2005) one shortcoming
is that there is no way to recreate the teaching time-series
signal (Pteach (t)) back without the error feedback loop as with
the learnt αi

′s and ωi
′s, when the network is reset (i.e., ri′s
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TABLE 1 | The brief comparison among the various coupling strategies between a pair of complex Hopf oscillators.

RC CC MFCC CPC

Entrainment 3 3 3 7

Synchronization (ωi = ωj ) 3 3 3 3

Synchronization (ωi 6= ωj,mωi = nωj ) 3 3 3 3

Synchronization (ωi 6= ωj,mωi 6= nωj ) 3 3 3 3

Hebbian plasticity 3 3 3 3

Coupling term Real activation
variable of the
presynaptic
oscillator (xj )

Complex activation
variable of the
presynaptic
oscillator (zj )

Resonant
monomials of
complex activation
variable of both the
coupled oscillators
(zi

m−1zj
n)

Resonant
monomial of
complex activation
variable of the
presynaptic

oscillator (zj

ωi
ωj )

Here synchronization is used in the general sense, i.e., two oscillations are said to be synchronized if either any of the following terms are constant: ∅i − ∅j , m∅i − n∅j ,
∅i
ωi
−
∅j
ωj

. RC: Real coupling strategy, CC: complex coupling strategy (Hoppensteadt and Izhikevich, 1996), MFCC: multi-frequency complex coupling strategy (Kim and

Large, 2021), CPC: complex power coupling strategy. 3: possible and/or defined, 3: possible and/or defined under constrained parameter space, 7: not possible and/or
undefined. Subscripts i and j represent presynaptic and postsynaptic oscillators respectively.

and ∅i′s are reset) there is no external forcing to drive the
phase offset of each oscillator to the desired phase offsets(
ϕ′is
)
. To overcome this issue, the authors have proposed a

phase signal of frequency same as ith oscillator but same
phase as the oscillator with the lowest frequency as a signal
communicated by the oscillator with the lowest frequency to
the ith oscillator, which makes those two oscillators maintain
a certain normalized phase difference

(
∅i
ωi
−
∅0
ω0

)
. However, to

learn/store the phase relationship between the lowest frequency
component and the ith frequency component in the teaching
signal a “phase variable” considered as a third variable of
the oscillator dynamics has been defined which learns the
difference between phase signal from the oscillator with the
lowest frequency and its own phase. The main issue with this
network is that the network can only learn Fourier decomposition
(frequency, magnitude and relative phase offset among the
constituting frequency components) of a periodic signal which
has frequency components of the form ωi = nω0, ω0 being
the fundamental frequency of the periodic signal as n ∈ N as
the phase signal Ri from the 0th oscillator is interacting with
the x dynamics of the 0th oscillator through real coupling
constant. Furthermore, there is an ambiguity in defining the
lowest frequency component or fundamental frequency of the
periodic teaching signal as the dynamics do not itself identify the
oscillator, which learns the lowest frequency component in the
teaching signal.

The above arrangement of representing phase difference using
an explicit phase parameter located in the ith oscillator has
another drawback of Righetti et al. (2005). Phase difference
between two oscillators is a property that arises out of their
interactions. Ideally, it must be represented as a property of
the interaction strength, which in our case is the complex
weight parameter. In Righetti et al. (2005), since phase difference
information between two oscillators has to be encoded within one
of the oscillators, in a rather awkward fashion, each oscillator is
restricted to encode the phase difference only with one “standard”
oscillator – the oscillator corresponding to the fundamental

frequency. On the contrary, in our proposed model, (normalized)
phase difference arises jointly out of the power coupling and the
corresponding complex weight, there is no need for the above-
mentioned restrictions. The oscillators can independently control
their (normalized) phase differences with other oscillators via
their mutual coupling parameters.

To overcome these issues, the proposed network as described
in section “A Generative Network Which Is Capable of Modeling
EEG Signals” is a similar network where the reservoir of complex
supercritical Hopf oscillators is coupled through power coupling
to preserve the phase relationship among the constituting
frequency components in the teaching signal. When second
network architecture proposed by Righetti et al. (schematic
of which is described in Figure 3 and the dynamics is given
in eqs. 13-20 of Righetti et al. (2005) tries to learn Fourier
decomposition of a teaching signal the natural frequencies of
the oscillators and the real feed-forward weights learns the
magnitude spectrum of the teaching signal. During learning the
error signal, F (t) drives the phase offset (∅i−ωit) of each of
the oscillators to the desired phase offset (ϕi) can be retrieved
from the phase spectrum of the teaching signal. Thus, the
same network deliberated by eq. 20 with the oscillators coupled
through power coupling with fixed Aij (� µ) ensures θij to learn
ϕiωj−ϕjω i.

One issue while retrieving the stored oscillatory pattern
is the dependence on the initial state of the oscillators to
achieve the desired solution (see section “Hebbian Learning
for the N-Oscillator System With Power Coupling”). We
observed that when ∅i (0)′s are sampled from space ∧,
subspace of ∧ = {x ∈ RN |0 ≤ x ≤ 2π}, the network attains
the desired solution at a steady-state. However, there are
other plausible solutions or spurious states the network can
acquire. The desired solution of σij

∗(=0) and the spurious
solutions are independent of the network parameters like Aij
(for Aij = A) and θij but has a dependence on the natural
frequency of the oscillators. However, the solutions of ψij
are dependent on both network parameters (θij and ωi,
assuming Aij = A). The dependency of the boundary of space
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? or the boundary of the other subspaces (initializing ∅i by
sampling which leads the system to spurious states) on the
natural frequency of the oscillators is yet to be understood.
A brief comparison between aCPG model of Righetti et al. (2005)
and the proposed aCPG model is summarized in the following
Table 2.

Large-Scale Network Models
In the present study, we use the oscillatory neural network model
to reconstruct six EEG time series simultaneously. However, the
proposed learning mechanisms and network architecture can be
easily scaled up. It is possible to model a much larger number
of EEG channels (say, 128 or 512) simply by increasing the size
of the oscillatory reservoir and the number of output neurons.
In the current study, the connections among the oscillators
are constrained to ensure that only oscillators with nearby
natural frequencies are connected. In a large-scale model, it is
conceivable to associate the individual neural oscillators with
anatomical locations in the brain, and constrain their coupling
based on structural connectivity information from structural
imaging tools like Diffusion Tensor Imaging (DTI) (Damoiseaux
and Greicius, 2009). Through such developments, the present
model can evolve into a class large-scale models of brain
dynamics similar to The Virtual Brain (TVB) model, with some
relative advantages.

The TVB model principally uses neuronal mass models
like the two-variable nonlinear oscillatory models including
Fitzhugh-Nagumo model, Winson-Cowan model, Wong-Wang
model, Brunel-Wang model, Jensen-Rit model, Stefanescu-
Jirsa model (Wilson and Cowan, 1972; Jansen and Rit,
1995; Brunel and Wang, 2003; Wong and Wang, 2006;
Stefanescu and Jirsa, 2008), which can exhibit excitable
dynamics and limit cycle oscillations. In these models,
the oscillators are coupled by only one variable, which is
analogous to “real-valued” coupling. They are trained by global
optimization algorithms that adjust the coupling strengths
so that the output of the oscillatory network matches the
recorded brain dynamics. Furthermore, most of them do
not have an explicit natural frequency as an independent
parameter which is trainable depending on the external input

signal. Powanwe and Longtin (2019) developed a large-scale
cortical model using a network of stochastic Wilson-Cowan
model with ‘smooth nonlinearity’ to model gamma-band
LFP activity. The LFP activity of excitatory and inhibitory
population of neurons is modeled using sinusoidal variations
(Vx (t) = Zx (t) cos (ω0t + ∅x (t))). The three characteristic
features, envelop (Zx (t)), constant mean frequency (ω0)
and phase (∅x (t)) respectively are dependent on network
parameters. ω0 is dependent on excitatory synaptic strength,
tunable through Hebbian plasticity. Other large-scale modeling
studies on the same lines (Mejias et al., 2016; Joglekar et al.,
2018) focus on investigating the principal network parameters
behind signal propagation or intercommunication between
various cortical areas located at the various levels of hierarchy.
Although these models can capture the large-scale network
entrainment by the external input signal through Hebb-like
plasticity of the excitatory synaptic connection, they fail to
provide simplified network dynamics essential to learn three
constitutive features (frequency, magnitude, and phase offset) of
any input signal.

Attractor Dynamics
The proposed network in section “Power Coupling Among
N Hopf Oscillators” can reproduce a given time series
signal as a linear summation of the oscillations with the
same frequency components as the natural frequency of the
oscillators in the reservoir and the relative phase relationships
encoded in terms of the angle of the power coupling.
Given the similarities between conventional attractor neural
networks such as the Hopfield network, storing multiple
“patterns” can be regarded as multiple time series signals
with identical frequency components but non-identical relative
phase relationships among them. As the relative phases among
the oscillations is encoded in terms of the angle of the
power coupling coefficient, the pth pattern can be regarded as:

xp = eiθp

where, θp is a N-dimensional vector, N being the no of oscillators.

TABLE 2 | This table compares various features related to network architecture, scope of trainability, retrievability, type of teaching signals the model can learn; of the two
adaptive central pattern generator (aCPG) models proposed by Righetti et al. (2005) with our proposed aCPG model.

ITEM Model-1: aCPG of
Righetti et al.
(2005)

Model-2: aCPG of
Righetti et al.
(2005)

Proposed aCPG
model

Learning constituting frequency components 3 3 3

Learning amplitude spectrum 3 3 3

Learning phase offset relationship/phase spectrum 7 3 3

Lateral asymmetric coupling 7 7 3

Hebbian plasticity 7 7 3

Retrieval without feedback loop 7 3 3

Periodic/quasiperiodic teaching signal 3 3 3

Aperiodic teaching signal 3 3 3

3: possible and/or defined. 7: not possible and/or undefined.
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The power coupling coefficients are assigned as:

Wij = ae
i
2ij
ωj

Where,
ei2 =

∑
p

xpxp∗

xp∗ is the complex conjugate of the transpose of xp. However,
the network retains the phase relationship among the oscillators
defined by the combined phase, 2, instead of the individual
phase relationships defined by various patterns. The model
equations in the current form do not seem to support storage
of multiple patterns within the oscillator layer. However, with
slightly modified equations in the complex domain, it is possible
to achieve multiple pattern storage (Chakravarthy and Ghosh,
1996; Chakravarthy, 2009). The proposed network architectures
seem to be robust to the noise inherent to the system dynamics as
well as external noise, corrupting the input signal. A brief study
on the performance of key network architectures w.r.t the noise
power is given in the Supplementary Figures 1-5.

Future Perspective
In the future, we plan to extend the proposed model to create a
whole class of deep oscillatory networks. The network will have
an input stage that serves as an encoder that performs a Fourier-
like decomposition of the input time-series signals. The network
model of Section “A Network for Reconstructing a Signal by a
Fourier-Like Decomposition” will play the role of this encoder.
The hidden layers will consist of oscillators operating at a range
of frequencies. The output layer will be a decoder that converts
the oscillatory outputs of the last hidden layer into the output
time series. Another interesting proposed study is to develop
the network model of Section “A Network for Reconstructing
a Signal by a Fourier-Like Decomposition” into a model of the
tonotopic map. Electrophysiological recordings from the bat’s
auditory cortex revealed a map of frequencies (a tonotopic map).
Kohonen had proposed a model of the tonotopic map using
a self-organizing map (Kohonen, 1998). However, this model
represents frequency as an explicitly available parameter, without
actually modeling the responses of the neurons to oscillatory

inputs (tones). We propose that by organizing the oscillators in
the reservoir model of Section “A Network for Reconstructing
a Signal by a Fourier-Like Decomposition” in a 2D array with
neighborhood connections, it is possible to produce a biologically
more feasible tonotopic map model.
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